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Efficient parallel derivation 
of short distinguishing sequences 
for nondeterministic finite state machines using 
MapReduce
Bilal Elghadyry1,2* , Faissal Ouardi2, Zineb Lotfi2 and Sébastien Verel1 

Introduction
Recent large-scale software systems, which contain thousands or even millions of inter-
acting components of hardware and software, have come to perform more and more 
critical roles in many of society’s most important infrastructures, including those used 
to support banking, health care, air traffic control, telephony, and many other sectors. 
Software systems are very large in scale: they consist of hundreds or thousands of com-
puters and millions of lines of code and they perform complex tasks almost continu-
ously. They raise a host of technical and nontechnical issues which can become critical 
and others of which arose recently as a result of the increases in scale and the degree of 
interconnection of software systems. Since software testing is an essential step in the 
software development process, we have to use efficient approaches to reduce both the 
cost and the time of testing.

Abstract 

Distinguishing sequences are widely used in finite state machine-based conformance 
testing to solve the state identification problem. In this paper, we address the scalability 
issue encountered while deriving distinguishing sequences from complete observable 
nondeterministic finite state machines by introducing a massively parallel MapReduce 
version of the well-known Exact Algorithm. To the best of our knowledge, this is the 
first study to tackle this task using the MapReduce approach. First, we give a concise 
overview of the well-known Exact Algorithm for deriving distinguishing sequences 
from nondeterministic finite state machines. Second, we propose a parallel algorithm 
for this problem using the MapReduce approach and analyze its communication cost 
using Afrati et al. model. Furthermore, we conduct a variety of intensive and compara-
tive experiments on a wide range of finite state machine classes to demonstrate that 
our proposed solution is efficient and scalable.
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Finite state machine and conformance testing

Due to their simplicity and ability to model complex systems, Finite State Machines 
(FSMs) are extensively used in several fields such as communication protocols [1], pat-
tern matching [2], digital event reconstruction [3], smart contract [4], distributed testing 
[5, 6], genomics [7], and other reactive systems [8]. An FSM is a model which has a finite 
number of states, inputs, outputs, and a finite number of transitions each labeled by an 
input/output pair. Besides that, FSMs are the underlying models for formal description 
techniques, such as statecharts, Specification and Description Language (SDL) [9], Uni-
fied Modeling Language (UML) [10], programmable logic devices [11], and ethereum 
smart contracts [4].

Testing FSM is an indispensable part of system design and implementation to guar-
antee the right functioning of the modeled systems and find aspects of their behav-
ior due to their simplicity and ability to model systems [12]. This is well studied in the 
FSM-based testing research area. However, we are basically missing some information 
about the black-box FSM Implementation Under Test (IUT), and, as a consequence, 
we need to recoup this information by trying experiments on this IUT [13]. The pur-
pose of these experiments is to check whether the implementation of a model behaves 
in accordance with its specification, by applying checking sequences (CSs) to the IUT, 
observing the corresponding output responses, and drawing a conclusion about the IUT 
[14]. In other words, one needs to recognize the state of the IUT and bring the IUT to 
a particular state. The state recognition can be accomplished by using CSs like distin-
guishing sequences [15], Unique Input Output sequences [16, 17], Characterizing Sets 
(W-Set) [18], or synchronizing sequences (also known as reset sequences) [19], when 
such sequences exist. The motivation to study such sequences comes from different 
fields including robotics, bio-computing, propositional calculus, model-based testing, 
distributed testing, and many more [15, 19–28]. The literature contains many techniques 
that automatically generate CSs [21, 22, 29–34]. Most approaches consist, in principle, 
of three parts: initialization, state identification, and transition verification.

In this paper, we focus on the scalability problem of generating distinguishing 
sequences (DSs) from an FSM to resolve the state identification problem, which consists 
in finding an input sequence that produces different outputs for each initial state of an 
FSM. This problem was initially described in the seminal paper by Moore [35] in 1956, 
and in 1964 Hennie [36] provided the first FSM-based test generation algorithm that 
can be automated. One motivation is that many FSM-based test sequence generation 
techniques use DSs (see, for example, [30, 36–40]). It has been found that distinguishing 
sequences (DSs), where they exist, lead to shorter tests [13]. There are two well-known 
DSs, adaptive (ADS) and preset (PDS) [41] for different FSM classes (deterministic [13], 
nondeterministic [42], complete [43], partial [44], observable [45]). PDS is a single fixed 
input sequence that can be used to distinguish each state of the machine [46]. In ADS, 
the next input depends on the output of the current input. It is a rooted tree where each 
root to leaf path represents an input sequence specific to the state represented by the 
leaf. Throughout the paper, we refer to PDS when we write DS. To derive a shortest DS 
of a state’s pair, Spitsyna et al. have designed the well-known Exact Algorithm (EA) [47]. 
It’s based principally on two steps: For an FSM M, construct a truncated successor tree 
from the intersection of two initialized FSMs M/s1 (i.e., FSM M with the initial state s1 ) 
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M/s2 (i.e., FSM M with the initial state s2 ) and then derive a shortest DS from it. They 
suggested a method to analyze the separability relation between FSMs that can be used 
for deriving a shortest DS (if exists) of two given FSMs (or for two states of a given FSM) 
and show that for two states of an FSM, its upper bound becomes exponential.

When nondeterministic FSMs are considered, Alur et al. [48] have shown that the 
length of a DS for all states can reach the exponential bound. In addition, the complex-
ity to decide if there exists a PDS is PSPACE-complete, and it is EXPTIME-complete to 
decide if there is an ADS.

To the best of our knowledge, the parallelization and scalability of deriving DSs from 
nondeterministic FSMs have not been thoroughly addressed using MapReduce frame-
work. In this work, we focus on the design of an optimized MapReduce version of the 
Exact Algorithm, and experiments to prove its scalability.

Outline and contributions

Our study makes the following contributions:

• We present the first parallel MapReduce algorithm to efficiently derive a set of short 
distinguishing sequences for all pairs of states of a nondeterministic FSM.

• We provide a theoretical analysis of the communication cost of proposed methods in 
MapReduce model through a grounded theory.

• We evaluate the performance of the proposed algorithms through extensive experi-
ments using a variety of large-scale FSMs datasets.

The remainder of the paper is structured as follows. Section  2 includes the necessary 
technical definitions and a brief introduction to the MapReduce computational model. 
Section 3 presents the related works as well as a survey of the Exact Algorithm for deriv-
ing DSs from nondeterministic FSMs. Section  4 presents and analyses the proposed 
MapReduce version of the Exact Algorithm to derive a set of shortest DSs for all pairs 
of states. Section 5 shows the efficiency and the scalability of the proposed methods by 
conducting extensive and comparative experiments on a variety of classes of nondeter-
ministic FSMs, whereas section 6 covers the conclusion of the paper.

Preliminaries
In this section, we present basic concepts that are used throughout this paper and 
MapReduce framework in brief.

Finite state machine and distinguishing sequences

A finite state machine (FSM) is a 4-tuple M = (S, I ,O,E) , where S is a finite set of states, 
I is a finite set of input symbols, called input alphabet, O is a finite set of output symbols, 
called output alphabet, and E ⊆ S × I × O × S is the set of transitions. Given a transi-
tion t = (s, i, o, s′) ∈ E , we denote by s[t] its origin or start state s, d[t] its destination 
state or next state s′ , I[t] its input symbol i, and O[t] its output symbol o. Let s be a state 
in S, we denote by Es the transitions subset having s as a start state i.e. for t ∈ Es , s[t] = s . 
A FSM is nondeterministic if for a state s ∈ S there exists t, t ′ ∈ E such that s[t] = s[t ′] 
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and I[t] = I[t ′].An FSM is called complete if for each pair (s, i) ∈ S × I there exists 
(o, s′) ∈ O × S such that (s, i, o, s′) ∈ E . Otherwise, the machine is called partial.

A complete nondeterministic FSM is observable if at each state, the machine has at 
most one transition under a given input/output pair. Otherwise, the machine is non 
observable.

An FSM is called connected if for each s ∈ S there exists an input sequence that takes the 
FSM S from an arbitrary state to state s.Given an FSM M = (S, I ,O,E) , a state s and an 
input i, the i-successor of state s contains each state s′ for which there exists an output sym-
bol o ∈ O such that (s, i, o, s′) ∈ E . Given a subset of states S′ ⊆ S and an input i, the set of 
states S′ is the i-successor of S if S′ is the union of the i-successor over all states of the set S.

Example 1

Let us consider the FSM M defined over the sets of inputs I = {a, b} , outputs O = {0, 1} , 
and states S = {s0, s1, s2, s3, s4} , schematized in Fig. 1. The a-successor of state s0 is the set 
of states {s1, s2} , the a-successor of state s1 is the set of states {s3, s4} . Thus, the a-successor 
of the set of states {s0, s1} is the set {s1, s2} ∪ {s3, s4} = {s1, s2, s3, s4}.

We are interested in DS, which is an input sequence that produces different out-
put sequences when starting from different states of an FSM. As mentioned previously, 
there exists two types of DSs: An input sequence x is considered as a preset distinguish-
ing sequence (PDS) for FSM M if x is defined as an input sequence for states S and for 
any pair of distinct states (s1, s2) ∈ S × S , x is a distinguishing sequence for s1 and s2 . In 
the other side, an Adaptive Distinguishing Sequence (ADS) is a rooted tree T with exactly 
n leaves; the internal nodes are labeled with input symbols, the edges are labeled with 
output symbols, and the leaves are uniquely labeled with states of the FSM such that: a) 
edges descending from a common node have distinct output symbols, and b) for each leaf 
of T, if x and y are the input and output sequences respectively formed by the node and 
edge labels on the path from the root to the leaf labeled by some state si of the FSM then 
(si, x, yi, s

′) ∈ E . Then, the input sequence x is considered as an adaptive distinguishing 
sequence of the state si . The length of such sequence is the depth of the tree T [12].

Fig. 1 Finite State Machine M 
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MapReduce model of computation

Works based on MapReduce were recently introduced as an optimal parallel model to 
compute the intersection [49] and the composition [50] operations of FSMs. In this work, 
we implement the first MapReduce version of the EA to derive a shortest DS for each pair 
of states if exists from a large-scale complete observable nondeterministic FSM.

MapReduce [51] is considered as one of the most prominent programming models for 
processing scalable problems. Nowadays, Hadoop [52] offers the most popular open-
source framework written in Java for implementing MapReduce algorithms. Authored by 
Apache Software Foundation, the Hadoop project includes modules enabling reliable and 
scalable distributed computing. It presents several advantages, such as scalability, flexibil-
ity, cost-effectiveness, organized architecture, and resilience to failure. Recently, several 
Hadoop-based platforms have been proposed as efficient and flexible solutions for com-
putational storage with the strategy of processing data close to where they reside [53–55]. 
Among them, we cite the lineage-aware data management (LDM) that exploits the data 
locality to decrease the network footprint [56, 57]. MapReduce algorithm consists of three 
major phases: Map, Shuffle and Reduce. Each phase runs several tasks in a completely par-
allel manner. The Map phase is responsible for filtering and transforming input records 
into intermediate records, the Shuffle phase occurs automatically, it is done by Hadoop to 
manage the exchange of the intermediate data from the map phase to the reduce phase, 
while the Reduce phase is in charge of summarizing the outputs of the previous phase.

When designing a parallel MapReduce algorithm, it is essential to propose an opti-
mal one that offers the best trade-off between parallelism and communication cost in a 
MapReduce computation. To do this, we analyze the communication and the computa-
tion costs of the proposed methods using Afrati et al. theoretical model [58].

Related work
Parallel approaches for deriving distinguishing sequences

A variety of studies have recently focused on the use of parallel processing techniques in 
order to derive CSs in a large-scale context: UIO sequences [17], harmonized state identi-
fiers, and characterizing sets [18], synchronizing sequences [59, 60]. For DSs generation, 
Hierons and Türker [61] and El-Fakih et al. [62] introduced independently parallel multi-
threading implementations of the EA over the Central Processing Unit (CPU) and Graph-
ics Processing Unit (GPU) architectures [63]. They conducted extensive experiments 
when considering a large variety of FSM classes, using different CPU-GPU architectures 
and workloads. The obtained results show that their approaches are sufficiently efficient 
in large-scale data, and the execution time for deriving DSs from nondeterministic FSMs 
increases exponentially w.r.t. different parameters such as: the degree of nondeterminism, 
the number of transitions, and the input alphabet size to the output alphabet size ratio.

In order to reduce the execution time of constructing successors’ table of all pairs of 
states for a given nondeterministic FSM, El-fakih et  al. [62] proposed different multi-
threading parallel approaches based on multicore CPU and GPU architecture. They 
considered two options: Thrust software platforms and GPU implementations using the 
CUDA platform. They also proposed and evaluated a Network of Workstations solu-
tion (NoWs) based on Divisible Load Theory. They conducted their experiments on 
the class of nondeterministic FSMs with a large number of input and output symbols. 
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These experiments bring out the difference between the proposed algorithms in terms of 
speedup and execution time.

In [61], Hierons and Türker considered the partial observable nondeterministic FSMs 
and studied the scalability issue while constructing preset and adaptive distinguishing 
sequences (PDS and ADS) for all states. They proposed an ADS generation algorithm 
that can process inputs up to 2048 times better than the existing ADS construction 
algorithm and a PDS generation algorithm that can process inputs up to 8 times better 
than the existing PDS generation algorithm. Their approach is based on the available 
parallelism in a GPU computing model, called the thin thread strategy. it utilizes global 
device memory and so maximizes the number of threads in order to maximize parallel-
ism. The results of their experiments are good and indicate that the proposed algorithm 
can derive DSs from observable partial nondeterministic FSMs with 32000 states in an 
acceptable amount of time.

Overview of the exact algorithm

In this section, we present a concise overview of the well-known Exact Algorithm [47] 
that derives shortest distinguishing sequence for a pair of states, if it exists, of a complete 
observable nondeterministic FSM.

From an FSM M, we will consider two FSMs with different initial state M/s1 and M/s2 . 
The EA will be applied to a single FSM M to derive a DS of two states s1 and s2 and we 
note that the state pair order doesn’t make a distinction i.e. (s0, s1) = (s1, s0) . In order to 
derive a shortest distinguishing sequence (when it exists), EA is implemented using the 
Breadth-First Search (BFS) method that explores the search successor tree level by level.

Algorithm 1: Exact Algorithm (EA)
input : Two different states sk and sl of a complete observable nondeterministic

M = (S, I,O,E).
output: A shortest DS of states sk and sl (if it exists) or the message that states sk and sl

are non-separable.
1 Intersection step

/* Derive the successor tree Tree from M/sk ∩M/sl */
2 foreach transition (t, t ) ∈ E ×E do
3 if I[t] = I[t ]&&O[t] = O[t ] then
4 insert(Tree,((s[t],s[t ]),I[t],(d[t],d[t ])))

5 if Tree is a complete FSM then
6 The states sk and sl are non-separable.

7 else
8 derive a truncated successor tree of M/sk ∩M/sl.

9 Derivation step
/* An intermediate node of the jth level labeled with a subset P of states of the
intersection */

/* A current node Current, at the pth level, labeled with the subset P of state
pairs */

10 if there exists an input i such that each pair of the set P has no i-successors
11 or there exists a node at a jth level, j < p, labeled with subset R of states such that P ⊇ R,
12 or for some pair (s, t) of the set P and some output o, the I/O sequence io takes the FSM

from states s and t to the same state then
13 The current node is claimed as a leaf node
14 if none of the paths of the truncated tree derived is terminated then
15 return sk and sl are non separable.
16 else
17 a shortest sequence αi where α labels the path from the root of the tree to a leaf, is a

shortest distinguishing sequence of sk and sl, return αi.
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The EA is divided into two major steps: the intersection step and the derivation step. 
In the first step, we compute the intersection M/s1 ∩M/s2 . Then, if this intersection is 
a partial (non-complete) FSM, we derive a truncated successor tree Tree. Otherwise, we 
return the message that the two states are non-distinguishable. In the second step, we 
derive from the truncated successor tree Tree a short DS of the state pair of the root 
node, if it exists, using BFS method. The root of this tree, which is at the 0th level, is the 
initial state (sk , sl) of the intersection; the nodes of the tree are labeled with subsets of 
states of the intersection. Given already derived j tree levels, j ≥ 0 , an internal node of 
the jth level labeled with a subset P of states of the intersection, and an input i, there is 
an outgoing edge from this internal node labeled with i to the node labeled with the sub-
set of the i-successors of pairs of states of the subset P. A current node Current, at the 
pth level, p ≥ 0 , labeled with the subset P of state pairs, is claimed as a leafnode if one of 
the conditions in line 10, 11 or 12 of Algorithm 1 holds. Next, if no leaf node exists fol-
lowing the condition of line 10, then the states pair of the root node are non-separable. 
Otherwise, if there is a leaf node labeled with the subset P of states such that for some 
input i, each state of the set P has no i-successors, then derive a shortest DS αi where α 
labels the path from the root node of the tree to the leaf node.

The number of different possible subsets of pairs of states in an FSM having n states is 

2
n2

2  (the number of possible subsets P in Algorithm 1). Hence the worst-case time com-
plexity of this step of EA is in O(2

n2

2 ) . In the second step of EA, derivation of a DS, if it 
exists, from the previously derived truncated successor tree is performed using the clas-
sical Breadth-First Search method as recalled in Algorithm 1. Then, the worst-case time 
complexity of the EA is shown to be in O(2

n2

2 × n2

2
× |I | × |O|).

When considering two FSMs having respectively n and m states, it’s shown in 
[47] that the length of the shortest DS is at most 2mn−1 and this upper bound can be 
reached. As a consequence, the upper bound for a single FSM becomes 2n2−1.

However, according to the conducted experiments in [47] there exists a large class 
of FSMs with n and m states such that the length of the shortest DS is less than mn 
and less than n2 when considering one FSM. The experiments also show that the exist-
ence of a DS of two FSMs significantly depends on the degree of nondeterminism in 
the FSMs [47].

Example 2

Let us consider the FSM M from Example 1. and apply the EA to derive a DS between the 
state s0 and the state s1 . Figure 2 shows the successor tree derived from step 1 of the EA. 
The nodes of this successor tree are labeled from n1 to n7.

As the intersection of M/s0 and M/s1 is not a complete FSM, the root node n1 associ-
ated with the state pair (s0, s1) is at the level j = 0 . The successors of n1 are nodes n2 and 
n3 . Then, for the level j = 1 , we obtain the state pairs in nodes n4 and n5 as successors of 
n2 , and the successors of n3 are the state pairs in nodes n6 and n7 . The node n4 has a pair 
with repeated state (s3, s3) , so, we do not consider n4 for further exploration. Node n6 is 
labeled with the empty set, i.e., there are no successors for n3 under any input symbol. 
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Therefore, the input sequence “ba′′ which starts from the root and leads to the node 
labeled with the empty set is a short DS for the FSMs M/s0 and M/s1.

Efficient MapReduce algorithm for deriving short distinguishing sequences 
from FSMs
In this section, we present and analyze our parallel version of the EA using MapReduce 
framework to extract a set of short distinguishing sequences from complete observable 
nondeterministic FSM. Our method outperforms the previous parallel approaches in the 
sense that it efficiently provides a short distinguishing sequence for each pair of states of 
a large FSM.

Framework overview

The proposed solution consists of two MapReduce steps namely: the intersection step 
and the derivation of short distinguishing sequences step or the derivation step for short.

Figure  3 illustrates the workflow of our solution, which receives a large FSM as 
input and produces a set of short distinguishing sequences for each pair of states 
using two MapReduce algorithms. Initially, an input FSM M = (S, I ,O,E) is pre-
processed to produce a text file where every line (value) represents a transition 
t = (s[t], I[t],O[t], d[t]) . This file is the input of the intersection step. MapReduce 
framework is composed essentially of a map function which performs filtering and 
sorting, and a reduce function which performs a summary operation. The map func-
tion produces a set 〈key, value〉 pairs. In our case, for a transition t, it generates a set 
of associated keys. Following that, the set of pairs produced by map function are 
grouped and sent to reduce function. This last receives transitions having the same 
key and computes their intersection i.e. for two transitions ti and tj having the same 
input/output, the result will be an edge in the so-called truncated successor tree 
({(s[ti], s[tj])}, I[ti], {(d[ti], d[tj])}) , else ({(s[ti], s[tj])}, I[ti], {}) . In the second step, we 
developed an iterative MapReduce algorithm to derive a short distinguishing sequence 

Fig. 2 The truncated successor tree of M/s0 ∩M/s1
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if exists. The input of this step is the output of the previous intersection step. The map 
function of this step takes an edge of the truncated successor tree (ns, l, nd) where ns 
denotes the source node, l is the label, and nd is the destination node and produces a 
set of associated keys. For a given edge, if its destination node is empty, the associated 
key will be its source node, else each states’ pair in its destination node becomes a new 
associated key. Next, the reduce function receives the set of edges having the same 
key and divides the set of associated edges into two subsets, the first one contains all 
edges having an empty destination node, the other one contains the rest of the edges. 
Then, the cartesian product of these two subsets will be performed i.e. for two edges 
e and e′ , if the source node of e′ is a subset of the set of pairs in the destination node 
e, then the resulting edge will be (ns(e), l(e)l(e′), nd(e) \ ns(e′)) . This process is equiva-
lent to a BFS in the truncated successor tree of the EA, when we concatenate edges 
label to construct DSs if exist. Figure 4 shows the derivation step of the successor tree 
presented in Fig. 2. The first round of the derivation step performs the successor tree 
received from the intersection step and maps its edges to different reducers follow-
ing the previously described mapping schema. The first round of the derivation step 
performs the successor tree received from the intersection step and maps its edges 
to different reducers following some mapping schema. For example, from Fig. 4, the 
pair (s2, s3) in the node n3 maps all edges having the forms ((s2, s3), ∗,⊥) , ((s2, s3), ∗, {}) 
or (∗, ∗, (s2, s3)) to a given reducer. Then, the cartesian product between edges hav-
ing the form (∗, ∗, (s2, s3)) and edges having the form ((s2, s3), ∗, {}) or ((s2, s3), ∗,⊥) is 
computed inside this reducer to produce compact edges having the from (∗, ∗∗, {}) or 
(∗, ∗∗,⊥) . So, the reducer mapped by (s2, s3) produces the edge ((s0, s1), ba, {}) from 
two edges ((s0, s1), b, (s2, s3)) and ((s2, s3), a, {}) . Then, this edge will be mapped, in the 
second round, to the reducer associated with the key (s0, s1) . The same process will 
be repeated iteratively in the next MapReduce rounds of the derivation step until the 
stop condition is true.

Fig. 3 An overview of the parallel Exact Algorithm using MapReduce
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Finally, if a DS not exists and the number of iterations is less than the maximum 
bound, we repeat the derivation step by considering the output as an input of the next 
iteration, else the final output is the set of pairs and their short DSs if they exist.

In the next section, we present the communication cost in a MapReduce framework of 
this problem using Afrati et al. model [58].

Communication cost analysis

The communication cost model introduced by Afrati et  al. [58] gives a good way to 
analyze problems and optimizes the performance of any distributed computing envi-
ronment by explicitly studying an inherent trade-off between communication cost and 
parallelism degree. By applying this model in a MapReduce framework, we can deter-
mine the best algorithm for a problem by analyzing the trade-off between reducer size 
and communication cost in a single round of MapReduce computation. There are two 
parameters that represent the trade-off involved in designing a good MapReduce algo-
rithm: the first one is the reducer size, denoted by q, which represents the size of the 
largest list of values associated with a key that a reducer can receive. The second param-
eter is the amount of communication between the map step and the reduce step. The 
communication cost, denoted by r, is defined as the average number of key-value pairs 
that the mappers create from each input.

Formally, suppose that we have p reducers and qi ≤ q inputs are assigned to the ith 
reducer. Let |In| be the total number of different inputs, then the replication rate is given 
by the expression r =

∑p
i=1

qi/|In| [58].
From [58], we compute a lower bound on the replication rate for the intersection of 

FSMs as a function of q using the following expression:

Fig. 4 The derivation step of M/s0 ∩M/s1
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where |In| denotes the input size, |Out| denotes the output size, and g(q) the number 
of outputs that can be produced by a reducer of size q. Since, we consider a complete 
observable nondeterministic FSM, we have |In| = |E| and |Out| = n(n−1)

2
× |I | . Thus

Proposition 1 The lower bound on the replication rate is

It is worth noting that limiting the reducer size enables more parallelism. Small reduc-
ers’ size forces us to redefine the notion of a key in order to allow more, smaller reduc-
ers, and thus allow more parallelism using the available nodes.

MapReduce algorithm for the intersection step

Let us present the MapReduce implementation of the intersection step using a modi-
fied version of the algorithms proposed in [49]. Notice that our approach produces a 
truncated successor tree, also called successor table, for all pairs of states of a complete 
observable nondeterministic FSM. The conducted experiments in [62] show that when 
deriving distinguishing sequences, the construction time of the successor tree takes 96% 
of the whole EA’s time. That is why three methods will be presented later in this section 
for the construction of the truncated successor tree.

The Algorithm 2 below contains the definitions of the map and reduce functions of the 
intersection step. The map function produces a set of keys based on a defined schema 
from the input FSM transitions. The reduce function performs, inside reducers, the 
intersection of the received transitions from the mapper tasks.

Algorithm 2: Intersection step in MapReduce
input : M = (S, I,O,E), a complete observable nondeterministic FSM.
output: Tree, a Truncated successor tree of all pairwise states.

1 Function Map(key, values):
Data: key, value pair, where key represents an arbitrary instance identifier and value is

a transition t ∈ E.
Result: Collection of k, t pairs, where k is a key associated with the transition t.
/* create the transition t from the input value */

2 t = getTransitionFrom(value)
/* generate the set of keys associated with the transition t */

3 keys = getKeysFromTransition(t)
4 foreach k in keys do
5 Emit (k,t)

6 Function Reduce(key, values):
Data: key, values pair, where values is a set of transitions having the same key key.
Result: Derived part of truncated successor tree.

/* Compute the intersection of the set of transitions in values and add it to
the truncated successor tree Tree */

7 foreach (t, t ) ∈ values× values do
8 if I[t] = I[t ] and O[t] = O[t ] then
9 add the edge ((s[t], s[t ]), I[t], (d[t], d[t ])) to Tree

r ≥
q × |Out|

g(q)× |In|

r ≥
n(n− 1)

2
×

q × |I |

g(q)× |E|
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The three proposed mapping schema emit a transition to a set of reducers w.r.t. a key 
defined from some hash functions. Our mapping methods are based respectively: on 
states, input alphabet symbols, and both states and input alphabet symbols.

Formally, lets M = (S, I ,O,E) be a complete observable nondeterministic FSM hav-
ing n states and t = (s, i, o, d) be a transition in E. A mapper produces a set of keys from 
the transition t based on some hash function h. This hash function is integrated in the 
definition of these keys as a part of the sub-function getKeysFromTransition() 
in Line 3 of Algorithm 2. Let us explain in more details the three mapping methods by 
designing the sub-function getKeysFromTransition().

Mapping based on states

In the first mapping method, from a transition t ∈ E , the mappers produce a set of 
key-value pairs having the form 〈key, t〉 , where key = �hS(s[t]), s� , for all s ∈ S such that 
s[t] �= s and hS be a hash function defined from S to {1, · · · , n} . In this case, we have 
n(n−1)

2
 reducers.

In this method, the function g(q), which is the number of outputs that can be produced 
by a reducer of size q, can be affected by the presence of transitions with different alpha-
bet symbols inside the same reducer. Formally, since we consider a complete observable 
nondeterministic FSM, one has q ≤ 2× (|I | + |I | × |O|) and g(q) = |I | . Thus, the fol-
lowing proposition gives the upper bound on the replication rate for this method.

Proposition 2 The replication rate r in the state-based mapping scheme is r ≤ (n− 1).

Mapping based on input alphabets

In the second method, we have one reducer for each of the input alphabets. Thus, the 
number of reducers is equal to the input alphabet size |I|. The mappers will send each 
transition t to the reducer corresponding to its input symbol I[t]. More precisely, from 
a transition t ∈ E , the mappers produce a set of key-value pairs having the form 〈key, t〉 , 
where key = hIn(I[t]) such that hIn be a hash function defined from I to {1, · · · , |I |} . We 
will now have g(q) = n(n−1)

2
 , where q ≤ n+ n× |O| . Assuming that the alphabet sym-

bols are uniformly distributed, we have

Proposition 3 The replication rate in the input alphabets based mapping scheme is 
optimal and equal to 1.

Mapping based on both states and input alphabets

In the last method, we propose a hybrid mapping between first and second method. In 
other words, keys will be based on the states and input alphabets in the same time. Then, 
we consider the key form key = (s[t], s, I[t]) , where s ∈ S such that s  = s[t] . The number 
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of reducers, in this case, is equal to n(n−1)
2

× |I | , the reducer size q ≤ 2× |O| , and each 
reducer will produce no more than one edge of the truncated successor tree. Thus, we 
can deduce an upper bound of the replication rate in the following proposition.

Proposition 4 The replication rate in the hybrid mapping method is r ≤ (n− 1).

Theorem 1 Algorithm 2 correctly computes the successor tree for all pairs of states of an 
FSM M = (S, I ,O,E) in single MapReduce round using at least n(n−1)

2
×

q×|I |
g(q)×|E| commu-

nication, where n = |S|.

Proof
In the map function of Algorithm 2, getTransitionFrom(t) returns the set of keys 
associated with the transition t w.r.t. a given mapping method. Then, it sends the transi-
tion t to all reducers indexed by these keys. In order to ensure that the algorithm correctly 
constructs the successor tree, it is necessary to have the property (*): all the transitions 
with the same input and output symbols inside the same reducer. Then, the reducer func-
tion computes their pairwise intersection to extend the successor tree. Using the proposed 
mapping methods, we have:

• for the mapping based on states, a reducer 〈si, sj〉 receives from the mappers all the 
transitions starting from the state si or sj ; as a consequence, all outgoing transitions 
from state si or state sj are inside this reducer. Then the property (*) is verified using 
this mapping method.

• for the mapping based on input alphabets, a reducer receives from the mappers tran-
sitions having the same input symbol c; Then inside a reducer, we have also all transi-
tions having the same input and output symbols.

• for the hybrid mapping, a reducer 〈si, sj , c〉 receives from the mappers transitions hav-
ing the same input symbol c and starting from the state si or sj ; then the property (*) 
is obviously verified.

The Proof for the communication complexity follows from Proposition 1.  �

MapReduce algorithm for the derivation step

In this step, multiple MapReduce rounds are used to derive a set of shortest distinguish-
ing sequences for each pair of states of an observable nondeterministic FSM. In each 
round, the mappers run in parallel and produce a collection of pairs 〈key, edge〉 , while the 
reducers trait this collection and derive a set of short DSs if they exist.
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Algorithm 3: Derivation step in MapReduce
input : The truncated successor tree of an FSM M.
output: A shortest DS for each pair of states.

1 Function Map(key, values):
Data: key, value pair, where key represents an arbitrary instance identifier and value is

an edge from the truncated successor tree.
Result: Collection of k, edge pairs, where k be an associated key with the edge edge.
/* create the edge edge from the input value */

2 edge = getEdgeFrom (value)
3 if nd ( edge) is empty then
4 k =ns (edge)
5 Emit (k,edge)

6 else
7 keysList = nd (edge)

/* keysList is a set of pairs of states */
8 foreach k in keysList do
9 Emit (k,edge)

10 Function Reduce(key, values):
Data: key, values pair, where values is a set of edges having the same key key.
Result: Truncated successor tree minus the leaves.

/* Split values into two disjoined subsets of edges values1 and values2 */
11 values1 = {e ∈ values | nd(e) is not empty}
12 values2 = values \ values1
13 foreach ( e1,e2) in values1 × values2 do

/* construct a common suffix of a set distinguishing sequences */
14 l(e1) = l(e1)l(e2)
15 nd (e1)= nd (e1)\ ns (e2)

16 Emit (null,e1)

In this step, we derive a shortest DS for each pair of states. It received from the inter-
section step n(n−1)

2
× |I | truncated successor tree edges and produces n(n−1)

2
 pairs of 

states with their DS if exists and if not we mention the “not found” notation. To that end, 
we use a single mapping method based on states. Each map function takes as input an 
edge e from the truncated successor tree and produces a set of 〈key, e〉 pairs. A key key is 
the pair of states in the source node ns(e) if the destination node nd(e) is empty; other-
wise, it is the set of state pairs in the destination node of the edge e.

Let us compute the replication rate in each MapReduce round of the derivation step 
based on Algorithm 3. We have n(n−1)

2
 available reducers and each reducer cannot con-

tain more than q ≤ (
n(n−1)

2
)× |I | edges. The number of outputs that can be produced is 

g(q) = 1 in the last iteration, then the following proposition holds.

Proposition 5 The replication rate r in each MapReduce round of the derivation step is 
r ≤ n(n−1)

2

Theorem 2 Algorithm 3 correctly derives a short DS, if it exists, for all pair of states of an 
FSM M = (S, I ,O,E) in maximum mn MapReduce rounds, where m = |E| and n = |S|.

Proof
It is obvious to see that a DS is the label of a path from the root node to a leaf node 
indexed by the empty set {} in the successor tree. During each MapReduce round of Algo-
rithm 3, the successor tree Tree is compacted by level until the stop condition. Without 
loss of generality, let us consider a leaf node nek indexed by the empty set which is located 
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at the kth level in the successor tree, and let prec(n) be the set of predecessor nodes of the 
node n. In each MapReduce round, the node nek replaces all nodes located at the level 
k − 1 , belonging to the set prec(nek) = {ne1k−1

, · · · , nelk−1
} . As a consequence the succes-

sor tree is compacted in the following way: a label x of an edge (neik−1
, x, nek) is concate-

nated with all labels of the set of edges {(n, y, neik−1
| n ∈ prec(neik−1

)} , for all 1 ≤ i ≤ l , to 
produce the set of edges {(n, yx, nek | n ∈ prec(ne1k−1

)} . The number of MapReduce rounds 
in Algorithm 3 is related to the stop condition which is true when the root node of the suc-
cessor tree is reached and a set of DSs is derived, if exists, in less than mn iterations.  �

Implementation and experimental results
This section includes extensive experiments with the above described methods to evalu-
ate their efficiency and effectiveness in terms of the communication cost and the execu-
tion time.

The experiments are conducted on randomly generated complete observable nonde-
terministic FSMs which cover a varying number of states, input and output alphabets 
sizes, degree of nondeterminism, and range. We run five different experiments then we 
calculate and depict the average of the obtained results in the corresponding figures. 
Finally, we compare the proposed methods in terms of the communication cost and the 
execution time required in MapReduce framework to derive the truncated successor 
tree and extract a short distinguishing sequence for each pair of states if exists.

Cluster configuration

Our experiments were run on Hadoop on the French scientific testbed Grid’5000 [64] 
at the site of Lille. We used for our experiments a cluster composed of 15 nodes, 30 
CPUs, 300 cores. Each node is a machine equipped with two Intel Xeon E5-2630 v4 with 
10-cores processors, 256 GB of main memory, and two disk drives (HDD) at 300 GB. 
The machines are connected by 10 Gbps Ethernet network and run 64-bit Debian 9. The 
Hadoop version installed on all machines is 2.7.

Data generation method

We randomly generated a large variety of FSMs data sets in two phases based on dif-
ferent combinations of the input alphabet size |I|, the output alphabet size |O|, the 
number of states |S|, the degree of nondeterminism D and the range R. First, we ran-
domly generated complete deterministic finite automata using the method described 
in Abbadingo One competition (see http:// abbad ingo. cs. nuim. ie). Then, we randomly 
selected {(D × |S| × |I |)} transitions where |D| equals 20, 40, 60 or 80. Finally, we add 
to the obtained FSM nondeterministic the observability property, by generating ran-
domly (R×|O|

100
) number of replications for each selected transition where the observ-

ability range R is 20-30, 40-50, 60-70 or 80-90. Table  1 summarizes all the datasets 
used in our experiments along with their respective properties. In order to obtain 
accurate results, we have generated five samples S1i , · · · , S

5
i  for each dataset Si in 

Table  1. Then, the results of different experiments are the mean of results obtained 
from these samples.

http://abbadingo.cs.nuim.ie
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Communication cost analysis

The communication cost is equal to the total number of key-value pairs sent from the 
map phase to the reduce phase. It can be optimized by minimizing the replication rate 
parameter i.e. the number of input copies sent to the reducers.

The following table summarizes the relationship between the FSM size and the com-
munication cost in the MapReduce algorithm for different datasets:

Since we have introduced three mapping methods in the intersection step of our 
approach, we present the communication cost for the considered datasets in Fig. 5.

In Fig. 5, the obtained results show clearly that the mapping based on input alphabet 
outperforms the other mapping methods in terms of the communication cost. This is 
due to the fact that the number of the transition copies sent to the reducers using this 
method is less than the other ones as proved formally in Proposition  4. In some par-
ticular cases of FSMs, when the number of states is less than the input alphabet size, 
the state-based mapping has less communication cost. This coincides with the results of 
Propositions 2 and 3.

Table 1 Datasets used in different experiments

Parameter Dataset Size (MB) |E| ( ×10
6) |S| |I| |O| D (%) R (%)

Number of transitions S1 14.24 1 143 143 143 70 50

S2 29.86 2 180 180 180 70 50

S3 44.74 3 205 205 205 70 50

S4 59.94 4 225 225 225 70 50

S5 76.22 5 243 243 243 70 50

Degree of nondeterminism S6 13.26 0.896 200 200 200 20 50

S7 26.88 1.816 200 200 200 40 50

S8 38.61 2.608 200 200 200 60 50

S9 51.28 3.464 200 200 200 80 50

Input alphabet size S10 17.41 1.203 250 50 250 70 50

S11 35.82 2.458 250 100 250 70 50

S12 49.99 3.345 250 150 250 70 50

S13 78.06 5.160 250 200 250 70 50

S14 93.64 6.144 250 250 250 70 50

Range S15 14.51 0.980 200 200 200 50 20

S16 27.51 1.860 200 200 200 50 40

S17 38.19 2.580 200 200 200 50 60

S18 50.01 3.380 200 200 200 50 80

Number of states S19 4.62 0.367 100 100 100 70 50

S20 10.82 0.790 200 100 100 70 50

S21 17.53 1.248 300 100 100 70 50

S22 21.68 1.524 400 100 100 70 50

S23 29.83 2.080 500 100 100 70 50

S24 31.73 2.202 600 100 100 70 50

S25 40.69 2.813 700 100 100 70 50

S26 44.19 3.048 800 100 100 70 50

S27 49.82 3.429 900 100 100 70 50

S28 58.51 4.020 1000 100 100 70 50
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Computation cost analysis

The computation cost is the time required to execute a MapReduce job. The graphs 
below present comparative results in terms of the execution time of the proposed meth-
ods when varying different parameters such as the number of states |S|, the input alpha-
bets size |I|, the output alphabet size |O|, the degree of nondeterminism D, the range 
R, and the total number of transitions. We note that we provide a real execution time 
without any inference computation rules.

The Figs. 6, 7, 8, 9 and 10 show increasing curves that present the execution time of 
the proposed methods for the intersection and the derivation steps for different data 
sets when varying the input alphabet size in Fig. 6, the number of states in Fig. 7, the 
degree of nondeterminism in Fig. 8, the range in Fig. 9 and the number of transitions 
in Fig.  10. The input alphabet method is more efficient when the alphabet size is less 
than or equal to the number of available reducers. The change of the FSM parameters 
has little effect on the performance of the symbol-based method because each reducer 
receives only useful transitions, so the only influence is the increase of the input size (i.e. 
number of transitions). However, if we have a large number of resources, it involves a 
waste of them, and each reducer can contain multiple transitions having the same input 
alphabet from different states. The hybrid mapping method is more parallel compared to 
the other methods, for example, such that each reducer process a few numbers of transi-
tions which leads to a global reduced running time. However, this method takes a lot of 
time in the mapping phase when replicating the transitions. Otherwise, this may require 
a large number of reducers compared to available resources. Therefore, a set of reducers 
has to wait, which implies a rise in the execution time. The states mapping method is the 
weakest one because it has an important replication rate and so a large number of reduc-
ers. Besides, the transitions’ intersection is performed inside a reducer which is defined 
from the associated key. In the derivation step, we propose only one mapping method, 
which is based on states. The results show that the execution time is nearly linear for all 
considered parameters. According to the experiments results, minimizing the replica-
tion rate decreases the time used by the mappers to replicate each transition, and avoids 
read/write of the large intermediate results. In the same time, it reduces the number of 
transitions that are assigned to a reducer. On the other hand, using the adequate number 
of reducers diminishes the waiting time that a reducer spends to use a CPU. Therefore, 
we get an optimal parallel MapReduce scheme to produce a set of short distinguishing 
sequences for a complete observable nondeterministic FSM.

Comparative study

We performed a set of experiments to evaluate the efficiency and scalability of the pro-
posed methods in comparison with the state-of-the-art approach. We used the speedup 
metric, which is defined as how much faster the parallel method is in comparison to 
the sequential method, to evaluate the performance of our MapReduce methods with 
a multi-threads based approach [65]. We conducted experiments in a single node from 
the cluster described above, a node is a machine equipped with 2 Intel Xeon E5-2630 v4 
with 10 cores per processor, 2 threads per core, 256 GB of main memory, and two disk 
drives (HDD) at 300 GB. For each experiment, we run different methods five times on 40 
threads to determine which one gives the best performance and analyze the effect of the 
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number of transitions and range nondeterminism of the FSM on the speedup test. The 
comparison of the three MapReduce methods proposed previously in the intersection 
step of our solution with a multi-threads parallel implementation based on OpenMP of 
the sequential Exact Algorithm (EA) step on a multicore CPU [66] using OMP4J [67]. 
OMP4J is an open-source implementation of OpenMP and is used as a preprocessor for 
Java. The experiments confirm previous results, in Fig. 11 depicts the speedup for dif-
ferent datasets from Table 2. It can be seen that the mapping method based on input 
alphabets (Symbol) is the best and effective for different datasets. Figure 12 shows the 
speedup according to the ranges of nondeterminism R 50–60, 60–70, 70–80consistent 
performance gains that the speedup of the alphabets-based method is better than the 
three other methods under different circumstances. This performance is due to the low 
cost of the replication rate between map and reduce, and each reducer receives only 
useful transitions. Besides, the performance of the Symbol method is faster than the 
OpenMP-based method, and the speedup for this method grows exponentially as the 
number of transitions and range nondeterminism of the FSM increases.

Table 2 The communication cost of the intersection step and the derivation step for some datasets

Dataset Intersection Output 
Size=Derivation Input Size 
(MB)

Derivation step

Derivation phase Postprocessing phase

Communication 
Cost (GB)

Output Size (GB) Communication 
Cost (GB)

Output 
Size 
(GB)

S1 138 4.8 188 211.4 1

S2 357 15.7 793.8 869 1.5

S3 603 29.8 1738.7 1882.5 2

S4 882 47.9 3078.5 3308.6 2.4

S5 1205 70.7 4930.4 5270 3

Fig. 5 Communication cost of the three proposed methods in the intersection step
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We have obtained satisfactory results proving that the proposed approach for deriv-
ing short DSs from nondeterministic FSMs is well adapted in a large-scale context. 
However, MapReduce is not designed for iterative processing, and the data has to be 
written onto the disk after every iteration, thus making the disk I/O a huge bottle-
neck. To combine the results from different nodes after every iteration presents a sig-
nificant challenge due to the complex network structure. To overcome this limitation 

Fig. 6 Execution times versus the input alphabet size
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in the derivation step, we can use I2 MapReduce framework [68], which introduces a 
MapReduce Bipartite Graph model to represent iterative and incremental computa-
tions, which contains a loop between mappers and reducers.

Fig. 7 Execution times versus the number of states



Page 21 of 27Elghadyry et al. Journal of Big Data           (2021) 8:145  

Conclusions and future works
FSMs are widely used in various application domains, such as pattern matching, com-
munication protocols, logical devices synthesis, and other reactive systems. In FSM-
based testing, distinguishing sequences are derived from a model and then applied to 
a machine or a black-box Implementation Under Test (IUT) to solve the state identifi-
cation problem. A lot of work has been on testing from deterministic FSMs but much 

Fig. 8 Execution times for different degrees of nondeterminism
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of FSMs specifications of real-life systems are nondeterministic, which introduces the 
scalability challenge: the shortest DS can reach the exponential bound.

In this work, we addressed the scalability issue encountered while deriving distin-
guishing sequences from complete observable nondeterministic finite state machines 

Fig. 9 Execution times for different ranges
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(FSMs) by introducing a massively parallel MapReduce version of the well-known 
Exact Algorithm, with experiments showing that this scaled much better than a clas-
sical generation algorithm. Our approach is based on two MapReduce steps: the 
intersection step and the derivation of short distinguishing sequences step. In the first 
step, we have proposed three MapReduce methods based respectively on a mapping 

Fig. 10 Execution times versus the number of transitions
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Fig. 11 Speedup versus Number of Transitions

Fig. 12 Achieved speedup while varying range of nondeterminism
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based on states, a mapping based on input alphabets, and a hybrid mapping based on 
both states and input alphabets. The introduction of three methods is justified by the 
fact that the required time of this step takes about 96% of the whole EA’s time. In the 
second step, an iterative MapReduce algorithm is introduced to derive a set of short 
distinguishing sequences. For both steps, we have analyzed the communication cost 
using Afrati et al. model that offers a formal aspect of an inherent trade-off between 
communication cost and parallelism degree in a distributed computing environment. 
We performed experiments with randomly generated FSMs, the implementations are 
assessed with respect to communication cost, execution time, and speedup. During 
the experiments, we compared the results of the proposed algorithms with multiple 
threads based algorithm in terms of speedup and found that the proposed algorithm 
is efficient and much more scalable: Our MapReduce algorithm was able to process 
FSMs having 5 million transitions, which is up to 150 times larger than the existing 
PDS generation algorithms and with a speedup 26 more than OpenMP based intersec-
tion algorithm.

One particular line of future work is to investigate our parallel MapReduce-based 
algorithm for deriving other checking sequences used in test generation such as UIO 
sequences [17], characterizing sets, harmonized state identifiers [18] and synchroniz-
ing sequences [19]. Finally, there would also be value in additional experiments with 
FSMs from the industry.
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