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Abstract

Weighted finite-state transducers have been shown to be a general and efficient
representation in many applications such as text and speech processing,
computational biology, and machine learning. The composition of weighted
finite-state transducers constitutes a fundamental and common operation
between these applications. The NP-hardness of the composition computation
problem presents a challenge that leads us to devise efficient algorithms on a
large scale when considering more than two transducers. This paper describes a
parallel computation of weighted finite transducers composition in MapReduce
framework. To the best of our knowledge, this paper is the first to tackle this
task using MapReduce methods. First, we analyze the communication cost of this
problem using Afrati et al. model. Then, we propose three MapReduce methods
based respectively on input alphabet mapping, state mapping, and hybrid
mapping. Finally, intensive experiments on a wide range of weighted finite-state
transducers are conducted to compare the proposed methods and show their
efficiency for large-scale data.

Keywords: finite transducers; MapReduce; composition; communication cost

Introduction
Weighted finite-state transducer (WFST) has been used in a wide range of applica-

tions such as digital image processing [1], speech recognition [2], large-scale statisti-

cal machine translation [3], cryptography [4], recently in computational biology [5]

where pairwise rational kernels are computed for metabolic network prediction and

many other applications [6, 7, 8]. Weighted finite-state transducers are finite-state

machines in which each transition in addition to its input symbol is augmented with

an output symbol from a possibly new alphabet, and carries some weight element of

a semiring. Transducers can be used to define a mapping between two languages. In

some cases, The weight represents the uncertainty or the variability of information.

For example, weighted transducers introduced in speech recognition [9] are used to

assign different pronunciations to the same word with different ranks or probabil-

ities. In classification and learning, kernel methods, like support vector machines,

are widely used [10]. In [11], Mohri et al. have introduced the theory of rational

kernel. The computation of a rational kernel can be done efficiently using a fast

algorithm for the composition of weighted transducers. Computing the composition

of WFSTs is basically based on the standard composition of unweighted finite-state

transducers. It takes as input, two or more WFSTs (Ti)1≤i≤n, and outputs the com-

posed WFST T realizing the composition of all input WFSTs, such that the input

alphabet of Ti+1 coincides with the output alphabet of Ti. The time complexity for
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computing this operation is shown to be O(
n∏
i=1

|Ti|) where |Ti| represents the num-

ber of states in Ti [11, 12] (i.e. if there are n input WFSTs, each having m states,

the resulting WFST can reach the exponential bound of mn states). The complexity

issue of the composition computation leads us to devise efficient methods in large

scale.

In this work, we tackle the problem of the composition of WFSTs in the MapRe-

duce framework, which is introduced by Google as a simple parallel programming

model [13]. MapReduce is considered as a single Instruction Multiple Data (SIMD)

architecture [14] that can be easily implemented over the Hadoop Apache frame-

work [15]. We also analyze the cost model for this problem following the optimization

approach introduced by Afrati et al. [16]. The cost model includes the communica-

tion cost which is the amount of data transmitted during MapReduce computations

and the replication rate which represents the number of key-value pairs generated

by all the mapper functions, divided by the number of inputs. A growing number

of papers deal with MapReduce algorithms for various problems [17, 18, 19, 20].

Recently, G. Grahne et al. [21, 22] have implemented efficiently the intersection and

the minimization operations of finite automata in MapReduce. To the best of our

knowledge, this paper is the first approach for computing the composition of WF-

STs in MapReduce. We propose three methods to perform this operation in large

scale respectively based on states mapping, input alphabet mapping, and a hybrid

input and output alphabets mapping.

The remainder of the paper is structured as follows. Section 2 includes necessary

technical definitions. Section 3 is a reminder of the fundamental of MapReduce

framework. Section 4 presents a cost model analysis of the composition operation

in MapReduce using Afrati et al. model. Section 5 presents and analyses three

MapReduce methods that compute the composition of many WFSTs. Some com-

parative and extensive experiments are also conducted in this section to show the

efficiency of our methods in large scale. Section 6 concludes the paper.

1 Preliminaries
In this section, we introduce briefly the notion of weighted finite transducers. For

further details in formal aspects of finite automata theory, we particularly recom-

mend reading (Hopcroft and Ullman, 1979) [23] or in French (Sakarovitch, 2003)

[24].

Semirings. A system (K,⊕,⊗, 0
¯
, 1
¯
) is a semiring when (K,⊕, 0

¯
) is a commutative

monoid with identity element 0; (K,⊗, 1
¯
) is a monoid with identity element 1

¯
); ⊗

distributes over ⊕; and 0
¯

is an annihilator for ⊗: for all a ∈ K, a⊗ 0
¯

= 0
¯
⊗ a = 0

¯
.

Thus, a semiring is a ring that may lack negation. Some familiar semirings include

the boolean semiring (B,∨,∧, 0, 1), the tropical semiring (R+ ∪{∞},min,+,∞, 0),

and the real semiring (R,+,×, 0, 1) [25].

Weighted finite-state transducers. Let A and B be two alphabets. WFST Some-

times called K-transducers over A∗ × B∗ are transducers endowed with weights in

the semiring K. The transition labels of a WFST are in (A∪{ε})×(B∪{ε}) (ε is the

empty word). In this work, we restrict the transition labels to be in A×B. Formally,

a WFST T is an 8-tuple (A,B,Q, I, F,E, λ, ρ) where: A is the finite input alphabet
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of the transducer; B is the finite output alphabet; Q is a finite set of states; I ⊆ Q
the set of initial states; F ⊆ Q the set of final states; E ⊆ Q × (A × B) × K × Q
a finite set of transitions; λ : I → K the initial weight function; and ρ : F → K
the final weight function mapping F to K.

The size of T , denoted by |T |, is the number of its transitions. Given a transition

t ∈ E, we denote by s[t] its origin or start state, d[t] its destination state or next

state, and w[t] its weight. A path π = t1 · · · tk is an element of E∗ with consecutive

transitions: d[ti−1] = s[ti], i = 2, · · · , k. We extend s and d to paths by setting:

s[π] = s[t1] and d[π] = d[tk]. The weight function w can also be extended to paths

by defining the weight of a path as the ⊗-product over the semiring K of the weights

of its constituent transitions: w[π] = w[t1]⊗ · · · ⊗w[tk]. Let q, q′ ∈ Q, we denote by

P (q, q′) the set of paths from q to q′ and by P (q, x, y, q′) the set of paths from q to

q′ with input label x ∈ A∗ and output label y ∈ B∗. These definitions can be ex-

tended to subsets R,R′ ⊆ Q, by: P (R, x, y,R′) =
⋃

q∈R,q′∈R′
P (q, x, y, q′). A WFST

T is regulated if the output weight associated by T to any pair of input-output

string (x, y) by:

[T ](x, y) =
⊕

π∈P (I,x,y,F )

λ[s[π]]⊗ w[π]⊗ ρ[d[π]]

is well-defined and in K. We have [T ](x, y) = 0 when P (I, x, y, F ) = ∅.
Composition of weighted finite transducers. Composition is a fundamental operation

used to create complex weighted transducers from simpler ones. Let K be a com-

mutative semiring and let T1 and T2 be two WFSTs such that the input alphabet

of T2 coincides with the output alphabet of T1. Assume that the infinite sum⊕
z
T1(x, z) × T2(z, y) is well-defined and in K for all (x, y) ∈ A∗ × B∗. Then, the

composition of T1 and T2 produce a WFST denoted by T1 ◦ T2 and defined for all

x, y by [11]:

[T1 ◦ T2](x, y) =
⊕
z

T1(x, z)⊗ T2(z, y)

There exists efficient composition algorithm for WFSTs [26]. States in the compo-

sition T1 ◦ T2 of two WFSTs T1 and T2 are identified with pairs of a state of T1
and a state of T2. Its initial state is the pair of the initial states of T1 and T2. Its

final states are pairs of a final state of T1 and a final state of T2. The following rule

specifies how to derive a transition of T1 ◦T2 from appropriate transitions of T1 and

T2:

(q1, a, b, w1, q2) and (q′1, b, c, w2, q
′
2) =⇒ ((q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2))

In the worst case, all transitions of T1 leaving a state q match all those of T2
leaving state q′, thus the space and time complexity of composition is quadratic:

O(|T1||T2|). See [9] for a detailed presentation of the algorithm. The following figure

?? illustrates WFSTs composition.

In a general case, when considering the composition of many WFSTs, noted

(Ti)1≤i≤n, the space and time complexity of composition is O(
n∏
i=1

|Ti|). In this work,
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we propose a simple and efficient parallel methods to compute the composition of

many WFSTs in MapReduce framework.

2 MapReduce framework
Big Data is a large and heterogeneous collection of datasets which makes it dif-

ficult to process using traditional data processing tools. Nowadays, the collected

datasets come mostly from social networks and scientific applications. To overcome

the computational and storage of Big data challenges, various solutions have been

successfully proposed. Among the popular approaches, there is the famous Hadoop

MapReduce framework [15].

In this section, we will focus on how distributed computing program works over

the Hadoop MapReduce Model. First, the Hadoop framework and the MapReduce

programming model will be briefly presented. Then, we describe how this system

processes units of data 〈key, value〉 in parallel MapReduce approach.

2.1 Hadoop framework

The Apache Hadoop is one of the most popular open source framework for the

clustered environment that allows reliable, scalable, and distributed storage. It also

helps with the processing of large datasets through the simple programming mod-

els. It manages computer clusters built from single to thousands of machines, each

offering local computation and storage. The failure of a node in the cluster is auto-

matically managed by re-assigning its task to another node [15].

The project Apache Hadoop includes four fundamental modules: Hadoop Com-

mon or Hadoop Core , HDFS, YARN and Hadoop MapReduce. The following figure

schematizes these components.

figures/HadoopModules.png

Figure 2 Overview of Apache Hadoop.[1]

� Hadoop Common or Hadoop Core provides essential services and basic pro-

cesses such as abstraction of the underlying operating system and its file sys-

tem. It also contains the necessary Java libraries and scripts required to start

Hadoop. The Hadoop Common package also provides source code and doc-

umentation, as well as a contribution section that includes different projects

from the Hadoop Community [15].

� Hadoop Distributed File System (HDFS) is a distributed file system developed

by Apache Hadoop. It ensures high-throughput storage and access to appli-

cation data on the community machines thus providing very high aggregate

bandwidth across the cluster [15], high fault tolerance and native support of

large data sets [27].

� Hadoop Yet Another Resource Negotiator (YARN) is a platform to manage

cluster resources and schedule tasks. It was added in the Hadoop 2.0 version

to increase the capabilities by solving the limit of 4000 nodes and Hadoop’s in-

ability to perform fine-grained resource sharing between multiple computation

frameworks [28].

[1]https://medium.com
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� Hadoop MapReduce is an implementation of the MapReduce programming

model based on YARN system for parallel processing of large data [29].

2.2 The MapReduce Programming Model

MapReduce is a programming model proposed by Google in 2004 [13] that provides

parallel processing of large-scale data. It is easy to use and expresses a large variety

of problems as MapReduce computation in a flexible way, which simplifies the data

processing in large scale [13]. MapReduce programming model is a system to process

the basic unit of information in a 〈key, value〉 pair, where key and value are two

objects.

This computational model has three principal steps: Map, Shuffle and Reduce as

schematized in Figure 3.

figures/MRsteps.png

Figure 3 The principal steps of MapReduce [30].

During the map step, the model reads each 〈key, value〉 pair from a given input

files. Then the Mapper operates on one pair at a time by calling the map function

defined by the user, produces as output a finite multi-set of new 〈key, value〉 pairs,

and determines new pair’s sets through a hash function. This allows different ma-

chines to process the inputs of a different map in an easy parallel way. The shuffle

step occurs automatically, it is done by Hadoop to manage the exchange of the in-

termediate data from the map task to the reduce task. One can be divide this step

into three phases. The sort phase produces the set of intermediate keys received

from the buffered mapper in a particular order. It assists the reducer to know that

a new reduce task should start when the next key in the sorted input data is dif-

ferent from the previous one. The merge phase group all intermediates input values

having the same key key in one list and create the pair (key, list of〈value〉). The

partitioner phase determines in which reducer a pair (key, list of〈value〉) will be

sent. It is based on a hash function that associates and sent a pair to a reducer.

In the last step, the reducers that receive the sorted (key, list of〈value〉) pairs can

be executed simultaneously while operating on different keys, they reduce a set of

intermediate values which share a key to a new smaller set of values. In our problem,

each reducer emits zero, one or multiple outputs for each input (key, list of〈value〉)
pairs.

3 The composition of WFSTs in MapReduce
In this section, we present three methods to perform WFSTs composition using

MapReduce framework. We also study the communication cost based on Afrati et

al. model [16] and analyze the replication rate for combining WFSTs.

3.1 Generic MapReduce algorithm for the composition of WFSTs

In the following, we present a general approach to perform the composition of

WFSTs using a single round of MapReduce. Furthermore, we define and detail

respectively the map and reduce functions.
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The preprocessing phase in our algorithm store in a text file all transitions of WFSTs

(Ti)1≤i≤n, each having m states. A transition t from a WFST Ti will be represented

as a 4-tuple as follows : (t,type(s[t]),type(d[t]),index(t)) , where type() is a function

that maps a state to an element of the set {i (initial), f (final), if ( initial and final),

s (simple)} and index(t) = i gives the WFST order index in the composition having

the transition t.

input : 〈key, value〉 pair, where key represents an arbitrary instance identifier and value is
the 4-tuple form associated with the transition t.

output: collection of 〈k, t〉 pairs, where k be an associated key with the transition t.

// create the transition t from the input value
1 t ← getTransitionFrom(value);

// generate the set of keys associated with the transition t
2 setOfKeys← getTransitionSetKeys(t);

// replicate the transition t ;
3 foreach k in setOfKeys do
4 Emit(k,t) ;

Algorithm 1: Map

The Map function produces a set of key-value pairs from each input record. In other

words, the input transition is replicated and associated with all the keys generated

from it based on the mapping method (line 2 of Algorithm 1). The intermediate

outputs add a replication rate factor in the cost of MapReduce algorithm. The

outputs from the Map function are fed into the Shuffle step. We recall that the

Shuffle step occurs automatically in our implementation.

input : 〈key, values〉 pair, where values is a set of transitions having the same key key.
output: Transitions of the resulting composed WFST.

// group transitions w.r.t. their WFST index as a list of sets TransList
1 foreach transition t in values do
2 add t to TransList[index(t)];

// join transitions sets TransList[i] from TransList using the cartesian
product

3 JoinedTransList =
n⊗

i=1
TransList[i];

// compute the composition operation from JoinedTransList
4 foreach element (t1, · · · , tn) in JoinedTransList do
5 t = t1 ◦ · · · ◦ tn;
6 Emit(null,t) ;

Algorithm 2: Reduce

The Reduce function performs the composition of different transitions lists pro-

duced from the Shuffle step as follows: One transition is selected from each WFST

such that the input symbol of WFST Ti+1 coincides with the output symbol of the

previous WFST Ti. Moreover, the Reduce function group the transitions w.r.t. their

WFST index in a list of sets (line 2 of Algorithm 2), and compute the Cartesian

product of those sets (line 4 of Algorithm 2).

In the following, we will discuss the communication cost of the proposed algorithm

according to Afrati et al. model [16].
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3.2 The communication cost model

The communication cost model introduced by Afrati et al. [16] is powerful and sim-

ple. This model gives a good way to analyze problems and optimize the performance

on any distributed computing environment by explicitly studying an inherent trade-

off between communication cost and parallelism degree. By applying this model in

a MapReduce framework, we can determine the relevant algorithm for a problem

by analyzing the Trade-off between reducer size and communication cost in a single

round of MapReduce computation. There are two parameters that represent the

trade-off involved in designing a good MapReduce algorithm: the first one is the

reducer size, denoted by q, which represents the size of the largest list of values

list of〈value〉 associated with a key key that a reducer can receive. The global cost

is the sum of the computation costs over each reducer processing all its associated

values. The second parameter is the amount of communication between the map

step and the reduce step. The communication cost, denoted by r, is defined as the

average number of key-value pairs that the mappers create from each input. For-

mally, suppose that we have p reducers and qi ≤ q inputs are assigned to the ith

reducer. Let |I| be the total number of different inputs, then the replication rate

[16] is given by the expression r =
p∑
i=1

qi/|I|.

Notice that limiting reducer size enables more parallelism. Small reducers size

force us to redefine the notion of a key in order to allow more, smaller reducers and

thus allow more parallelism with available nodes.

3.3 Lower bound on the replication rate

The replication rate is intended to model the communication cost, which is the total

amount of information sent from the mappers to the reducers. The trade-off between

reducer size q and replication rate r, is expressed through a function f , such that

r = f(q). The first task in designing a good MapReduce algorithm for a problem is

to determine the function f , which gives us a lower bound of the replication rate r

[16].

Let us now derive a tight upper bound, namely g(q), on the number of outputs

that can be produced by a reducer of size q for WFSTs composition. If there are

n deterministic WFSTs (Ti)1≤i≤n, each one having |Ti||Ai| transitions for each input

alphabet. Let T be the result of the composition T1 ◦ T2 ◦ · · · ◦ Tn. To compute a

transition in T , a reducer needs to receive n transitions, one from each WFST Ti.
Then, the WFST T can reach

n∏
i=1

|Ti| transitions. Assume that a reducer of size q

receives
q

n
transitions from each WFST Ti evenly distributed such that the input

alphabet of Ti+1 coincides with the output alphabet of Ti. The following lemma

gives us an upper bound on the output of a reducer.

Lemma 1 When computing the composition T = T1 ◦ T2 ◦ · · · ◦ Tn a reducer of

size q can produce no more than g(q) =
q

n
outputs.

From [16], one can compute a lower bound on the replication rate for the compo-

sition of WFSTs as a function of q using the following expression:

r ≥ q × |O|
g(q)× |I|
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where |I| denote the input size, and |O| denote the output size. The input size for

our problem is the sum of transitions from all input WFSTs Ti , that is

|I| =
n∑
i=1

|Ti|, and the size of the output is the size of T i.e. |O| = |A1| ×
n∏

i=1
|Ti|

n∏
i=1
|Ai|

.

Consequently, the lower bound on the replication rate for the composition of

WFSTs will be as follows.

Proposition 1 the replication rate r for the composition T = T1 ◦ T2 ◦ · · · ◦ Tn is

r ≥
n×|A1|×

n∏
i=1
|Ti|

n∑
i=1
|Ti|×

n∏
i=1
|Ai|

3.4 Mapping methods in generic MapeReduce algorithm

This section includes the description of three mapping methods in order to design

a suitable key format that maps a set of transitions to the same reducer. Explicitly,

we will define the function getTransitionFrom(t) called in Line 2 of Algorithm 1.

In this section, we also present a formal analysis of the communication cost by

computing an upper bound on the replication rate for each mapping method. Recall

that we consider the composition of n WFSTs, each having m states.

3.4.1 States based mapping method

In our first method, for a transition t ∈ Ei from a WFST Ti, the map function

generates a set of keys of the form Kstate = (i1, i2, . . . , h(s[t]), . . . , in) , where h

be a hash-function from Qi to {1, · · · ,m} and ij ∈ {1, · · · ,m}. Consequently, the

mappers produce the set of key-value pairs of the form 〈(i1, i2, . . . , h(s[t]), . . . , in), t〉
By way of explanation, suppose we have mn reducers, then each transition is sent

to mn−1 reducers.

The function g(q) will be affected by the presence inside the same reducer of some

transitions that cannot be combined. This give us a new upper bound on the number

of outputs each reducer can produce, formally

g(q) = |A1|

The following proposition gives an upper bound on the replication rate.

Proposition 2 The replication rate r in the state-based mapping scheme is

r ≤
q×

n∏
i=1
|Ti|

n∑
i=1
|Ti|×

n∏
i=1
|Ai|

Notice that from Proposition 1 and 2, the upper bound on replication rate exceeds

the lower bound by a factor of
q

n× |A1|
. As a consequence, this mapping scheme is

suitable when considering a small set of input alphabets.
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3.4.2 Input alphabet based mapping

In the second method, transitions will be mapped to their input alphabet. Let us

define the key Kinput = (j1, j2, · · · , ji, · · · , jn) associated with an input symbol a

and let ha be a hash-function with range {1, 2, · · · , k}. One can associate a transition

t = (si, ai, bi, wi, di) ∈ Ei from the WFST Ti to a key Kinput if there exists some

ji = ha(ai). Thus, we have
n∏
j=1

|Aj | available reducers and each transition from Ti is

send to

n∏
j=1
|Aj |

|Ai| reducers. Since the map task processes
n∑
i=1

|Ti| transitions and each

WFST Ti have |Ti||Ai| transitions associated with an input symbol c ∈ |Ai|, the total

number of transitions sent to each reducer is n × |Ti||Ai| which can be approximated

by n×m. However, the function g(q) is influenced by the presence of incompatible

output and input symbols combination inside a reducer. This gives us a new upper

bound on the number of outputs each reducer can produce, formally

g(q) = |Q1|

Proposition 3 The replication rate in the input alphabets based mapping scheme

is

r ≤
q×|A1|×

n∏
i=1
|Ti|

|Q1|×
n∑

i=1
|Ti|×

n∏
i=1
|Ai|

From the Propositions 1 and 3, the upper bound for the replication rate overtake

the theoretical lower bound by a factor of q
n×|Q1| . Therefore, the input alphabet

based mapping is best suited for situations where the considered WFSTs sizes are

small.

3.4.3 Hybrid mapping based on both input and output alphabets

In the last method, we propose a hybrid mapping based on both input and output

alphabets. In other words, keys will be associated to a pair of input and output

symbols. Formally, a transition t ∈ Ei from a WFST Ti will be paired to a set

of keys having the form Khybrid = (j1, j2, · · · , hia(t), hob(t), · · · , jn), where hia() be

an input symbol hash functions from
n⋃
i=1

Ai to {1, 2, · · · , k} and hob be from be an

output symbol hash functions from
n⋃
i=1

Bi to {1, 2, · · · , k}. Transitions from T1 will

be mapped according to their output symbols and those of Tn according to their

input symbols. Consequently the number of reducers is kn. However the function

g(q) = |Q1|.
Since transitions from T2 until Tn−1 are sent to kn−2 reducers, the following Propo-

sition holds.

Proposition 4 The replication rate in the hybrid mapping method is strictly less

than the replication rate in the input symbol mapping method.
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By comparing the Propositions 2, 3, and 4, we deduce that the upper bound of the

replication rate in the hybrid mapping method is the closest one to the theoretical

lower bound. Thus, this method is best suited for situations when the alphabet size

is less than or equal to the number of states.

4 Implementation and experimental evaluation
This section includes extensive experiments to evaluate the efficiency and effective-

ness of the proposed methods in term of communication cost and execution time

for computing the composition of five WFSTs T1 ◦ T2 ◦ · · · ◦ T5. Experiments are

conducted on a large variety of WFST data sets randomly generated using FAdo

library [31] with various combinations of attributes including a number of states

|Q|, input alphabet size |A|, and output alphabet size |B|.

4.1 Cluster configuration

Our experiments were run on Hadoop on the French scientific testbed Grid’5000

[32] at the site of Lille. We used for our experiments a cluster having 15 nodes, 30

CPUs, 300 cores. Each node is a machine equipped with two Intel Xeon E5-2630 v4

with 10-cores processors, 256 GB of main memory, and two disk drives (HDD) at

300 GB. The machines are connected by 10 Gbps Ethernet network, and run 64-bit

Debian 9. The Hadoop version installed on all machines was 2.7.

4.2 Data generation method

We randomly generated a large variety of WFST data sets in two phases. First,

we generated a set of deterministic finite automata using FAdo library [31], which

is an open source project providing a set of tools for the symbolic manipulation

of automata. FAdo is based on enumeration and generation of initially connected

deterministic finite automata [33]. In the second phase, we implemented a func-

tion that randomly adds weights and some nondeterministic degree on the output

symbols over transitions of the finite automata of the first phase with a uniform

distribution. Our generation technique produces WFSTs based on two parameters:

the number of states m and the input alphabet size k. Thus, one can define the

transition density of the generated WFST as the ratio |E|
k×m , the final state density

as the ratio |F |m and consider a unique initial state as in [34].

4.3 Communication cost analysis

Let us evaluate the communication cost of the proposed methods on large scale

WFST data sets. The communication cost is defined as the total number of key-

value pairs transferred from the map phase to the reduce phase. It can be optimized

by minimizing the replication rate parameter i.e. the number of input copies sent

to the reducers.

The following table gives us the relationship between the considered data set sizes

and the communication cost:

The obtained results show clearly that in general, the communication cost using

the hybrid mapping method is minimal in all situations i.e. for all combinations

of state sizes and alphabet sizes. This is due to the fact that the number of the

transition copies sent to the reducers with this method is less than the other ones as
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Input size
Communication Cost

(GB)
Output size

File size
(KB)

∑5
1 |Ei|

(×103)
|Qi| |Ai| |Bi|

Hybrid
mapping

Input alphabet
mapping

States
mapping

|E|
(×109)

Size
(GB)

132 6 75 16 16 10 22 10699 38 1765
227 10 63 32 32 252 601 9032 31.8 1486
342 15 47 64 64 5896 14402 4189 14.7 684
411 18 60 60 60 5465 13327 13327 46.7 2194

proved formally in Proposition 4. In some particular cases of WFSTs, when the state

size is less than the alphabet size, the state based mapping has less communication

cost. This coincides with the Propositions 2 and 3.

4.4 Computation cost analysis

The Computation cost is the time required to execute a MapReduce job. The graphs

below, figs. 4 to 7, show comparative results in term of the execution time of the

three methods: states based mapping (State), input alphabet based mapping (In-

put), and the hybrid based mapping (InOut).

figures/k=16.png

Figure 4 Execution times of three methods for the alphabet size K=16.

figures/k=32.png

Figure 5 Execution times of three methods for the alphabet size K=32.

figures/k=64.png

Figure 6 Execution times of three methods for the alphabet size K=64.

figures/Q=A.png

Figure 7 Execution times of three methods when the number of states equals the alphabet size.

Figures 4, 5 and 6 present the execution time of the three proposed methods

for different data sets sizes when varying the alphabet size to be 16, 32 or 64. In

the three cases, the growth rate of hybrid and input alphabet mapping are close

together and much less of states mapping. For example when K=16, the growth

rate of InOut, Input and State are 21.06, 21.15 and 255.80, respectively. Figure 7

shows a comparison of the three methods when the alphabet size equals the number

of states. As foreseen, the hybrid method is clearly more efficient when the alphabet

size is less than or equal to the number of states, and the execution time by the

transition in this method is lower than two other methods.

Minimizing the replication rate decreases the time used by the mappers to repli-

cate each transition, and avoid the existence of transitions that cannot be combined

inside the same reducer. At the same time, it reduces the number of transitions that
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are assigned to a reducer. On the other hand, using an adequate number of reducers

diminishes the waiting time a reducer spends to use a CPU.

5 Conclusion
In this paper, we presented a new parallel approach to compute the composition

of WFSTs on a large scale in MapReduce framework. We described in detail three

methods to carry out this task using a single round of MapReduce. Moreover, we

analyze the communication and computation cost for each method. Finally, we

evaluated the performance of the three methods on different data sets. The obtained

results show that the best method in terms of the execution time is the one that

minimizes the number of reducers and optimizes the inputs replication rate.

As a perspective, this work is considered as the first step to apply this method

on real world problems. First target application is the design of a new distributed

cryptosystem based on finite automata, the so-called finite automaton public key

cryptosystem. In this application, the public key is a composition of n+1 finite

automata, and, the private key is the n + 1 weak inverse finite automata of them [4].

The second target application is in natural language processing to handle tasks such

as translation between two languages, using one or multiple intermediate languages

and for speech recognition. We also hope to extend and, test this method on a

multi-nodes cluster environment with the GPU and OpenMP to accelerate the

composition algorithm for large-scale computing.
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