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Abstract. In this work, we present the benchmark generator PUBOi,
Polynomial Unconstrained Binary Optimization, that combines subprob-
lems to create instances of pseudo-boolean optimization problems. Any
mono-objective pseudoboolean functions including existing classical op-
timization problems can be expressed with Walsh functions. The bench-
mark generator can tune main features of problems such as problem
dimension, non-linearity degree, and neutrality. Additionally, to be able
to create instances with properties similar to those of real-like combinato-
rial optimization problems, the goal of PUBOi is to introduce the notion
of variable importance. Indeed, the importance of decision variables can
be tuned using three benchmark parameters. In the version presented
here, we consider four subproblems already used in Chook generator for
benchmarking quantum computers and algorithms as a basis. We also
present the impact of benchmark parameters using a fitness landscape
analysis that empirically shows these parameters to significantly impact
the variable importance.

Keywords: Benchmark · Fitness landscape · Walsh function · Variable impor-
tance.

1 Introduction

There exist numerous evolutionary algorithms, or local search algorithms that
efficiently tackle combinatorial optimization problems. One main practical, and
theoretical difficulty facing new problem instances is the selection, or the design
of efficient optimization algorithm according to the properties of the instance
to optimize. Studying such algorithms often require to run them on diverse
problem instances, which is usually done successfully in benchmarking studies [1].
This paper attempts to propose a benchmark of pseudo-Boolean functions with
tunable relevant properties.

In conjunction of benchmarking efforts, a powerful approach aiming to im-
prove the understanding of optimization algorithms, and thus determine which
approach to consider, consists of using fitness landscapes [28]. In evolutionary
computation, a fitness landscape represents the search space and fitness func-
tion of a given instance according to the links between solutions induced by the
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neighborhood relation of the algorithm under consideration. This representation
corresponds to a graph from which several characteristics can be estimated by
the application of indicators on a sample of solutions [14, 15], allowing a vi-
sualization of landscapes and features that induce challenges for optimization
methods. Hence, fitness landscapes is a powerful tool to better guide the design
and use of neighborhood-based algorithms, even on large landscapes.

To design new optimization algorithms by ”hand” or using machine learn-
ing techniques, to test existing approaches, or to better understand problem
difficulty using fitness landscape analysis often requires a large and diverse set
of problem instances with relevant properties. To this aim, there exist several
generators or benchmarks of academic problems. While a small subset of such
instances are based on real-world data, most of them are randomly generated,
with characteristics that could greatly differ from real-world problems. One of
the peculiarities of real-like instances is that, contrary to instances generated
using random-based techniques, they are structured. Thus some variables of the
problems play a more important role in terms of fitness contribution, and can
be interdependent to several other variables, making them harder to study and
understand [12]. Although variable importance of such problems must be stud-
ied, existing benchmark generators do not allow users to tune this parameter,
which contributes to the lack of instances having important variables.

In this work, we propose and present PUBOi, a benchmark in which variable
importance is tunable, and thus impacts the instance structure. PUBOi is based
upon Walsh functions [25], an orthogonal basis of pseudo-boolean functions for
representing any pseudo-boolean function. These functions arouse a strong in-
terest in several scientific communities. In quantum physics, one can use these
functions to create benchmarks representing optimization problems that can be
tackled using new quantum computers [16]. They are successfully used in black-
box combinatorial optimization as surrogate functions for computational-costly
fitness functions [24]. Walsh functions also allow a standardized reformulation
of various academic optimization problems [7]. This basis of functions can be
used for benchmarking purposes, by generating instances with various charac-
teristics, including characteristics similar to those of real-like instances such as
the variable importance. The contribution of this paper are (1) the proposition
of a new benchmark generator with tunable variable importance, (2) a fitness
landscape analysis of the instances set aiming to analyze the impact of bench-
mark parameters on the shape of fitness landscape, and on the related problem
difficulty.

The paper is organized as follows. The next section presents related works on
benchmarking and variable importance. Section 3 is devoted to the description of
PUBOi as well as the instances considered in this study. In section 4, we present
the methodology and results of our experiments. The last section provides a
discussion of this work and points out future work directions.
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2 Related Works

In this section we propose a brief overview of previous work on variable impor-
tance, test suites for optimization problems and benchmark generators, with a
particular focus on a generator proposed by physicists we used as a basis for
PUBOi.

2.1 Variable importance, and benchmarks of optimization problems

In the context of optimization problems, we assume a variable is important when
its mutation strongly affects the fitness of a solution. When this characteristic
is present on instances to optimize, taking it into account can help to optimize
the problem more efficiently. There exist a few studies of optimization algo-
rithms focusing on the variable importance of optimization problems, although
this characteristic often exists on real data. For example, in [17, 18] the authors
study a machine learning-enhanced recombination that incorporates an intelli-
gent variable selection method for multi-objective optimization and show that
taking the variable importance into consideration can improve the optimization
quality. Another example concerns the fitness landscape analysis of landscapes
from the SIALAC benchmark, a benchmark for mobility problems [12]. In this
benchmark based on a city mobility simulation, variables have different degrees
of importance, and a bandit descent heuristic is proposed to take important
variables into account.

An efficient way of studying optimization algorithms consists of analyzing
their behavior on various problems and instances. Over the past decades, a huge
effort has been devoted to the proposition of benchmarks of various optimiza-
tion problems. Benchmarks allow the community to focus on the optimization
of a given problem and to study more efficiently various optimization problems.
Among classic benchmarks for academic combinatorial optimization problems,
Taillard [20] proposes instances covering three basic scheduling problems : the
permutation flow shop, the job shop and the open shop scheduling problems. De-
spite their simplicity compared to real-life scheduling instances, many of these
instances are still considered challenging and are widely used to study the flow-
shop scheduling problem, both in terms of optimization methods and fitness
landscape analysis. Another widely-used testbed is the QAPLIB, that provides
several instances of the Quadratic Assignment Problem (QAP) [2], as QAP is
a non-trivial problem for which a lot of effort has been devoted. QAPLIB com-
prises randomly-generated instances as well as instances based on real-life data,
such as the testing of self-testable sequential circuits or the flow of patients be-
tween different facilities in a hospital. DIMACS instances for the graph coloring
problem and maximal clique problem are provided in [11]. The families of pro-
vided graphs include random graphs, flat graphs or latin square graphs. While
this list of instances libraries is not exhaustive, such libraries focus on a single
problem or a small set of the same family of problems, and rarely propose a
sufficient number of instances differing in variable importance.

In the field of continuous optimization, testbeds are regularly proposed for
the GECCO workshop on Black-Box Optimization Benchmarking (BBOB) [9].
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These testbeds can be found on the widely-recognized benchmarking software
COCO [10] for black-box optimization. In addition to a noisy suite, COCO has
been recently extended to multiobjective [23] and mixed integer [22] problems.

Recently, a benchmarking platform IOHprofiler has been proposed for eval-
uating the performance of iterative optimization heuristics [5]. One of its com-
ponents, IOHexperimenter aims to generate benchmark suites for the bench-
marking of such optimization methods. IOHexperimenter covers 23 real-valued
(continuous), as well as 25 academic pseudo-boolean problems [5].

The aforementioned platforms implement a large panel of problems and are
widely-used. These problems are either continuous or present a uniform struc-
ture, in which the weight of variables is generally uniform. While such platforms
are particularly useful to study heuristic optimization methods, these studies
are conducted on structures that are more common on academic problems than
on real-ones, and thus cannot efficiently focus on the peculiarities induced by
important variables.

2.2 Tile Planting instances: Chook generator

Perera et al. [16] proposed Chook a python-based generator that generates in-
stances for the Tile Planting (TP) problem [8]. The goal of this benchmark is
to test new quantum computers and algorithms. Indeed, combinatorial problems
that can be considered efficiently with quantum computers are expressed as spin-
glasses problems, and even more particularly as Quadratic Unconstrained Bi-
nary Optimization problems (QUBO). TP problems are a benchmark of pseudo-
boolean objective functions (binary string search space) with known global min-
ima, the planting solutions. These functions are determined by a sum of sub-
functions. In the most general form, the fitness function (Hamiltonian) is:

H(s) =
∑
j∈V

hjsj +

n∑
k=2

∑
(i1,...,ik)∈E

Ji1,...,iksi1si2 . . . sik

with s = (s1, s2, . . . , sn), si ∈ {−1, 1} called spins, and where the hypergraph
G = (V,E) with vertices V and edges E describes the interaction between the
problem spins (variables). The coefficients hj ∈ IR define the local external field
(energy between the environment and each spin), and the coefficients J ∈ IR
the intensity of each interaction. Notice that this equation can be mapped into
boolean variables xi ∈ {0, 1} using the classical transformation xi = 1

2 (1 − si).
In most cases these problems can be expressed using only 2-local interactions
between spins with a graph G:

H(s) =
∑
j∈V

hjsj +
∑

(i,j)∈E

Jijsisj

In TP instances [8], the problem graph is decomposed into edge-disjoint and
vertex-sharing subgraphs. For a decomposition of the graph G = (V,E) into
subgraphs {Gl = (Vl, El)} such that no edges are shared among the subgraphs,
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Fig. 1. Depiction of the graph for a
4× 4 Tile Planting problem instance.

Fig. 2. Description of the four sub-function
classes for the Tile Planting in Chook.

the coefficients hi are equal to 0, and each subgraph is associated to a quadratic

energy function: Hl(s) =
∑

(i,j)∈El

Jijsisj

The energy function of the tile planting problem can then be expressed as

the sum of energy functions of each sub-graph: H =
∑
l

Hl

The sub-functions Hl are designed to share a common ground state, i.e. the
lowest-energy state of a quantum-mechanical system, which corresponds to the
ferromagnetic ground state s = (+1,+1, . . . ,+1). Thus by the additive property
of H, the Tile Plating problems also have the same ferromagnetic ground state.

TP problems use a regular lattice structure that allows a decomposition of
the graph G which contains a subset of the unit cells as subgraphs. In the square
lattices version of the problem, the resulting unit-cells form a checkboard pattern
(see Fig. 1) and the problem graph corresponds to a toric square matrix. A
portfolio of four sub-function classes {C1, C2, C3, C4} (see Fig. 2) are defined as
follows: C1(s) = −2s0s1−2s1s2−2s2s3 +s3s0 ; C2(s) = −2s0s1−2s1s2−s2s3 +
s3s0 ; C3(s) = −2s0s1− s1s2− s2s3 + s3s0 ; C4(s) = −s0s1− s1s2− s2s3 + s3s0.
The portfolio is designed such that each function class Cj has j local minima1.
Individually, function C4 is supposed to be more difficult to solve than C1.

In Chook, instances are generated by (1) assigning a sub-function class to
each subgraph in the problem, (2) a random rotation of the plaquette in the
lattice. Instance classes are defined using a probability distribution over the sub-
function classes: pi the probability of selecting sub-functions from class Ci such
that

∑
i p1 = 1. Generating Tile Planting problems with Chook requires to set 4

parameters: the problem dimension n, and the probabilities p1, p2, and p3. Perera
et al. [16] analyze the performance of quantum algorithms (simulated quantum
annealing) according to the main benchmark parameters pi which can tune the
problem difficulty. However in TP instances, the square toric lattice gives an
identical role to binary variables. Moreover, the 2d shape of variables interactions
allows the solving of such instances in polynomial time complexity [6].

1 Indeed, j pairs of symmetric local minima
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3 PUBOi problems

Here, we propose PUBOi for Polynomial Unconstrained Binary Optimization
with importance, a generator in which benchmarks are expressed as Walsh func-
tions, and takes the importance of variables into account. This version uses the
same subproblems as in the Tile Planting generator, whose benchmarks corre-
spond to Walsh functions of order 2. These subproblems are straightforward,
which allows us to focus on our aim: to tune the variable importance to create
more structured instances. Therefore, we focus on the introduction of three new
parameters dedicated to this aim. In the following, we provide a mathematical
description of Walsh functions. Then we present the first version of PUBOi, as
well as the benchmarks considered in our experiments.

3.1 PUBO problems

Quadradratic Unconstrained Binary Optimization (QUBO), also known as Un-
constrained Binary Quadratic Problem (UBQP) in the context of combinato-
rial optimization [13], are well known pseudo-boolean functions in the field of
physics [4]. These functions are quadratic functions that can be generalized to
any order. Although there exists several names, we denote this extension as
PUBO for Polynomial Unconstrained Binary Optimization [7]. Notice that this
extension is also known as spin glasses problems in physic. Several construction
of PUBO exists, here we choose to present PUBO from the point of view of
Walsh functions.

Given a bit string of dimension n, Walsh functions compose a finite set of 2n

pseudo-boolean functions defined for all integer k from [0, 2n − 1] by:{
ϕk : {0, 1}n → {−1, 1}

x 7→ (−1)
∑n−1

i=0 kixi

where xi is the ith bit of x, and ki is the ith bit representing the integer k. Walsh
functions [25] is an orthonormal basis of pseudo-boolean functions. Any pseudo-

boolean function f : {0, 1}n → R can be written as: f(x) =
∑2n

k=0 wkϕk(x)
with wk ∈ R. Indeed, Walsh transform is similar to Fourier transformation, and
coefficients wk are computed using the orthogonal projection for the L2-norm of
f on functions ϕk: wk = 1

2n

∑
x∈{0,1}n f(x)ϕk(x).

Walsh functions allow a decomposition equivalent to a polynomial decompo-
sition. Indeed, using the transformation of bit xi ∈ {0, 1} into spin si ∈ {−1, 1}
defined by si = (−1)xi , the kth Walsh function can be rewritten as ϕk(s) =∏

i:ki=1 si. Thus, the order of a Walsh function ϕk is defined by the number of
bits equal to 1 in the binary representation of k. For example, an order 2 Walsh

function written as: w
(0)
0 +

∑n
i=0 w

(1)
i si +

∑
i<j w

(2)
i,j sisj

For benchmarking purposes, in addition to being able to represent any eval-
uation function, Walsh functions allow to fine-tune both the interdependence
between the variables (non-zero terms of the polynomial) and the intensity of
the interactions (|wk| values). Using integer numbers for wk, neutrality levels
(plateaus) can also be tuned.
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3.2 Definition of PUBOi

The set of PUBO functions is a vector space of dimension 2n where n is the
bit string length. A benchmark based on PUBO has to define a subspace from
this large vector space. The proposed benchmark PUBOi is defined with two
principles. In order to reduce the dimension, following the TP benchmark design
principle, PUBOi decomposes the objective function into a sum of sub-functions
from a portfolio. In addition, the binary variables in each sub-function are se-
lected according to tunable parameters of variable importance, to introduce a
real-like property. As Tile Planting instances, PUBOi defines the objective as a
sum of sub-functions:

∀x ∈ {0, 1}n, f(x) =

m∑
i=1

fi(x)

where m is the number of sub-functions, and each sub-function fi is selected
at random according to probabilities pj of each sub-function class Cj from the
portfolio (see Sect. 2.2).

The main originality of the proposed benchmark lies around the notion of
variable importance. Each sub-function depends on a limited number of vari-
ables. For example in TP instances, each sub-function depends on 4 variables
selected according to the square lattices. In PUBOi, variables are selected ac-
cording to a degree of importance. Indeed, intuitively in real-world problems,
important variables should appear more often in sub-problems than least im-
portant variables. To define the importance of variables, the set of variables
X = {x1, . . . , xn} is split into k disjoint classes of importance: ci ⊂ X such that
∪kck = X, and ci ∩ cj = ∅ for each pair {i, j}. The number ni of variables in
each class is a parameter of the benchmark. Each class of importance ci has a
degree of importance di ∈ IR+. In PUBOi, the probability of selecting a variable
in a sub-function is then proportional to the degree of variable importance of its
class i: pci = di∑k

j=1 dj
.

We also introduce another parameter to tune the co-appearance of vari-
ables in the same sub-function. In a real-world problem, one can assume im-
portant variables are not randomly distributed among the sub-problems. For
some problem instances, important variables could appear together in the same
sub-problems, and for other ones, important variables could be linked to less im-
portant ones. The following paragraph introduces the principle of co-appearance
of important variables in PUBOi.

For a sub-function of arity a, when classes of importance are independent, the
probability of having variables of classes ci1 , . . . , cia is the product of probabilities
pci1 . . . pcia . To tune this probability differently, the probability related to the
number of each class is necessary. For simplification purposes, let us first suppose

there are only 2 classes of importance (0 and 1). We denote p
(a)
i the probability

of having i variables of class 1 in the same sub-function of arity a. Then, we

can define this probability recursively. For arity a = 1, p
(1)
0 + p

(1)
1 = 1. Thus,
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p
(1)
0 = pc0 , and p

(1)
1 = 1− pc0 . The probability to select the class 0 for each sub-

function variable should remain the same, hence the additional variable for arity
a = 2 should not change the marginal probability, and we have the following
equations: {

p
(2)
0 + p

(2)
1 = p

(1)
0

p
(2)
1 + p

(2)
2 = p

(1)
1

The introduction of a new parameter p′c0 to tune the different probabilities

is possible. By setting p
(2)
0 = p′c0p

(1)
0 , we obtain:

p
(2)
0 = p′c0pc0
p
(2)
1 = (1− p′c0)pc0
p
(2)
2 = (1− p′c0)(1− pc0) + p′c0 − pc0

When p′c0 = pc0 , the classes of importance of each variable are independent.
When p′c0 is greater than pc0 , then the probability to have both variables in the
same class of importance is higher. On the contrary, when p′c0 is lower than pc0 ,
the sub-functions have more heterogeneous classes of importance.

More generally, an additional variable in the sub-function leads to the recur-

rence formula: ∀a ≥ 2,∀i ∈ {0, . . . , a}, p(a)i + p
(a)
i+1 = p

(a−1)
i

By setting the first probability p
(a)
0 , one can deduce all other probabilities. It

would be possible to introduce a parameter at each arity level: p
(a)
0 = p

′(a)
c0 p

(a−1)
0 .

However, to simplify the benchmark tuning, we use one single parameter p′c0 :

p
(a)
0 = p′c0p

(a−1)
0 . Therefore we obtain the following values:

p
(a)
0 = (p′c0)a−1pc0
. . .

p
(a)
i = (1− p′c0)i(p′c0)a−1−ipc0
. . .

p
(a)
a = (1− p′c0)a−1(1− pc0) + (1− (1− p′c0)a−1)(1− pc0

p′c0
)

As for the arity 2, the value of p′c0 determines the independence degree of co-
appearance of the same class. Let us rewrite the parameter p′c0 = α pc0 . When
α = 1, the co-appearance of variables importance classes are independent. When
α > 1, variables from the same class of importance have a higher probability to
appear in the same sub-function, and conversely when α < 1. Remember that
globally on all sub-functions, each class of importance appears with a probability
proportionally to its degree of importance. To extend to more than 2 classes of
importance, we have to consider iteratively the probability to be in class 0, and
not to be in class 0, then probability to be in class 1, and in a class greater than
1, etc.

We also propose to shift randomly the global minimum of each sub-function
class. Naturally, knowing the global minimum could be useful, yet it would in-
troduce a bias. Indeed, when a sub-problem is solved with the ground state 1111,
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it also helps the search to solve another sub-problem (shared variables are set to
the optimal value). In PUBOi, we propose to shift to a random binary string the
minimum for each sub-function to design more challenging instances compared
to those of Tile Planting. Of course, the knowledge of ground state is lost and
should be approximated by the best known solution for each instance. However,
a lower bound of minima can be computed by summing the minima value of
each sub-function. Tab. 1 summarizes the parameters of PUBOi benchmark.

The code of the PUBOi generator is available on git https://gitlab.com/
verel/pubo-importance-benchmark. The generator produces a file in json for-
mat which follows the same format of Chook generator. As a consequence, all
solvers (quantum or classical) can be used to solve PUBOi instances.

Table 1. Parameters of PUBOi benchmark.

Parameter Description Experimental values

n Problem dimension [1000, 5000]

m Number of sub-functions [0.01, 0.2]× n(n−1)
2

C Portfolio of sub-functions Tile Planting
pi Probabilities of sub-function class [0, 1]
k Number of class of variable importance 2
ni Number of variables in each class of importance n0 = 0.25n, n1 = n− n0

di Degree of importance of each class d0 ∈ [1, 10], d1 = 1
α Probability of importance class co-appearance [1, 1/(pc0 − 1)]

3.3 Instances set

This instances set aims to provide a large set of PUBOi instances for the analysis
of the benchmark parameters impact on the properties of the problems, but
also to offer a diverse set instances to train, and test new efficient optimization
algorithms for this type of problems, and real-world problems.

In this set of instances, we consider k = 2 classes of importance to distinguish
important variables, and non-important variables. The number of important
variables is set to 25% of the total number, and as a consequence, 75% of vari-
ables are considered non-important. The degree of importance of non-important
variables is always set to d1 = 1, while the degree of important variables is
higher from the range [1, 10]. Important variables could be up to 10 times more
frequent than non-important ones. The factor α is set to be larger than 1 up
to the larger possible 1

pc0−1
. The problem dimension n is between 1000, and

5000 which is larger than in the TP set, and medium to large size according
to the UBQP standard [13]. The number of sub-functions m is proportional to
the square of problem dimension. Indeed, the portfolio of PUBOi is the one of
TP which defines functions with 4 quadratic Walsh terms. Following the UBQP

standard of matrix density, we choose m between 1% and 20% of n(n−1)
2 . Tab. 1

summarizes the range of parameters value.
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Instead of factorial design of experiments, we generate 1000 instances of
PUBOi using Latin hypercube sampling [3] (LHS), a statistical method for the
quasi-random sampling based on a multivariate probability distribution. Thus,
in our context, LHS leads to a set of instances that covers a large panel of differ-
ent parameter combination while significantly reducing the computational effort
devoted to the study of such parameters. Indeed, the factorial design alternative
either leads to a poorer coverage of the possible combinations or require the
consideration of more instances, leading to a tedious process and a significantly
higher computation cost. To respect the constraint p1 + p2 + p3 ≤ 1 to define,
we reject samples from LHS which do not respect this constraint in order to
avoid scaling bias. All instance files in json format are available online at the url
https://gitlab.com/verel/pubo-importance-benchmark/instances.

4 Experimental analysis

This set of experiments aims to highlight whether the parameters we propose
impact variable importance, and how variable importance impacts some classic
features of fitness landscapes.

4.1 Fitness landscapes characterization

The fitness landscape analysis mostly focuses on classic features: the rugged-
ness/multimodality and the neutrality. The ruggedness, or multimodality of a
landscape mainly refers to the number of local optima, their distribution, and the
size of their basins of attraction. This property reflects the difficulty to optimize
the instance with local search algorithm based on given neighborhood relation.
A rugged landscape has several peaks (local optima) hard to attain (small basins
of attraction), whereas a smooth landscape has a few peaks easy to attain (large
basins of attraction).

Here, we use a widely-used ruggedness indicator, the fitness autocorrela-
tion [26]. Given a random walk (xt, xt+1, . . .) where the solution xi+1 is a neigh-
bor of xi, the autocorrelation function ρ of the fitness function f corresponds to
autocorrelation function of the time series (f(xt), f(xt+1), . . .):

ρ(`) =
E[f(st)f(st+`)]− E[f(st)]E[f(st+`)]

var[f(st)]

where E[f(st)] is the expected value of f(st), and var[f(st)] its variance. In
the following, we only consider the first coeffficient of autocorrelation ρ(1), as it
usually is enough to summarize the ruggedness levels of landscapes.

The neutrality of a fitness landscape refers to the proportion of neutral neigh-
bors in the landscape. A neutral neighbor of a solution has the same fitness value.
Neutrality often induces plateaus in the landscape, in which optimization meth-
ods can easily be trapped, preventing them to attain better-quality solutions.
Thus, a fitness landscape with high neutrality levels can be challenging to opti-
mize. We use the neutrality degree [19] on neutral moves performed during the
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random walks (xt, xt+1, . . .): degn(x) = #{f(xi+1) = f(xi) : i ∈ {0, 1, . . .}}.
More precisely, we report the neutral mutation probability degn(x)

n which is in-
dependent of problem dimension.

The last measure considered for the fitness landscape analysis is the length
of the adaptive walk. An adaptive walk is a sequence of neighboring and im-
proving solutions: (x0, x1, . . . , x`) such for all i ∈ {0, . . . , `}, xi+1 is a neighbor
of xi, and f(xi+1) is better than f(xi). Such a measure highlights the multi-
modality (i.e., the presence of several peaks) of fitness landscapes. A short walk
is generally the sign of a multimodal landscape, whereas a long walk usually
indicates a monomodal landscape. Several adaptive walks exist, and on combi-
natorial fitness landscape hill-climbers are often considered to this aim. Here,
we use a first improvement hill-climber which consists of randomly selecting an
improving neighbor at each step of the search, until a local optimum is met. The
length of adaptive walk is then the number of steps `.

4.2 Methodology

We consider the set of 1000 instances generated with LHS. For each instance, we
conducted a run of random walk of length 30n. This length is sufficient to provide
a sample of solutions, as each variable is flipped 30 times on average, and allows
to compute statistics for each variable. We consider a classic neighborhood-
relation of pseudo-boolean optimization problems, 1-flip. 30 adaptive walks are
conducted for each landscape, starting from a randomly generated solution, and
stopping on a local optimum. The average length of adaptive walks is reported.
As our goal is to observe the impact of benchmark parameters, and in particular
variable importance on landscape characteristics, we use the mgvc R package [27]
to generate generalized additive models (GAMs) to highlight the significance of
these parameters on the variable importance. GAMs are statistical models that
merge the properties of the generalized linear model with those of the additive
model. These results are presented through scatterplots of the regression model
between landscape features and benchmark parameters.

4.3 Results

Fig. 3 shows the scatter plot with the GAM model regression of landscape
features, autocorrelation coefficient, the neutral mutation probability, and the
length of adaptive walks (see Sect. 4.1), according to the benchmark parame-
ters. Each plot reports the effective degrees of freedom (edf) of GAM, which
reflects the degree of non linearity: edf = 1 corresponds to a linear relationship,
1 < edf ≤ 2 is a quadratic, or weakly non-linear relationship and edf > 2 a
highly non-linear relationship [29]. The significance values (Signif.) are also re-
ported. The asterisks indicates the p-value at different levels of the statistical
significance: ’***’, ’**’, ’*’, ’.’, and ’-’ correspond respectively to p-value levels
of 0, 0.001, 0.01, 0.1, 0.05, and 1.

The problem dimension (n), the number of sub-functions (m), the degree
of importance, and the probability p1 of choosing the sub-problem C1 have a
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Fig. 3. Scatterlots features vs. benchmark parameters with GAM model regression.

highly significant impact on the autocorrelation (ruggedness) of landscapes. The
factor of independence α has a significant impact on the autocorrelation. The
autocorrelation increases, meaning ruggedness level decreases, with the problem
dimension, and the factor α. The relation between autocorrelation, and problem
dimension is a highly non-linear relationship. Ruggedness levels also decrease
with the degree of importance d0, and the presence of subproblem C1. For these
two parameters, the relationship with the autocorrelation is linear. With larger
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values of m, the ruggedness level increases linearly. Higher ruggedness levels are
coherent with a higher number of subproblems as it increases the complexity
of the problem, and the interdependence between subproblems. n has the high-
est impact on the autocorrelation, which is consistent with general results on
landscapes. Specific parameters to PUBOi on variable importance also impacts
ruggedness levels, among those α has the highest impact.

Another facet of problem difficulty is the neutrality feature. All benchmark
parameters n, m, d0, α and p4 (except p1, p2, and p3) have a significant impact
on neutrality level. While increasing both problem dimension and number of
sub-functions decrease neutrality rates, higher values of the importance degree
d0, factor α and p4 increase these rates. Parameters m and α have the highest
effect on neutrality of the problem instances.

The impact of benchmark parameters on the length of adaptive walk is usu-
ally lower than for the autocorrelation and neutrality rates. The problem di-
mension significantly increases this length, as on most combinatorial problems.
A larger number of subproblems seems to increase the multimodality of land-
scapes. Nonetheless, the walk length does not take into account the variation of
fitness between two steps of adaptive walks, limiting further interpretations.

The autocorrelation coefficient, and probability of neutral mutation can be
computed individually for each variable. This allows to study the impact of
benchmark parameters on each importance class of variables. Fig. 4 shows the
scatter plot with GAM model regression of the landscape features difference
between important and non-important variables versus the benchmark param-
eters. Both for the autocorrelation and neutrality rates, values are negative,
meaning that the contribution of important variables is lower than the one of
non-important variables: the subspace of important variables is more rugged,
and less neutral (flat) than the subspace of non-important variables. With the
increase of n, and m, the impact of important variables on the autocorrelation
significantly decreases, with average values respectively ranging from −0.012 to
−0.003, and 0.0075 to 0.004. The opposite happens with the importance degree
d0, where the average difference of autocorrelation values significantly increases
from 0.0025 to 0.007. Increasing the importance degree significantly increases
the ruggedness contribution of important variables. The factor of independence
α has a significant impact on the contribution of important variables to the au-
tocorrelation. When this factor is increased by a small gap, important variable
contribute more to the ruggedness. Interestingly, while ruggedness level is low,
it seems higher around important variables, possibly indicating these landscapes
are globally smooth but locally rugged, as some UBQP landscapes [21].

Except for the subproblems Ci, PUBOi parameters strongly impact the neu-
trality level of important variables. Increasing the degree of importance d0 and
the factor α raise the contribution of important variables on neutrality rates. On
larger instances and instances with more subproblems, the contribution of im-
portant variables wanes while remaining higher than the one of non-important
variables. Note that some portfolio subproblems have a higher impact on the
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Fig. 4. Scatterlots of features difference between important and non-important vari-
ables vs. benchmark parameters with GAM model regression.

difference for neutrality levels than ruggedness, indeed C1 and C4 contain 3 out
of 4 same contribution values.

5 Discussion and Future Work

The experimental analysis shows that except for parameters which tune the pro-
portion of subproblem classes (pi), all of PUBOi parameters have a significant
impact on ruggedness, multimodality and neutrality levels of landscapes. In par-
ticular, parameters related to variable importance could have the same impact
on landscape, and so on the problem difficulty, than classical parameter such as
problem dimension. Moreover, the tunable importance of the benchmark leads
to non isotropic landscapes where the features of landscapes are different for
the subspace of important variables. To our best knowledge, this property of
importance is rarely taking into account in benchmark design. The difference of
landscape features between important and non-important variables shows that
this property should be considered in the design of evolutionary, and local search
algorithms. In particular, the design of local search operator, and neighborhood
should be designed according to the variable importance either by an expert,
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using machine learning technique, or the both. The PUBOi generator allows us
to facilitate this approach by bringing a large set of diverse instances.

One natural perspective is to able to compare real-world combinatorial prob-
lems to PUBOi instances, in particular according to the variable importance
property. It would also be relevant to study other possible benchmark parame-
ters such as the number of importance classes, and more deeply the composition
of portfolio. Although we have been able to analyze the fitness landscapes of
PUBOi instances, new analysis should be conducted using for example Local
Optima Network. Moreover, new fitness landscape analysis tools should be de-
signed in order to sharply describe the anisotropy of a landscape. Of course,
the goal of this benchmark is to train, test, and understand new optimization
algorithms (quantum or classical), and further developments could be conducted
in this research direction. The design methodology of variable importance used
in PUBOi is generic, and another considered research direction is to extend the
generator to other type of optimization problems (continuous, etc.).
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