Supplementary material

Oxidative stress response in pulmonary cells exposed to different fractions of PM_{2.5-0.3} from urban, traffic and industrial sites

Lamia MOUFARREJ¹, Anthony VERDIN¹, Fabrice CAZIER², Frédéric LEDOUX^{1*}, and Dominique COURCOT¹

¹ Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 avenue Maurice Schumann, 59140 Dunkerque, France

² Centre Commun de Mesures, Univ. Littoral Côte d'Opale, 145 avenue Maurice Schumann,
59140 Dunkerque, France

*Corresponding author: frederic.ledoux@univ-littoral.fr

Table S1: Chemical composition ($\mu g/g$ of PM_{2.5-0.3}) of the water-soluble fraction (WSE) of PM_{2.5-0.3} particles collected under urban influence –seasonal and yearly average (U-Sp, U-Su, U-A, U-W, U-Y), industrial influence (I), and traffic influence (T). Water-soluble versus Total concentration ratio (%) in PM_{2.5-0.3} is also indicated for detected elements in both fractions.

	U-Sp	U-Su	U-A	U-W	U-Y	Т	Ι
Al	22.6	16.3	10.4	6.9	11.2	27.2	54.6
	0.1%	0.1%	0.0%	0.0%	0.0%	0.2%	0.2%
As	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Ba	46.8	34.5	36.8	31	41.5	126.1	38.1
	17.2%	10.1%	9.2%	9.1%	12.5%	13.5%	13.4%
Cd	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Co	< DL	< DL	< DL	< DL	< DL	< DL	< DL
C							
Cr	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Cu	22.1	13.5	20.2	12.9	14.2	53.7	17.7
	3.8%	2.5%	2.5%	1.9%	2.2%	5.8%	6.4%
Fe	< DL	< DL	< DL	< DL	< DL	56.6	10.1
						0.1%	0.0%
Mn	343	691	524	676	627	169	1347
	18.2%	34.8%	42.4%	35.2%	35.5%	30.5%	20.1%
Mo	9	11.4	6.1	4.5	9.9	3.9	7.5
	37.5%	37.4%	15.2%	14.7%	32.7%	10.9%	33.6%
Ni	2.5	4.4	13.4	10.6	4.7	4.5	6.9
	1.8%	4.0%	12.8%	11.1%	4.1%	7.6%	1.5%
Р	23.4	9.8	5.4	< DL	9.9	26.5	27.2
	1.8%	0.5%	0.4%	0.0%	0.7%	2.7%	2.6%
Pb	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Sn	< DL	< DL	< DL	< DL	< DL	2.3	< DL
						0.9%	
Sr	116	80.6	72.3	99.7	97.2	115	80.4
	77.9%	69.5%	73.6%	83.1%	77.1%	74.9%	57.1%
Ti	< DL	< DL	< DL	< DL	< DL	< DL	< DL
17							
V	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Zn	97	13	157	143	24.2	31.3	123
Z 11	0.8%	1 2%	11.8%	9.0%	2-1.2 1 9%	2 5%	0.7%
	0.070	1.4/0	11.0/0	1.1/0	1.770	2.370	0.770

Table S2: IL-6 concentration reported to total protein and control, in BEAS-2B cells exposed to different fractions of PM_{2.5-0.3} samples collected under urban influence –seasonal and yearly average (U-Sp, U-Su, U-A, U-W, U-Y), industrial influence (I), and traffic influence (T), at the dose 24 μ g/cm², represented by means and standard deviations over 3 biological replicates; Mann-Whitney U-test vs. controls; *= *p* < 0.05.

	Fraction						
	PM	WSE	OE	dPM			
U-Sp	$1.8^* \pm 0.2$	$0.9* \pm 0.1$	$1.2^{*} \pm 0.1$	$3.1^* \pm 0.5$			
U-Su	$1.9^* \pm 0.2$	0.9 ± 0.2	$1.4* \pm 0.1$	$1.4^{*} \pm 0.1$			
U-A	$2.0^{*} \pm 0.8$	$0.8* \pm 0.1$	$1.1^* \pm 0.1$	$1.9^* \pm 0.4$			
U-W	$2.5^* \pm 0.5$	0.9 ± 0.1	$1.2^* \pm 0.2$	$1.5^{*} \pm 0.2$			
U-Y	$1.8^* \pm 0.4$	$0.5^* \pm 0.1$	$0.9*\pm0.1$	$3.6^* \pm 0.4$			
Т	$1.6^{*} \pm 0.3$	$0.5^* \pm 0.1$	$1.3^{*} \pm 0.1$	$4.9^{\boldsymbol{*}}\pm0.2$			
Ι	$1.8^* \pm 0.1$	$0.5^{*}\pm0.1$	$0.9^{\boldsymbol{*}} \pm 0.1$	$3.2^{\ast}\pm0.3$			

Table S3: Correlation coefficient (Spearman) oxidative stress parameters and PAHs (n=48), and metal (n=24) concentrations. Only correlations with p<0.05 are reported (**p<0.01; *** p<0.001).

	IL-6	ROS	Carbonylated proteins	8-OHdG	8-isoprostane
PAHs			Acy: 0.33	Nap: 0.37	Ace: 0.56***
			Ace: 0.38**	Ace: 0.46**	Phe: 0.42***
					Ant: 0.37**
					Fla: 0.36
					Pyr: 0.35
Elements	Ba: 0.43	Ca: 0.44	Al: 0.42		Al: 0.54**
	Mn: 0.48	Cd: 0.43	As: 0.50		As: 0.48
	Mo: 0.57**	Sr: 0.55**	Cu: 0.45		
	Na: 0.43		K: 0.42		
	P: 0.45		Pb: 0.43		
	Sn: 0.45				
	Cl ⁻ : 0.57**				
	SO4 ²⁻ : 0.86***				
	NH4 ⁺ : 0.76***				

Figure S1: PAH contents ($\mu g/g$) for PM_{2.5-0.3} collected under urban influence (U-Sp, U-Su, U-A, U-W, U-Y), industrial influence (I), and traffic influence (T).

Figure S2: IL-6 concentration relative to total protein and control in BEAS-2B cells exposed to the different fractions of PM (dPM, OE, WSE, PM) samples at 24 μ g/cm². Results are represented by median and interquartile ranges (n=21 for PM_{2.5-0.3}); Mann-Whitney test: **p* <0.05; ***p* <0.01; ****p* <0.001.

Figure S3: PCA performed considering the 4 parameters ROS, 8-OHdG, carbonylated proteins, and 8-isoprostane, on n=84 samples - Representation of the samples in the (1,2) plane after classification.

