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Abstract 

The recent evolution of machine learning (ML) algorithms and the high level of 
expertise required to use them have fuelled the demand for non-experts solutions. 
The selection of an appropriate algorithm and the configuration of its hyperparam-
eters is among the most complicated tasks while applying ML to new problems. It 
necessitates well awareness and knowledge of ML algorithms. The algorithm selec-
tion problem (ASP) is defined as the process of identifying the algorithm (s) that can 
deliver top performance for a particular problem, task, and evaluation measure. In this 
context, meta-learning is one of the approaches to achieve this objective by using prior 
learning experiences to assist the learning process on unseen problems and tasks. As a 
data-driven approach, appropriate data characterization is of vital importance for the 
meta-learning. Nonetheless, the recent literature witness a variety of data characteriza-
tion techniques including simple, statistical and information theory based measures. 
However, their quality still needs to be improved. In this paper, a new Autoencoder-
kNN (AeKNN) based meta-model with built-in latent features extraction is proposed. 
The approach is aimed to extract new characterizations of the data, with lower dimen-
sionality but more significant and meaningful features. AeKNN internally uses a deep 
autoencoder as a latent features extractor from a set of existing meta-features induced 
from the dataset. From this new features vectors the computed distances are more sig-
nificant, thus providing a way to accurately recommending top-performing pipelines 
for previously unseen datasets. In an application on a large-scale hyperparameters opti-
mization task for 400 real world datasets with varying schemas as a meta-learning task, 
we show that AeKNN offers considerable improvements of the classical kNN as well as 
traditional meta-models in terms of performance.

Keywords:  Algorithm selection, AutoML, Meta-learning, Meta-features, Data 
representation, kNN, Autoencoder

Introduction
The exponential growth of digital information has led to the widespread adoption of 
machine learning solutions. While ML can assist in decision-making and data analysis, 
human expertise is often required  [1, 2]. Human interventions are required primarily 
as the domain experts due to the fact that they can provide unique characteristics of 
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the domain. It may drastically affect the performance of the algorithms. Later on, expert 
data-scientists are needed due to the large number of algorithms and hyperparameters 
configurations which otherwise make brute force infeasible search [2–4].

In such situations, algorithm selection is one of the main challenges in applying ML 
to a new problem. It denotes the identification of algorithm(s)  (or algorithm families) 
that are likely to perform better on a given combination of datasets, tasks, and evalua-
tion measures [5]. Algorithm selection and configuration (hyperparameters tuning) is a 
difficult process for the novice users; since the performance of an algorithm is basically 
a “black box” affected by multiple characteristics of the dataset. It includes instances 
distribution, the number of features and their composition, and the number of classes, 
etc [6]. The process of discovering appropriate algorithm and its optimal hyperparam-
eters configurations can be automated in order to prevent the inherent complexities. It 
may also help to accelerate the testing of multiple configurations [6, 7].

Automated machine learning  (AutoML) refers to decision support systems that 
attempt to automate all or part of the machine learning pipeline. It has been high-
lighted in the recent research studies [2, 8–10] that the AutoML techniques to automate 
the algorithm selection and configuration process  (notably Auto-sklearn  [5], Auto-
Weka  [11], and TPOT  [12]) tend to be time consuming and burdensome for compu-
tational resources. It is due to the fact that they need to execute, multiple times, each 
candidate algorithm and configuration on the data. This fact is further emphasized for 
the large datasets, where even a few execution cycles may take several hours, hence 
making them impractical in real world scenarios [6].

An alternative approach for addressing the algorithm selection problem is meta-learn-
ing [2, 9, 13–15]. Among others, one of the aims of meta-learning is to assist the identi-
fication of the most appropriate learning algorithm (s) for a given problem by mapping 
datasets’s characteristics to the predicted data mining performance (e.g., execution time, 
predictive performances, etc.). To better serve the purpose, meta-learning systems use a 
set of data characteristics, called meta-features, to represent and characterize data min-
ing tasks. The meat-learning systems then identify and analyse the correlations between 
these attributes and the performance of learning algorithms  [16]. The proper identifi-
cation of data properties is essential to map tasks to learning mechanisms. Instead of 
executing all learning algorithms to obtain the optimal one, meta-learning is performed 
on the meta-data characterizing the data mining tasks to identify the optimal or near 
optimal learning algorithm for the given task.

As a data-driven approach, the effectiveness of meta-learning is largely dependent 
on the description of tasks  (i.e., meta-features). In the current context, meta-learning 
requires meta-features that represent the primary learning tasks or datasets to transfer 
knowledge across them. We observe, in the available literature that several approaches 
in meta-learning use families of meta-features as input to quantify task similarity. It is 
common to compute tasks similarity as the Euclidean distance between two meta-fea-
tures vectors. While these approaches have shown to be effective in simple scenarios, 
they exhibit clear limitations  [17]. The foremost non-trivial task among the exhibited 
limitations is the identification and selection of relevant meta-features. Several research 
questions can emerge to better address these limitations such that What criteria should 
we invoke to include or discard a family of meta-features? For instance, statistical 
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meta-features are not always intuitive and lack expressiveness. In [18], the authors have 
shown how different datasets may share identical statistical properties but noticeably 
they have different data distribution. Ultimately, the selection of meta-features is an ad 
hoc process based on domain knowledge. It is highly desirable to develop the more pre-
dictive meta-features and select the more informative ones in order to improve the effec-
tiveness of meta-learning [16, 19, 20].

We believe that traditional meta-features are not always capable of capturing crucial 
characteristics of a given task, even though some of them are very task specific [21]. This 
can be attributed to the fact that they only model the general characteristics of the data-
set (e.g. number of instances/features, imbalance, etc.). Learning relevant meta-features 
can be useful to better identify the hidden relationships across tasks, to necessarily build 
the accurate meta-models.

A different approach that has achieved popularity in recent years invokes Deep Neural 
Networks (DNNs). The strength behind DNNs is their capacity to learn data character-
istics from the diverse and large amount of data [22]. DNNs have had a strong impact in 
application areas such as image understanding and speech recognition  [21, 23]. How-
ever, their use in meta-learning is still incipient and requires further investigation. The 
development of deep learning for features generation has been largely studied in the 
literature. It represents different datasets and tasks as embedding generated by trained 
deep networks. In  [24], the authors solve different automatic speech recognition tasks 
through a two-step learning process. In the first step, the algorithm perform classifica-
tion with DNNs, which is followed by the extraction of intrinsic features from the DNN 
output. In the second step, extracted features are used to improve model predictions.

Our hypothesis is that DNNs provide the means to extract intrinsic meta-features 
from data. In particular, autoencoder is a type of artificial neural networks offering good 
results due to their architecture and operations  [25–28]. In this paper, we propose an 
instance-based algorithm, that learns latent meta-features from families of traditional 
ones. Its objective is to obtain meaningful and more informational meta-features. Specif-
ically, the present work introduces AeKNN, a kNN-based algorithm with built-in latent 
features extraction strategy. AeKNN projects the training patterns into a lower-dimen-
sional space, with the help of an Autoencoder (Ae). The goal is to produce new meta-fea-
tures of higher quality from the initial data characteristics. In short, AeKNN combines 
two reference methods, k-Nearest Neighbors (kNN) and autoencoder, in order to take 
advantages of autoenconder in learning higher-level features. Thus, it supports kNN in 
performing pipelines recommendation in meta-learning paradigm.

The main contribution of this paper is the design of a novel meta-model, called as 
AeKNN, which combines an efficient latent features extraction mechanism  (autoen-
coder) with a popular classification model (kNN). For the experimentation purposes, a 
collection of 400 real world problems and 8 ML algorithms has been used to assess the 
competitiveness of the proposed meta-model. It accumulate a knowledge base of more 
than 4 million evaluated pipelines.

The rest of the paper is organized as follows: In “Theoretical background and related 
works” section  2, a brief review of the closely related works is introduced, including 
meta-learning for algorithm selection and data characterization techniques. In “Pro-
posed AekNN based data characterization approach” section, the proposed AeKNN 
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meta-model is described. “Experimental study” section describes the experiments illus-
trating the effectiveness of the proposed approach. Finally, “Conclusion” section pro-
vides the brief conclusion and points out the directions for the future work.

Theoretical background and related works
Meta-learning involves two basic aspects: the characterization of the learning prob-
lems  (datasets), and the identification of the correlation between the optimal learning 
algorithm (s) and the problems characteristics. The first aspect relates to the techniques 
for characterizing datasets with meta-features, which constitutes the meta-data for 
meta-learning, whilst the second one is the learning stage at meta-level, which develops 
meta-models for the selection of appropriate algorithms and related hyperparameters 
configuration in respect of previously unseen datasets.

Meta‑learning for algorithm selection

One of the main challenges in applying ML to new problems is the algorithm selec-
tion and related hyperparameters tuning, with the need to take the dataset character-
istics (meta-features), type of task (classification, regression, clustering), and evaluation 
measure (e.g. predictive accuracy, precision, Recall, F1 score) into account. Let us con-
sider the following contextual information to better understand the algorithm selection 
problems. The ASP can be formally defined as follows : given a set of learning algorithms 
space A = {A(1), . . . ,A(i)} , a dataset D divided into disjoint training Dtrain , and valida-
tion Dvalidation sets, a task T  , and an evaluation measure M , the goal of ASP is to identify 
the algorithm (s) A(i)∗ where A(i)∗ ∈ A and A(i)∗ is a tuned version of A(i) that minimizes 
or maximizes the M on D  [29]. In particular, the general statement of the algorithms 
selection and optimization problem is defined as :

where L(A(i),Dtrain,Dvalidation) is the loss function (e.g. error rate, false positives, etc).
While it is usually necessary to rely on the human expertise (data scientists) to tackle 

the ASP challenges and difficulties, there has been increased interest in recent years in 
AutoML solutions. These solutions are proposed as decision support systems to find 
suitable ML pipelines for a given dataset. Existing AutoML solutions for algorithm selec-
tion are typically based on Bayesian optimization [30], deep reinforcement learning [31] 
evolutionary algorithms [12, 12], and budget-based evaluation [32].

While all of the above-mentioned solutions are effective, they are computationally 
expensive  (both in terms of resources and runtime), because they require an iterative 
search of different models and configurations. In addition, when given a new data-
set, most of the above solutions have to start the search for an optimal pipeline “from 
scratch” and evaluate each configuration on the given dataset before the recommenda-
tion. This limitation is particularly problematic when dealing with large datasets result-
ing in long processing time.

Meta-learning or learn to learn is an alternative approach for dealing with the ASP. 
Meta-learning paradigm aims to learn a mapping from the behavior of learning algo-
rithms to the datasets characteristics  (meta-features) that contribute to the improved 

(1)A(i)∗ ∈ argmin
A∈A

L(A(i)
,Dtrain,Dvalidation)



Page 5 of 18Garouani et al. Journal of Big Data           (2023) 10:14 	

performance of one algorithm configuration over others  [33]. This knowledge can be 
then used to better identify high-performance algorithms in order to solve the tasks on 
previously unseen datasets [34, 35].

As described in  [36] and illustrated in Fig. 1, meta-learning frameworks consist of a 
collection of learning algorithms and datasets. First, the framework extracts meta-fea-
tures that capture  (or aspire to capture) the “essence” of a given dataset. Each learn-
ing algorithm is then applied with different related hyperparameters configurations on 
each dataset, and estimates the performance according to a performance measure. The 
extracted meta-features and the performance of the evaluated learning algorithms and 
configurations refer as meta-data. Then, a learning algorithm  (meta-model) is trained 
on the meta-data to match the values of the meta-features with the most suitable algo-
rithm (s) for each dataset. Finally, for a new dataset, the meta-learning system extracts 
the meta-features and uses the meta-model to recommend algorithm (s) for that data-
set. Meta-data involves the extraction of significant and meaningful meta-features on 
the datasets or the used models  [30, 34, 37, 38]. The majority of meta-features can be 
divided into five families, as shown in the next section.

Over the years, several studies have explored the application of meta-learning to vari-
ous tasks such as algorithms recommendations [7–9], transfer learning [39], and assem-
ble methods [40]. Many state-of-the-art AutoML systems use meta-learning as a way of 
improving their accuracy and running time [30, 41] and multiple studies describe ways 
to induces models from meta-knowledge as decision support systems for the ASP  [6, 
11–13, 37].

Some ML algorithms are often used to induce a meta-model for recommending algo-
rithms in meta-learning. These algorithms can be an adapted version of the k-Nearest 
Neighbors algorithm [42]. As an example, the recommendation of the most suitable ML 
algorithms for a new dataset occurs by applying the kNN to the meta-features vector 
extracted from the new dataset.

In this study, meta-learning paradigm is used to recommend the most suitable clas-
sification algorithms for new datasets. As meta-features are crucial for the recommen-
dation process, this work proposes a novel approach able to extract more informational 
features from data, allowing the recommendation meta-model to improve its perfor-
mance regarding existing approaches.

Fig. 1  The workflow of the meta-learning process
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Data characterization

The major task, to characterize the datasets for meta-learning, is to capture the informa-
tion about learning complexity on some given dataset and identify structural similari-
ties or differences among datasets [16]. The most early attempts to characterize datasets 
in order to predict the performance of classification algorithms were made by Rendell 
et al.  [43]. We observe in the literature that broadly two main strategies are proposed 
subject to characterize a dataset for suggesting which algorithm is more appropriate for 
a specific task or dataset. Among them are the methodologies using statistical measures 
and a set of simplified learners. The former attempt to describe the properties of datasets 
using statistical and informational measures. In the later, a dataset is characterized using 
the training performance  (e.g. accuracy) of a set of simplified learners, which became 
later on Landmarking [44].

The intuitive idea behind Landmarking is that the performance of classifiers is related 
to the intrinsic features of the problem; thus, classifiers with similar accuracy may 
indicate problems with similar characteristics. Characterization with the use of Land-
markers is known as indirect characterization because it is not directly related to the 
attributes of the problem.

The characterization of datasets using statistical and informational measures proper-
ties appeared for the first time within the framework of the STATLOG project [45]. The 
authors use a set of 15 characteristics, spanning from simple ones, like the number of 
instances and the number of attributes, to more complex ones, such as canonical cor-
relation between the attributes and the class. This set of characteristics has been later 
applied in various studies for solving the ASP [9, 13, 34]. This characterization approach 
is later extended, it is currently known as direct data characterization [46] and consist 
of extracting simple, statistical, and information-theoretic task properties that can be 
straightforwardly extracted from datasets by capturing information concerning data 
dimensionality, distribution, and the amount of information present in the data.

Another characterization method is based on informations extracted by models built 
out on the problems [16]. For instance, from a decision tree model constructed over a 
dataset, it is possible to extract structural informations about the tree itself, such as the 
number of leaves, nodes, and the tree depth [47]. Similarly, in [34], the authors proposed 
AutoGRD, a meta-learning approach for algorithm recommendation through graphi-
cal dataset representation. First, they applied the Random Forest algorithm to create 
a hierarchical representation of the datasets where the vertices represent the dataset’s 
instances and the edges indicate the existence of a sufficiently high co-occurrence score 
among them. Then, the GCD method [48] has been used to generate the embedding rep-
resentation of the obtained graph that is fed to train an XGBoost meta-model to predict 
the ranking of algorithms based on their performances. However, their approach suffers 
from a computational complexity of O(V4) where V is the number of vertices in the ana-
lyzed graph. It is further observed that this approach is not practical for large datasets of 
real world problems.

Meta-features or data characteristics can be transformed to summarize the data, e.g., 
by reducing data dimensionality. For instance, in [49], the authors performed Principal 
Component Analysis (PCA) [50] to select relevant components, subsequently, a filter is 
used to extract the discriminating features and eliminate the redundant features.
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A different approach that has achieved popularity in recent years in learning most 
relevant features from data involves deep autoencoder neural network. We blieve 
that autoencoders provide the means to extract intrinsic meta-features from tradi-
tional ones. In this process, traditional meta-features are used by the autoencoder to 
learn relevant features, then, the knowledge captured in the hidden layers of autoen-
coder is used to extract latent meta-features. Once identified and extracted, they can 
be used by any meta-learning algorithm.

Proposed AekNN based data characterization approach
AekNN foundations

We propose a novel approach to learn new latent meta-features by constructing 
new representations from traditional meta-features using a deep neural network, i.e 
autoencoder. An autoencoder is a type of artificial neural networks designed to learn 
efficient data representations  (encoding) in an unsupervised manner  [51]. It has a 
similar structure to the feedforward neural network Multi-Layer Perceptron (MLP); 
however, the primary difference is that the number of neurons in the output layer is 
equal to the number of inputs, whereas the autoencoder tries to generate the inputs 
from the learnt representation (encoding) as close as possible to its original input.

Consequently, in its simplest form, an autoencoder uses hidden layers to try to 
recreate the inputs. We can describe this algorithm in two parts : 

1.	 an encoding function Z = E(X) that converts X inputs to Z codings, and
2.	 a decoding function X ′ = D(Z) that produces a reconstruction of the inputs X ′.

The goal is to create a reduced set of codings that adequately represents X by mini-
mizing the reconstruction error L(X ,X ′) , which measures the differences between 
the original input data X and the consequent reconstruction X ′ . Formally, it can be 
shown as follows :

The general architecture of an autoencoder is described by the number of hidden layers 
lni  and by the number of neurons per layer, where i is the index for the hidden layer and 
n is the total number of neurons in that layer. Each layer contains a learnt latent rep-
resentation of the input data. Encoded hidden layer in the middle of the autoencoder, 
often called the bottleneck layer, comprises the final learnt latent features, where each 
latent variable is a representation of the original input in an abstract space. The number 
of latent variables is user defined by controlling the number of neurons in that layer. By 
training an autoencoder on the traditional meta-features space, we can learn a new rep-
resentation (latent meta-features). The resulting deep neural network serves as a features 
extractor where the learnt latent space Z is extracted from the middle hidden layer. This 
process is highlighted in Figure 2.

(2)L(X ,X ′) =
1

2

N∑

i=1

� xi − x′i �
2
2 |i ∈ {1, . . . ,N }
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Proposed approach

AeKNN consists of two main phases i.e the learning phase and the recommendation 
phase. The former phase is carried out using the meta-dataset to train the autoen-
coder model. It allows the extraction of latent meta-features of data. Later, the rec-
ommendation phase is performed that principally uses the feed forward autoencoder 
model which has been generated in the learning phase to extract the latent meta-Fea-
tures of the test data and, later on, the recommendation and ranking of the optimal 
pipeline  (s) are estimated based on nearest neighbors in the meta-knowledge base. 
Figure 3 elaborates this process, while Algorithm 1 shows the pseudo-code of AeKNN 
that is thoroughly discussed in the following.

Fig. 2  Schematic structure of an Autoencoder

Fig. 3  Overview of proposed AeKNN-based meta-model
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The proposed methodology constructs an autoencoder which can be used as a latent 
features extractor. After providing traditional meta-features as input, we train the 
autoencoder to learn a meaningful latent representation of the meta-dataset. Once the 
autoencoder is trained, the meta-dataset is forward propagated to extract the latent vari-
ables from the middle hidden layer to induce the AeKNN meta-model.

The algorithm consists of two phases. The first phase corresponds to the learning 
of AeKNN  (lines 1–5) while the second phase (lines 6–8) refers to the recommenda-
tion phase. During learning, AeKNN focuses on learning a new representation of the 
data to extract latent meta-features. This is done through the feed forward autoencoder 
model, using the training meta-data to learn the weights linking the units of autoen-
coder. During the recommendation phase, the optimal pipelines are generated. The pro-
cess, performed internally in this phase, transform the extracted meta-features using the 
autoencoder model which is generated in the training phase  (encoder model). It pro-
duces a new dataset characterization  (latent meta-features), which is more compact 
representative (line 7) of data. In fact, this new set of features is used by the AeKNN 
meta-model to recommend the optimal pipeline (s) for the given problem (test dataset) 
(line 8).

Experimental study
This section describes the experimental design to induce latent meta-features and the 
evaluation of the proposed approach. In this respect we describe the used datasets, clas-
sification algorithms, and meta-Knowledge base construction. Subsequently, the experi-
mental results are presented and discussed in substantial detail.

Datasets, performance evaluation and meta‑knowledge base construction

Phase 1 of our experiments includes datasets selection, meta-features extraction, 
and performance evaluation. We actually collect 400 real-world classification data-
sets from the popular UCI  1, OpenML  2, Kaggle  3, KEEL  4 repositories and from 
other real world scenarios. These datasets cover varied tasks with respect to their 

1  https://​archi​ve.​ics.​uci.​edu.
2  https://​www.​openml.​org.
3  https://​www.​kaggle.​com.
4  https://​sci2s.​ugr.​es/​keel.

https://archive.ics.uci.edu
https://www.openml.org
https://www.kaggle.com
https://sci2s.ugr.es/keel
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size, number of attributes, their composition and class imbalance. Datasets charac-
teristiques are illustrated in Table 1.

Later on, in order to build the meta-knowledge base, we evaluate 08 common 
learning algorithms from the popular Python-based machine learning library, Scikit-
learn. These classifiers are AdaBoost, Support Vector Classifier (SVC), Extra Trees, 
Gradient Boosting, Decision Tree, Logistic Regression, Random Forest, Stochastic 
Gradient Descent (SGD) Classifier on each dataset, and recording their generaliza-
tion performance in terms of Precision, Recall, Accuracy and F1score.

We generate 1000 different combinations of the hyperparameters configurations 
for each execution of a classifier C over a dataset D . This process results in an aver-
age of 8000 pipelines per dataset. In particular, for each classifier, we generate a list 
of all possible and reasonable combinations where we conduct, for each dataset, a 
random search among them. During the training phase, we use a fivefold stratified 
cross-validation strategy to construct the meta-datasets. As a result, the knowledge 
base consisted of more than 4 millions evaluated classification pipelines.

In parallel, we extract meta-features of training datasets using the PyMFE tool [52] 
for the general, statistical, info-theoretical, model-based and landmarking catego-
ries. Consequently, it generates a meta-dataset of 400 meta-instances and 60 meta-
feature  (characteristics) that is used to train the deep autoencoder to extract the 
latent meta-features. The process of meta-features extraction is formalized by  [52] 
as a function F : D → R

k that receives a dataset D as input, and returns a features 
vector of k values characterizing the dataset, and that are predictive of algorithms 
performance when applied to the dataset. Formally, it can be detailed as follows :

where D = {(xi, yi)|i ∈ {1, . . . ,N }} is a dataset with N instances; xi and yi indicate the i-
th training data and label respectively. The measure m : D → R

k ′ can extract more than 
one value from each data set, i.e., k ′ can vary according to D , which can be mapped to a 
vector of fixed length k using a summarization function σ . In MtL, where a fixed cardi-
nality is needed, the summarization functions can be, e.g., mean, minimum, maximum, 
skewness and kurtosis. Thus, a meta-feature can therefore be seen as a combination of a 
measure and a summary function [52].

In the recommendation phase, the combination of the meta-dataset and the results 
of all runs are stored in a meta-knowledge base KB where each record represents an 
execution of a classifier C with hyperparameters configurations H over a dataset D. 
In particular, each record stores the meta-features that model the dataset, the pipe-
line, and their interdependencies.

(3)F(D) = σ(m(D))

Table 1  Dataset’s dimensions

Nb. of classes Nb. of attributes Nb. of instances

Min 2 5 1368

Max 18 1000 756,400
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Experimental results

AeKNN architectures analysis

AeKNN is characterized by the aforementioned lin parameter that establishes the 
architecture of the model. This parameter allows the selection of different architec-
tures in term of depth  (number of hidden layers) and number of neurons per layer. 
Table 2 shows the considered architectures. For each model (architecture) the num-
ber of hidden layers, as well as the number of neurons in each layer, are shown.

The results produced by the considered architectures using a benchmark of 20 real 
world datasets with different characteristics  (as shown in Table  3) are presented as 
grouped by classification metrics and datasets. Tables 4, 5 and 6 summarize the evalu-
ation results of each recommended pipeline for each architecture respectively.

The evaluation results of the recommended pipelines by AeKNN with different 
architectures are presented in Table  4. These results mainly consider the Accuracy 
classification metric. The obtained results indicate that the architectures with single 
hidden layer perform better on 17 out of 20 datasets, whereas the architectures with 
three hidden layers perform better on 2 out of 20 datasets while the five hidden lay-
ers architecture obtained best results on 1 out of 20 datasets. Therefore, it can be 
observed through the obtained rankings that single hidden layer architectures per-
form better most of the times (17) in given circumstances. The lin = (32) works best 
for most cases (14 win), while lin = (16) has shown disparate results as these can be 
simultaneously the best values for some cases and worse values for other cases.

Table 2  Experimental configurations of AeKNN

The best ones are highlighted in bold

Model Number of 
hidden layers

Number of neurons per layer Architecture li n

Layer 1 Layer 2 Latent layer Layer 4 Layer 5

AeKNN1 1 – – 32 – – (32)

AeKNN2 1 – – 16 – – (16)

AeKNN3 1 – – 8 – – (8)

AeKNN4 3 32 – 16 – 32 (32,16,32)

AeKNN5 5 32 16 8 16 32 (32,16,8,16,32)

Table 3  List (sample) of benchmark datasets used in the evaluation

Dataset Number of

Instances Attributes Classes

APSFailure 76,000 171 2

CustSat 76,020 14 2

car 1728 7 4

kr-vs-kp 3196 37 2

airlines 539383 8 2

vehicle 846 19 4

MiniBooNE 130,064 51 2

jannis 83,733 55 4

nomao 34,465 119 2
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Table 4  Accuracy classification results of the recommended pipelines for the considered AeKNN 
architectures

The best performances among all architectures are highlighted in bold

Dataset AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9921 0.9734 0.86475 0.9033 0.8325

Higgs 0.7283 0.6911 0.4872 0.6398 0.5316

CustSat 0.8155 0.7826 0.5318 0.8559 0.6943

car 0.9999 0.9808 0.7049 0.9203 0.8277

kr-vs-kp  0.9976 0.8130 0.6532 0.7330 0.7291

airlines 0.6982 0.6833 0.5627 0.7167 0.4334

vehicle 0.8880 0.8934 0.3591 0.8004 0.4098

MiniBooNE 0.9645 0.9217 0.8143 0.85 0.7436

jannis 0.7229 0.6843 0.6371 0.6911 0.6608

nomao 0.9708 0.9719 0.5395 0.6994 0.4659

Credi-g 0.7921 0.6502 0.5121 0.3871 0.4768

Kc1 0.8793 0.8754 0.3597 0.7488 0.5691

Cnae-9 0.9671 0.8923 0.5622 0.5208 0.6049

albert 0.8759 0.8131 0.6981 0.8439 0.9053
Numerai28.6 0.5207 0.4530 0.3029 0.4760 0.2810

segment 0.9735 0.9622 0.8837 0.9508 0.5791

Covertype 0.8344 0.7189 0.6521 0.6305 0.4620

KDDCup 0.9740 0.8514 0.8034 0.8821 0.8572

shuttle 0.9362 0.9997 0.6429 0.8576 0.6744

Gas_Sens-uci 0.9843 0.9755 0.7256 0.9667 0.7032

Table 5  F1-Score classification results of the recommended pipelines for the considered AeKNN 
architectures

The best ones are highlighted in bold

Dataset AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9823 0.7553 0.9875 0.7573 0.9055

Higgs 0.8743 0.5451 0.5602 0.4938 0.5316

CustSat 0.9250 0.6366 0.4953 0.8194 0.5483

car 0.9635 0.9874 0.8144 0.7613 0.6817

kr-vs-kp 0.9246 0.7035 0.6532 0.5870 0.8751

airlines 0.5887 0.7928 0.5992 0.5707 0.3604

vehicle 0.8515 0.8204 0.2131 0.9099 0.3733

MiniBooNE 0.9715 0.9871 0.8873 0.7405 0.8531

jannis 0.7229 0.5748 0.8068 0.6911 0.6006

nomao 0.9343 0.9213 0.5395 0.8454 0.4294

Credi-g 0.9381 0.5772 0.5661 0.4141 0.5863

Kc1 0.9321 0.8389 0.9523 0.8583 0.4596

Cnae-9 0.8962 0.8741 0.6352 0.5938 0.7509

albert 0.8394 0.7036 0.6251 0.8074 0.9783
Numerai28.6 0.3747 0.5260 0.3029 0.4395 0.3540

segment 0.9130 0.8830 0.8837 0.7139 0.5426

Covertype 0.6886 0.6824 0.7249 0.4845 0.4620

KDDCup 0.9571 0.9974 0.7669 0.8386 0.7112

shuttle 0.9653 0.8537 0.4969 0.8306 0.7109

Gas_Sens-uci 0.6161 0.8660 0.9667 0.7667 0.8492
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Table 5 presents the results obtained by AEkNN with the different lin architectures 
for the F1-Score classification metric. Based on the shown findings, there is no ideal 
architecture for all datasets. In this case, the architecture lin = (32) performs better 
most of the times (8). Although, the single hidden layer architectures lin = (16) and 
li
n
= (8) are the top performers in each of the five cases. Despite being better the 

same number of times, the architecture lin = (16) has more balanced results.
While, analyzing the classification results corresponding to the AUC​ metric, 

presented in Table  6, it can be observed that the single hidden layer architectures 
obtained the best overall results in 20 out of 20 datasets. These rankings show that 
the single hidden layer model lin = (32) outperformed more often (11), Whereas the 
li
n
= (32, 16, 32) and lin = (32, 16, 8, 16, 32) did not deliver any better results.

Therefore, it is considered that lin = (32) is the best among them. Thus, in the fol-
lowing the results of AeKNN, using the presented architecture, is compared against 
the classical kNN as well as other state-of-the-art meta-models.

To validate and assess the competitiveness provided by the deep autoencoder-
KNN based meta-model, we perform a comparative study to other state-of-the-art 
meta-models with an oversampling approach using the 20-benchmark datasets. We 

Table 6  AUC classification results of the recommended pipelines for the considered AeKNN 
architectures

The best ones are highlighted in bold

Dataset AeKNN

(32) (16) (8) (32,16,32) (32,16,8,16,32)

APSFailure 0.9191 0.9763 0.8648 0.8639 0.7230

Higgs 0.7283 0.8371 0.3412 0.5668 0.5316

CustSat 0.9654 0.6731 0.6413 0.8155 0.7673

car 0.9608 0.9269 0.9873 0.5298 0.6817

kr-vs-kp 0.7765 0.9103 0.6167 0.8790 0.5831

airlines 0.8627 0.5373 0.6357 0.8442 0.5794

vehicle 0.9610 0.8569 0.3956 0.5464 0.5558

MiniBooNE 0.8550 0.9947 0.7873 0.7230 0.5976

jannis 0.7338 0.7229 0.4911 0.6911 0.5383

nomao 0.8594 0.8423 0.8978 0.5899 0.6119

Credi-g 0.9381 0.7232 0.5121 0.4601 0.3308

Kc1 0.7333 0.9119 0.3962 0.6028 0.6421

Cnae-9 0.8941 0.8433 0.4162 0.5938 0.4954

albert 0.9124 0.9226 0.6616 0.7344 0.7593

Numerai28.6 0.6302 0.5435 0.2664 0.3665 0.2080

segment 0.8900 0.8527 0.6548 0.4362 0.4331

Covertype 0.7979 0.6459 0.7981 0.6670 0.4620

KDDCup 0.9876 0.7419 0.9408 0.6587 0.7477

shuttle 0.9727 0.9267 0.7159 0.9306 0.7839

Gas_Sens-uci 0.8748 0.8295 0.7986 0.5572 0.7762
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compared AeKNN to three widely used meta-models including random forest (RF), 
k-nearest neighbor (KNN), and XGBoost (XGB) [9, 13, 34, 53].

AeKNN vs traditional meta‑models

This section is focused to assess the competitiveness of the proposed meta-model. In this 
regard, a comparison has been made between the results obtained with AeKNN, using 
the lin = 32 architecture as selected in the previous section, and the results obtained 
with the baseline meta-models on the same datasets. Tables  7 and 8 provide a sum-
marized pairwise one-to-one comparison of the baseline meta-models against AeKNN 
indicating how often one meta-model is better than another for the three considered 
classification metrics.

The results shown in Table  7 indicate that the proposed AeKNN works better than 
most of the traditional meta-models especially the classical kNN and RF for recom-
mending well performing ML pipelines of a given classification dataset. The AeKNN 
improves kNN in 19 out of 20 cases, obtaining the best overall results in 16 of them 
and obtains better results than the Random Forest meta-model in all cases for the Accu-
racy classification metric. Regarding the classification results related to the F1-score 
and AUC metrics, it can be seen that the lin = 32 meta-model produces the best over-
all results in 17 and 14 out of 20 cases respectively, representing an improvement of 17 
times over the KNN.

As shown in Table 8 and summarized in 7, the results obtained through the proposed 
AeKNN meta-model improve those obtained with the traditional kNN as well as the 
other state of the art meta-models for most of the datasets for the automated selection of 
ML algorithms.

Conclusion
In this paper, a novel meta-model based latent features extraction method, namely 
AeKNN, is proposed. This model is based on kNN to recommend the optimal pipe-
lines while its major objective is to mitigate the data characterization limitations. In 
this regard, AeKNN internally incorporates a model-building phase which is aimed at 
an extraction of latent meta-features, using a feed forward autoencoder. The main rea-
son that has led to the design of AeKNN is the good results that have been obtained 

Table 7  Comparing each baseline meta-model against AeKNN on the 20-benchmark datasets. 
Listed are the number of datasets where each meta-model produced better predictions than 
AeKNN (Wins), worse predictions (Losses), or more accurate predictions than all of the other 3 meta-
models (Champion) 

The best ones are highlighted in bold

Meta-model Wins Losses Champion

Acc F1-score AUC​ Acc F1-score AUC​ Acc F1-score AUC​

AeKNN - - - - - - 16 17 14

KNN 1 2 19 18 17 1 2 3

RF 0 0 20 20 20 0 0 0

XGB 3 1 17 19 17 3 1 3
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by autoencoder when they are used to generate higher-level features and those of KNN 
for performing pipelines recommendation in meta-learning systems. AeKNN relies on a 
feed forward autoencoder to extract latent representations of a higher level that replaces 
the original meta-features.

In order to assess the competitiveness of the proposed approach, a series of exper-
iments are carried out. Initially, the analysis of results have allowed to determine the 
architecture of autoencoder. Furthermore, in the later parts of the conducted experi-
ments, the results of the adopted architecture have been compared with the results 
produced by the state-of-the-art meta-models. It is observed that AeKNN offers a con-
siderable improvement of the results obtained by all baseline meta-models. These results 
show that the use of autoencoders can be helpful to extract relevant meta-features which 
are more significant and informative. It thus improve the effectiveness of meta-learning, 
and broadens the directions of future work. They can be applied to support the solution 
of similar problems, in a better manner than the traditional meta-models.
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