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Introduction

For a ∈ C, ℜ(a) > 0, the Hurwitz zeta function is dened as

ζ(σ, a) = ∞ k=0 1 (k + a) σ , ℜ(σ) > 1.
It can be analytically continued to σ ∈ C \ {1}, with a pole at σ = 1. The generalized Stieltjes constants γ n (a) occur as coecients in the Laurent series expansion of ζ(σ, a) at the pole σ = 1:

ζ(σ, a) = 1 σ -1 + ∞ ℓ=0
(-1) ℓ ℓ! γ ℓ (a)(σ -1) ℓ .

(

) 1 
For a = 1, ζ(σ, a) is the usual zeta-function ζ(σ).

There are numerous representations for them, for instance [START_REF] Berndt | On the Hurwitz zeta-function[END_REF][START_REF] Wilton | A note on the coecients in the expansion of ζ(s, x) in powers of s -1[END_REF], Numerical approximations of γ ℓ (a) have been recently given in [START_REF] Adell | Fast computation of the Stieltjes constants[END_REF][START_REF] Johansson | Computing Stieltjes constants using complex integration[END_REF][START_REF] Prévost | New convergent sequences of approximations to Stieltjes' constants[END_REF]. In the last reference, Padé approximation of the remainder term of a series giving Stieltjes constant provides a new approximation of this constant.

The goal of the current paper is to write new series for γ ℓ (a) whose terms are the derivatives of the zeta function at integers. These results will generalize the formula for Euler constant proved in [START_REF] Elsner | Expansion of Euler's constant in terms of zeta numbers[END_REF].

In [START_REF] Prévost | Recurrence for values of the zeta function[END_REF], using the Padé approximation

[n, m] e x = n j=0 (-n) j (-m-n) j x j j! m j=0 (-m) j (-m-n) j (-x) j j! of the exponential function in the following integral representation of ζ(σ, a), ζ(σ, a) = 1 Γ(σ) ∞ 0 x σ-1 e -ax 1 -e -x dx (2)
we proved the following result:

For

n, m ∈ N, σ ∈ C \ D n,m where D n,m := {-n -m, 1 -max(n, m), • • • , -1, 0, 1}, for (p, a) ∈ C 2 , let us dene the quantity A (p) (n,m) (σ, a) by A (p) (n,m) (σ, a) := m j=0 (-m) j (-n -m) j p j (σ) j j! ζ(σ + j, a + p) - n j=0 (-n) j (-n -m) j (-p) j (σ) j j! ζ(σ + j, a).
(

) Theorem 1. If ℜ(a) > 0 and ℜ(a + p) > 0, then A (p) (n,m) (σ, a) = (-1) n+1 p m+n+1 (σ) m+n+1 (n + m)! 1 0 x m (1 -x) n ζ(σ + m + n + 1, a + px)dx where (σ) j := σ(σ + 1) • • • (σ + j -1) = Γ(σ+j) Γ(σ) 3 
is the Pochhammer symbol. i=0 (i + a) -σ > 0 and ℜ(a + k) > 0 for suitable integer k. The convergence of A (p) (n,m) when n or m tends to innity has been proved by the following Lemma.

Lemma 1. If |p| ≤ |a| , |p| ≤ |a + p| , ℜ(a) > 0 and ℜ(a + p) > 0, then ∀σ ∈ C \ Z -, σ ̸ = 1 1 0 x m (1 -x) n ζ(σ + m + n + 1, a + px)dx ≤ C 1 |a + p| m 1 |a| n
where C is some constant independent of m and n.

So, under conditions on a and p, the previous lemma shows that the quantity

A (p) (n,m) (σ, a)
tends to 0 when m or n tends to innity.

In this paper, we use Theorem 1 to construct formulas for Stieltjes constants. To do that, we will use the following expression for Stieltjes constant

γ ℓ (a) = (-1) l d dσ ℓ ζ(σ, a) - 1 σ -1 σ=1 .

Results

In this section, we prove a general formula for Stieltjes constant which depends on two parameters: n is the degree of the numerator and m the degree of the denominator of the Padé approximant used to approximate the function e -x in [START_REF] Adell | Fast computation of the Stieltjes constants[END_REF].

We denote by ζ (r,0) (j, a) the r-th derivative of the function ζ(σ, a) with respect to the variable σ, computed at σ = j.

Theorem 2. Suppose that ℜ(a) > 0 and |a| ≥ 1. Then

(-1) ℓ γ ℓ (a) = max(m,n) j=2 (-m) j -(-1) j (-n) j (-n -m) j (-1) j j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a)+ ℓ k=0 ℓ! (ℓ -k)! ln ℓ-k a m j=1 (-m) j (-n -m) j (-1) j+ℓ+1 a -j j! s(j, k + 1) + ln ℓ+1 a ℓ + 1 (-1) ℓ+1 + R ℓ,m,n,a , (4) 
where s(j, k) are the Stirling numbers of the rst kind dened by

(x) n = n k=0 (-1) n-k s(n, k)x k
and the remainder term is

R ℓ,m,n,a = (-1) m+1 (m + n)! ℓ k=0 s(m+n+1, k+1) ℓ! (ℓ -k)! (-1) k 1 0 x m (1-x) n ζ (ℓ-k,0) (m+n+1, a+x)dx.
(5) The Stirling numbers satises also some known properties used in this paper:

∞ n=0 x n n! s(n, k) = (ln(1 + x)) k k! , |x| < 1, (6) 
s(n, 1) = (-1) n-1 (n -1)!, (7) 
s(n, 2) = (-1) n (n -1)!H n-1 , (8) 
where

H j = 1 + 1 2 + • • • + 1 j = 1 0 1-t j 1-t dt is the Harmonic number. Particular case. ℓ = 0 γ(a) = - max(m,n) j=2 (-m) j -(-1) j (-n) j (-n -m) j 1 j ζ(j, a) + m j=1 (-m) j (-n -m) j a -j j - -ln a + R 0,m,n,a , (9) 
where

R 0,m,n,a = (-1) n 1 0 x m (1 -x) n ζ(m + n + 1, a + x)dx.
For a = 1, formula ( 9) becomes

γ = - max(m,n) j=2 (-m) j -(-1) j (-n) j (-n -m) j 1 j ζ(j) + m j=1 (-m) j (-n -m) j 1 j + ε n,m , (10) 
where

ε n,m = (-1) n 1 0 x m (1 -x) n ζ(m + n + 1, 1 + x)dx.
The previous formula has been proved in [5, p. 512].

proof of Theorem 2

First, for p = 1, we divide the relation ( 3) by s, we replace σ by σ -1 and we compute the ℓ-th derivative at σ = 1.

A (1) (n,m) (σ -1, a) σ -1 = m j=0 (-m) j (-n -m) j (σ) j-1 j! ζ(σ -1 + j, a + 1) - n j=0 (-n) j (-1) j (-n -m) j (σ) j-1 j! ζ(σ -1 + j, a) (11) = (-1) n+1 (σ) m+n (n + m)! 1 0 x m (1 -x) n ζ(σ + m + n, a + x)dx. (12) 
In the relation (11), the term for

j = 0 is 1 σ-1 ζ(σ -1, a + 1) -1 σ-1 ζ(σ -1, a) = -1 σ-1 a -σ+1 . For j = 1, it is -m -n-m ζ(σ, a + 1) -n -n-m ζ(σ, a) = ζ(σ, a) -m n+m a -σ . Thus d dσ ℓ A (1) (n,m) (σ -1, a) σ -1 σ=1 = d dσ ℓ ζ(σ, a) - a -σ+1 σ -1 - m n + m a -σ σ=1 + m j=2 (-m) j (-n -m) j 1 j! d dσ ℓ (σ) j-1 ζ(σ -1 + j, a + 1) σ=1 - n j=2 (-n) j (-n -m) j (-1) j j! d dσ ℓ (σ) j-1 ζ(σ -1 + j, a) σ=1 . Using the relation ζ(σ, a + 1) = ζ(σ, a) -a -σ , we nd d dσ ℓ A (1) (n,m) (σ -1, a) σ -1 σ=1 = d dσ ℓ ζ(σ, a) - a -σ+1 σ -1 σ=1 + m j=2 (-m) j -(-n) j (-1) j (-n -m) j 1 j! d dσ ℓ (σ) j-1 ζ(σ -1 + j, a) σ=1 - m j=1 (-m) j (-n -m) j 1 j! d dσ ℓ (σ) j-1 a -σ-j+1 σ=1 . Now, we use the formula [4, Lemma 1] d dσ ℓ (σ) j-1 σ=1 = s(j, ℓ + 1)ℓ!(-1) j-1+ℓ , j ≥ 1.
Then, with the product rule, we obtain

d dσ ℓ (σ) j-1 ζ(σ -1 + j, a) σ=1 = ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) j-1+k ζ (ℓ-k) (j, a), j ≥ 2,
and

d dσ ℓ (σ) j-1 a -σ-j+1 σ=1 = ℓ k=0 ℓ! (ℓ -k)! (ln a) ℓ-k (-1) j+ℓ+1 a -j s(j, k + 1), j ≥ 1, d dσ ℓ ζ(σ, a) - a -σ+1 σ -1 σ=1 = d dσ ℓ ζ(σ, a) - 1 σ -1 + 1 -a -σ+1 σ -1 σ=1 = (-1) ℓ γ ℓ (a) + (-1) ℓ ln ℓ+1 a ℓ + 1 .
It arises

(-1) ℓ γ ℓ (a) = - ln ℓ+1 a ℓ + 1 (-1) ℓ + ℓ k=0 ℓ! (ℓ -k)! ln ℓ-k a m j=1 (-m) j (-n -m) j (-1) j+ℓ+1 a -j j! s(j, k + 1) + max(m,n) j=2 (-m) j -(-1) j (-n) j (-n -m) j (-1) j+1 j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a) + R ℓ,m,n,a
where

R ℓ,m,n,a = (-1) m+1 (m + n)! ℓ k=0 s(m+n+1, k+1) ℓ! (ℓ -k)! (-1) k 1 0 x m (1-x) n ζ (ℓ-k,0) (m+n+1, a+x). (13) 
The derivation of

A (1) (n,m) (σ-1,a) σ-1
with respect to σ is justied by Lemma 3 since the function ϕ(x) is integrable.

In the following, we slightly modify Lemma 1 for p = 1.

Lemma 2. Suppose that ℜ(a) > 0 and |a| ≥ 1.

Then ∀k ∈ [0, ℓ], ∀m, n such that m + n ≥ l + 1, 1 0 x m (1 -x) n ζ(m + n + 1 + k -ℓ, a + x)dx ≤ K 1 |a + 1| m 1 |a| n ,
where K is some constant independent of m and n.

Proof.

1 0 x m (1 -x) n ζ(m + n + 1 + k -ℓ, a + x)dx ≤ 1 0 x m (1-x) n |ζ(m + n + 1 + k -ℓ, a + x)| dx ≤ 1 0 x a + x m 1 -x a + x n |a + x| l-k-1 |ζ(m + n + 1 + k -ℓ, a + x)| |a + x| m+n+1+k-l dx.
In [START_REF] Prévost | Recurrence for values of the zeta function[END_REF], we proved that for ℜ(z) ≥ 1, |ζ(z, a + x)(a + x) z | is bounded by some constant C independent of z and that max 0≤x≤1 x a+x = 1 |a+1| and max 0≤x≤1 1-x a+x = 1 |a| . This proves the Lemma, where

K = C 1 0 |a + x| l-k-1 dx. □
In order to prove the convergence to 0 of the remainder term R l,m,n,a of our principal formula (4), we need a preliminary technical result. Lemma 3. Suppose that r ∈ N, a ∈ C, ℜ(a) > 0 and |a| ≥ 1, j > r + 1.

Then ∀x ≥ 0, |a + x| ≥ 1, and

ζ (r,0) (j, a + x) ≤ k≥0 ((ln |k + a + x|) 2 + π 2 /4) r/2 |k + a + x| j =: ϕ(x) (14) ϕ(x) ≤ 2 r ζ(j -r, ℜ(a) + x) (15) 
Proof.

ζ (r,0) (j, a + x) = k≥0 (-1) r (ln(k + a + x) r (k + a + x) j ≤ k≥0 |s(k + a + x)| r |k + a + x| j = k≥0 |ln |k + a + x| + iArg(k + a + x)| r |k + a + x| j = k≥0 (ln |k + a + x|) 2 + (Arg(k + a + x)) 2 ) r/2 |k + a + x| j ≤ k≥0 (ln |k + a + x|) 2 + (π/2) 2 ) r/2 |k + a + x| j ≤ k≥0 (|k + a + x| 2 + 3 |k + a + x| 2 ) r/2 |k + a + x| j ≤ 2 r k≥0 |k + a + x| r |k + a + x| j = 2 r k≥0 1 |k + a + x| j-r ≤ 2 r k≥0 1 (k + ℜ(a) + x) j-r = 2 r ζ(j -r, ℜ(a) + x) □ Theorem 3. If ℜ(a) ≥ 1 then ∀n ∈ N, lim m→∞ R ℓ,m,n,a = 0, ∀m ∈ N, lim n→∞ R ℓ,m,n,a = 0.
Proof. From (13), we can write [START_REF] Adell | Explicit upper bounds for the Stirling numbers of the rst kind[END_REF], proved some explicit upper bounds for the Stirling numbers of the rst kind. We will use the following formula:

|R ℓ,m,n,a | ≤ 1 (m + n)! ℓ k=0 |s(m + n + 1, k + 1)| ℓ! (ℓ -k)! 1 0 x m (1-x) n ζ (ℓ-k,0) (m + n + 1, a + x) dx □ Adell in
f or l = 1, • • • , j -1, |s(j + 1, ℓ + 1)| ≤ j! ℓ! (ln j) ℓ 1 + ℓ ln j . |R ℓ,m,n,a | ≤ ℓ k=0 (ln(m + n)) k 1 + k ln(m + n) 1 (ℓ -k)! 1 0 x m (1 -x) n ζ (ℓ-k,0) (m + n + 1, a + x) dx ≤ 1 + ℓ ln(m + n) (ln(m + n)) ℓ ℓ k=0 2 ℓ-k 1 0 x m (1 -x) n ζ(m + n + 1 -ℓ + k, ℜ(a) + x) (Lemma 3) ≤ C 1 + ℓ ln(m + n) (ln(m + n)) ℓ 2 ℓ+1 1 (ℜ(a) + 1) m 1 ℜ(a) n . ( 16 
)
The second inequality is valid since m and/or n tends to innity and thus the parameter m + n + 1 + k -ℓ is greater that 1.

Thus, if ℜ(a) > 1, the limit of the remainder R ℓ,mn,a is 0 when m or n tend to innity and we have

lim m→∞ |R ℓ,m,n,a | 1/m ≤ 1 ℜ(a) + 1 , lim n→∞ |R ℓ,m,n,a | 1/n ≤ 1 ℜ(a)
.

If ℜ(a) = 1, then lim m→∞ |R ℓ,m,n,a | 1/m ≤ 1/2. Now, if ℜ(a) = 1
and n tends to innity, we have to bound the integral term of right hand side of (16) as following.

1 0 x m (1 -x) n ζ(m + n + 1 + k -ℓ, 1 + x)dx ≤ 1 0 (1 -x) n ζ(m + n + 1 + k -ℓ, 1 + x)dx ≤ 1 0 (1 -x) n (1 + x) m+n+1+k-ℓ (1 + x) m+n+1+k-ℓ ζ(m + n + 1 + k -l, 1 + x)dx ≤ 1 0 (1 -x) n (1 + x) n (1 + x) m+n+1+k-ℓ ζ(m + n + 1 + k -ℓ, 1 + x)dx ≤ C 1 0 (1 -x) n (1 + x) n dx ≤ C 2n .
(see Lemma 2). We can conclude that, when ℜ(a) = 1 the remainder term tends to 0 when n tends to innity.

Remark

To accelerate the computation, we can use the following relation (for p integer):

γ ℓ (a) = γ ℓ (a + p) + p-1 k=0 ln ℓ (a + k) a + k .
It leads to

(-1) ℓ γ ℓ (a) = (-1) ℓ γ ℓ (a + p) + (-1) ℓ p-1 k=0 ln ℓ (a + k) a + k = (-1) ℓ p-1 k=0 ln ℓ (a + k) a + k + max(m,n) j=2 (-m) j -(-1) j (-n) j (-n -m) j (-1) j+1 j! ℓ k=0 S(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a + p)+ ℓ k=0 ℓ! (ℓ -k)! ln ℓ-k (a + p) m j=1 (-m) j (-n -m) j (-1) j+ℓ+1 (a + p) -j j! S(j, k + 1) + R ℓ,m,n,a+p ,
where the remainder terms R ℓ,m,n,a+p converges to 0 as

1 ℜ(a + p + 1) m ℜ(a + p) n

Particular cases

In this section, we consider all the possible values for the four parameters m, n, a.

4.1. m ∈ N, n = 0, ℜ(a) ≥ 1. After simplication, we get

(-1) ℓ γ ℓ (a) = m j=2 (-1) j j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a) + ℓ k=0 ℓ! (ℓ -k)! ln ℓ-k a m j=1 (-1) j+ℓ+1 a -j j! s(j, k + 1) (17) 
+ ln ℓ+1 a ℓ + 1 (-1) ℓ+1 + R ℓ,m,0,a .
If m tends to innity, it arises (see Theorem 3)

(-1) ℓ γ ℓ (a) = ∞ j=2 (-1) j j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a) + ℓ k=0 ℓ! (ℓ -k)! ln ℓ-k a ∞ j=1 (-1) j+ℓ+1 a -j j! s(j, k + 1) + ln ℓ+1 a ℓ + 1 (-1) ℓ+1 . (18) 
After simplication (using relation ( 6)) leads to

(-1) ℓ γ ℓ (a) = ln ℓ+1 (a -1) ℓ + 1 (-1) ℓ+1 + ∞ j=2 (-1) j j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a). 4.2. n ∈ N, m = 0, ℜ(a) ≥ 1.
After simplication, we get

(-1) ℓ γ ℓ (a) = n j=2 1 j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a) + ln ℓ+1 a ℓ + 1 (-1) ℓ+1 + R ℓ,0,n,a .
If n tends to innity, it arises (see Theorem 3)

(-1) ℓ γ ℓ (a) = ∞ j=2 1 j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a) + ln ℓ+1 a ℓ + 1 (-1) ℓ+1 . 5. Case ℜ(a) > 0, |a| ≥ 1, m = λn, m, n → ∞
Now, we consider the case m = λn, when n tends to innity. Of course, the general expression of Theorem 2 is true and we can derive the following series

(-1) ℓ γ ℓ (a) = - ln ℓ+1 a ℓ + 1 (-1) ℓ + λ λ + 1 ln ℓ a a (-1) ℓ - ∞ j=2 (λ) j -(-1) j (λ + 1) j (-1) j+1 j! ℓ k=0 s(j, k + 1) ℓ! (ℓ -k)! (-1) k ζ (ℓ-k,0) (j, a) + ℓ k=0 (-1) ℓ+1 ℓ! (ℓ -k)! ln ℓ-k (a) ∞ j=2 -λ/a λ + 1 j 1 j! s(j, k + 1).
Using the relation ( 6) and for λ/a λ+1 < 1, it can be simplied as (λ) j -(-1) j (λ + 1) j (-1) j+1 j! s(j, k + 1)ζ (ℓ-k,0) (j, a) .

(19) One may consider (19) as an identity between two holomorphic functions in the variable λ. Since this formula is true for λ ∈ Q such that λ λ+1 < |a|, it is obviously true for every

λ ∈ C, λ λ+1 < |a| .
Now, suppose that a is real greater than 1 and we choose λ = i.

Equating real and imaginary parts of (19) we get ℓ!(-1) k (ℓ -k)! ∞ q=1 (-1) q 2 -2q 1 (4q+1)! s(4q + 1, k + 1)ζ (ℓ-k,0) (4q + 1, a) -∞ q=0 (-1) q 2 -2q-1 1 (4q+3)! s(4q + 3, k + 1)ζ (ℓ-k,0) (4q + 3, a)

and the following identity between Hurwitz-ζ functions:

ℓ k=0 l! (l -k)! (-1) k ∞ j≡2 (4) 
(-1/4)

j-2 4 
(-1) j-1 j! s(j, k + 1)ζ (ℓ-k,0) (j, a) = ℑ (-1) ℓ+1 ln(a - 

  γ ℓ (a) = lim m→∞ m k=0 ln ℓ (k + a) k + a -ln ℓ+1 (m + a) ℓ + 1 , ℓ = 0, 1, 2, . . . , a ̸ = 0, -1, -2, . . . If a = 1, the generalized Stieltjes constant γ ℓ (a) is the usual Stieltjes constant γ ℓ . The series for Hurwitz zeta function converges absolutely for ℜ(σ) = α > 1 and the convergence is uniform in the half plane α ≥ α 0 > 1. So ζ(σ, a) is analytic in the halfplane ℜ(σ) = α > 1.

Remark 1 .

 1 The conditions ℜ(a) > 0 andℜ(a + p) > 0 are not restrictive since ζ(σ, a) = ζ(σ, a + k) + k-1

(- 1 )

 1 ℓ γ ℓ (a) = (-1) ℓ+1 ln ℓ+1 a -

(- 1 ) 1 -

 11 ℓ γ ℓ (a) = (-1) ℓ+1 ℜ ln ℓ+1 (a -1/2 -i/2) ℓ +

  + 2, k + 1)ζ (ℓ-k,0) (4r + 2, a) = ℑ (-1) ℓ ln(a -i+1 2 )

Particular case: ℓ = 1

In this section, we consider the rst Stieltjes constant γ 1 . We will show a new formula of this constant in terms of the rst derivatives of the ζ-functions.

Proof. We use the formula (19) with a = 1, l = 1 and λ = 0.

The formula (19) with a = 2, l = 1 and λ → ∞.

Using the expression of the rst Stirling numbers [START_REF] Prévost | Recurrence for values of the zeta function[END_REF][START_REF] Prévost | New convergent sequences of approximations to Stieltjes' constants[END_REF], the two expression of γ 1 become

In the sequel, we will show that

and the proposition will be proved.

The permutation is valid since the convergence of the series is uniform on [0, 1].

Using the formula (https://dlmf.nist.gov/5.7.E3)

it is easy to prove that

This function ϕ is symetric with respect to the abscissa t = 1/2, so its integral between 0 and 1 is zero and the proposition is proved.

□