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Introduction

In the last decades, reactive transport was considered a major topic in many different fields of science such as combustion, catalysis, fluid mechanics, chemical engineering and geochemistry. Single phase multicomponent reactive flows are modeled by a masse balance law, Darcy's law and equations of state. In the case of equilibrium reactions, mass action laws consist in algebraic equations linking the activities of involved species. The problem of reactive transport is thus modeled by partial differential equations describing the flow coupled with algebraic equations describing chemical reactions. Due to the complexity of systems and the nonlinearity of chemical processes, reactive multicomponent transport results in an important computational requirement. In this context, two numerical strategies are usually used to solve this system : the global implicit algorithm (GIA) and the sequential iterative (and non-iterative) algorithm (SIA), also called operator splitting approach (see for instance references [START_REF] Ackerer | Preface: Special issue on simulations of reactive transport: Results of the MoMaS benchmarks[END_REF][START_REF] Mayer | Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results[END_REF][START_REF] Saaltink | Comparison of two approaches for reactive transport modeling[END_REF][START_REF] Steefel | Reactive transport codes for subsurface environmental simulation[END_REF]). The global implicit algorithm solves at each time step the complete nonlinear system resulting from the direct substitution of the chemical equations in the transport equations while the operator splitting approach solves sequentially transport equations and biogeochemical reactions. Results of recent comparisons between GIA and SIA obtained by different teams are in good agreement ( [START_REF] Carrayrou | Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case[END_REF]), such as those given in ( [START_REF] Ahusborde | A fully implicit finite volume scheme for single phase flow with reactive transport in porous media[END_REF]) for which a fully implicit finite volume method has been developed and implemented in the framework of the parallel open-source platform Dumu X ( [START_REF] Dumux | DUNE for Multi-Phase, Component, Scale[END_REF][START_REF] Dune | the Distributed and Unified Numerics Environment[END_REF]). These different benchmarks have shown that the precision of sequential approaches is comparable with that of global approaches and that global approaches are now more efficient than originally believed (even if in some work, it is mentioned that the global approach is much more expensive in terms of computation time and storage than the operator splitting approach cf [START_REF] Yeh | A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components[END_REF]). Each of these methods has qualities and drawbacks but regardless of the approach, a nonlinear problem must be solved by a fixed point method and the Newton Raphson method is often used for this numerical resolution. However, the resolution of such nonlinear systems, especially due to chemical processes can yield a non convergence or an excessive number of iterations due to the very ill-conditioned nature of the problem. The goal of this work is to suggest new powerful algorithms (in terms of CPU time et stability) which will allow to deal with these stiff problems.

In thermodynamic terms, a chemical equilibrium calculation, which aims to find the minimum value for the Gibbs free energy, can be carried out through one of the following ways: by minimizing a free energy function or by solving a set of nonlinear equations consisting of equilibrium constants and mass Date: 24 -Juin -2020.

balance constraints. Note that, in the petroleum industry context, recent alternative approach ( [START_REF] Zhang | Phase equilibrium calculations in shale gas reservoirs[END_REF]) studies phase equilibrium under a fixed volume rather than fixed pressure and minimizes Helmholtz free energy instead of Gibbs free energy. Finally, recent works use efficient deep learning algorithms to estimate the thermodynamic equilibrium states of realistic reservoir fluids with a large number of components thus allowing to accelerate phase equilibrium calculations. More precisely, a simple acceleration strategy reduces the number of components in the fluid mixture improving the efficiency of algorithms without compromising the accuracy of equations of states (see [START_REF] Zhang | A self-adaptive deep learning algorithm for accelerating multicomponent flash calculation[END_REF][START_REF] Zhang | Accelerating flash calculations in unconventional reservoirs considering capillary pressure using an optimized deep learning algorithm[END_REF]). These methods are thermodynamically equivalent, but the main disadvantage of using a free energy database is that these values are not nearly as reliable as directly measured equilibrium constants. As the accuracy of results of chemical solvers is particularly required, especially if one wants to integrate them in SIA methods, we are going to focus on the numerical resolution of nonlinear equations describing thermodynamic equilibria.

Many mathematical methods were tested to solve the set of nonlinear algebraic equations describing thermodynamic equilibrium: Zero-order methods such as the continuous fractions method [START_REF] Wigley | WATSPEC: A Computer Program for Determining the Equilibrium Speciation of Aqueous Solutions[END_REF], the Simplex method ( [START_REF] Nelder | A Simplex method for function Minimization[END_REF]) which do not use the derivative of the objective function. The latter methods converge more slowly [START_REF] Morin | Simplified Explanations and Examples of Computerized Methods for Calculating Chemical Equilibrium in Water[END_REF], but are sometimes considered more robust than first-order methods. The Simplex method is believed to be the most robust and may find the thermodynamic equilibrium when first-order methods are inefficient ( [START_REF] Brassard | A Feasible Set for Chemical Speciation Problems[END_REF][START_REF] Parkhurst | User's Guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations[END_REF]). As mentioned above, the Newton-Raphson method is the most used to compute thermodynamic equilibrium or more generally to solve the set of nonlinear equations. For example, let us quote software such as HYDROGEOCHEM [START_REF] Yeh | Hydrogeochem: A coupled model of variably saturated flow, thermal transport, and reactive biogeochemical transport[END_REF], DUNE [START_REF] Dune | the Distributed and Unified Numerics Environment[END_REF], IMPACT [START_REF] Krebs | Mineral Dissolution, Precipitation and Ion Exchange in Surfactant Flooding[END_REF], CHESS [START_REF] Van Der Lee | Thermodynamic and mathematical concepts of CHESS[END_REF], or PHREEQC [START_REF] Parkhurst | User's Guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations[END_REF], with the difficulty that the Jacobian matrix has to be computed, stored, factored and is usually very ill-conditioned, which requires preconditioning procedures [START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF][START_REF] Machat | Comparisons of linear solvers for equilibrium geochemistry computatios[END_REF]. This can become problematic for large problems. In addition, the localization of the initial data in any algorithm of Newton type is a recurrent difficulty which slows down and even prevents the convergence of the algorithm. Finally, even small or very small chemical systems (4 × 4 to 20 × 20, occasionally larger) can be very ill-conditioned (condition number up to 10 100 ) as it is shown in [START_REF] Machat | Comparison of linear solvers for equilibrium geochemistry computations[END_REF].

To overcome this problematic, it is more effective to solve the chemical equilibrium problem through other iterative methods not requiring the calculation of the Jacobian matrix, by first transforming it into an appropriated fixed point problem. We especially focused on three iterative acceleration methods: the Anderson Acceleration method (AA) originating in [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF] and Vector-Extrapolation methods, mainly the two polynomial-type methods, which include the Reduced-Rank Extrapolation (RRE) of Eddy [START_REF] Eddy | Extrapolating to the limit of a vector sequence[END_REF] and MeSina [START_REF] Mesina | Convergence acceleration for the iterative solution of the equations X = AX + f[END_REF], and Minimal-Polynomial Extrapolation (MPE) of Cabay and Jackson [START_REF] Cabay | A polynomial extrapolation method for finding limits and antilimits of vector sequences[END_REF]. To our knowledge, these methods have never been applied to the resolution of thermodynamic equilibria. Moreover, their efficiency is improved by combining them with a particular formulation of the equilibrium system: the positive continuous fractions method PCF. Usually, continuous fractions method is used for preconditioning the Newton-Raphson method for major species (as in the PHREEQC [START_REF] Parkhurst | User's Guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations[END_REF]) or to reduce the difficulties due to the lack of global convergence of Newton's method, if the initial condition is not sufficiently close to the solution (see [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF]). The direct combination of PCF method with AA, RRE or MPE presented in this work provides very efficient and robust algorithms with a super linear or quadratic convergence from any arbitrary initial data. Let us now briefly describe these three iterative methods which are part of a general framework of Shanks sequence transformations (cf. [START_REF] Brezinski | Shanks sequence transformations and Anderson acceleration[END_REF]). Anderson acceleration is related to multisecant methods (extensions of quasi-Newton methods involving multiple secant conditions); actually, Eyert [START_REF] Eyert | A comparative study on methods for convergence acceleration of iterative vector sequences[END_REF] proves that it is equivalent to the so-called "bad" Broyden's method [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF], and a similar analysis is done by Fang and Saad [START_REF] Fang | Two classes of multisecant methods for nonlinear acceleration[END_REF] and Rohwedder and Schneider [START_REF] Rohwedder | An analysis for the DIIS acceleration method used in quantum chemistry calculations[END_REF]. As for linear systems, if m k = k for each k then Anderson acceleration is essentially equivalent to the generalized minimal residual (GMRES) method [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF], as shown by Potra and Engler [START_REF] Potra | A characterization of the behavior of the Anderson acceleration on linear problems[END_REF], Rohwedder and Schneider [START_REF] Rohwedder | An analysis for the DIIS acceleration method used in quantum chemistry calculations[END_REF], and Walker and Ni [START_REF] Walker | Anderson acceleration for fixed-point iterations[END_REF]. For nonlinear problems Rohwedder and Schneider [START_REF] Rohwedder | An analysis for the DIIS acceleration method used in quantum chemistry calculations[END_REF] show that Anderson acceleration is locally linearly convergent under certain conditions. In addition to the previous convergence analysis results, the recent work by Toth and Kelley [START_REF] Toth | Convergence analysis for Anderson acceleration[END_REF] concerning Anderson acceleration with m k = min(m, k), for a fixed m, applied to contractive mappings should be mentioned. Regarding Vector-Extrapolation methods, the aim of such methods is to transform a sequence of vectors generated by some process to a new one with the goal to converge faster than the initial sequence towards the sought limit solution. An example to these vector sequences is those which are obtained from iterative solution of linear and nonlinear systems of equations. These methods can be classified into two main categories: the polynomial methods and the -algorithms. There exists many polynomial extrapolation methods but, in this paper, we will be interested in the minimal polynomial extrapolation method (MPE) of Cabay and Jackson [START_REF] Cabay | A polynomial extrapolation method for finding limits and antilimits of vector sequences[END_REF] as well as the reduced rank extrapolation method (RRE) of Eddy [START_REF] Eddy | Extrapolating to the limit of a vector sequence[END_REF] and Mesina [START_REF] Mesina | Convergence acceleration for the iterative solution of the equations X = AX + f[END_REF]. These methods do not require any explicit knowledge of how the sequence is generated, and consequently can be directly applied for solving linear and nonlinear systems. They are especially effective in the nonlinear case.

In the first part of this work, a brief description of the chemical context and the chemical modeling strategy are given. Based on the Positive Continuous Fractions method [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF], it is transformed into a fixed point problem. In the second part, a survey of Anderson Acceleration method and of the two most efficient and widely used vector extrapolation methods MPE and RRE is given. By derivating these methods, stable and efficient algorithms are obtained. In the third part, numerical results for solving thermodynamic equilibrium problem by Anderson Acceleration, MPE and RRE methods are detailed. Third part contains a brief description of two chemical tests: Gallic acid test and MoMas easy test case. Using the data of this tests presented by their Morel's Tables, three iterative methods mentioned for solving the fixed point problem of chemical equilibrium are applied and numerical results for each test and each method are given. In the fourth part, a comparison between these results and other results is presented in order to prove the effectiveness of methods used in this work to solve the problem of chemical equilibrium in porous media.

Description and modeling of chemistry

In this section, chemical model studied in this work is described. Consider a set of n e chemical species (E j ), j = 1, ..., n e linked by n r reactions such that n r ≤ n e ne j=1 μij E j 0, i = 1, ..., n r , (

where μij is the stoichiometric matrix of species E j in the reaction i. (2.1) can be written in matrix form μE 0.

After substitution and relabeling, each reaction can be written in a form giving rise a single distinct product per reaction. It is natural to assume that the stoichiometric matrix μ is of full rank n r . So μ = [-I nr µ] can be written in the echelon form, where I nr is the identity matrix of size n r . The chemical system is then written (after a possible numbering) in the form

C i ne-nr j=1 µ ij X j i = 1, ..., n r , ( 2.2) 
or in matrix form

C µ T X
where C (respectively X ) are called secondary species (respectively component species). Thus, the equation (2.2) show that the formation of secondary species C is done from the component species X , in a unique way. The advantage of this approach is that it reduces the size of the chemical system to be solved. Mobile and fixed species are also distinguished. A species is said to be mobile (m) if it belongs to a mobile phase, fixed (f ) if it belongs to the fixed phase and precipitated if it is mineral (π). Using the following notations:

• X: subset of mobile component species of cardinal n pm ,

• S: subset of fixed component species of cardinal n pf ,

• C: subset of mobile secondary species of cardinal n sm ,

• CS: subset of fixed secondary species of cardinal n sf ,

• π: subset of precipitated species of cardinal n π ,

• µ (C,X) ∈ R nsm×npm : block of the stoichiometric matrix between C and X,

• µ (π,X) ∈ R nπ×npm : block of the stoichiometric matrix between π and X,

• µ (CS,X) ∈ R n sf ×npm : block of the stoichiometric matrix between CS and X,

• µ (CS,S) ∈ R n sf ×n pf : block of the stoichiometric matrix between CS and S,

Chemical system can be synthesized as follows

   µ (C,X) 0 -I nr µ (CS,X) µ (CS,S) µ (π,X) 0          C CS π X S       0, with µ =    µ (C,X) 0 µ (CS,X) µ (CS,S) µ (π,X) 0   , C =   C CS π   , X = X S and E = X C
Note that the fixed component species do not take part in the homogeneous reactions which only involve the mobile species and that the precipitation reactions do not involve the fixed species. In this work, chemical systems without precipitated species are considered, i.e (π = φ and µ (π,X) = 0). A classic algorithm [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF] to describe mineral precipitation or dissolution makes an a priori hypothesis about the existence or non-existence of minerals. In this work, this hypothesis is assumed.

Chemical Reactions

In the following, X = (X 1 , ..., X npm ) T denote components where (X j ) npm j=1 are the mobile components species and S = (S 1 , ..., S n pf ) T where (S j ) n pf j=1 are the fixed components species. In the same way, C = (C 1 , ..., C nsm ) T where (C i ) nsm i=1 are the mobile secondary species and CS = (CS 1 , ..., CS n sf ) T where (CS i ) n sf i=1 are the fixed secondary species. Let µ i , i = 1, 3 be scalars µ 1 = µ (C,X) , µ 2 = µ (CS,X) and µ 3 = µ (CS,S) . Using these notations, it becomes easy to distinguish chemical reactions as follows: i: Reactions among mobile species:

npm j=1 µ 1,i,j X j C i i = 1, .
.., n sm ; ii: Reactions between mobile and fixed species:

npm j=1 µ 2,i,j X j + n pf j=1 µ 3,i,j S j CS i i = 1, ..., n sf .

Mass action law

The law of mass action describes how to obtain the concentrations of secondary species, given the concentrations of the component species. This law is only valid for a certain type of reaction, including homogeneous reactions. It is assumed during this work that this law is still valid in the case of surface reactions. Since no precipitation phenomena are considered, for each mobile secondary species C i , the mass action law is

{C i } = K m i npm k=1 {X k } µ 1,i,k .
(

For each fixed secondary species CS i , the mass action law is

{CS i } = K s i npm k=1 {X k } µ 2,i,k n pf k=1 {S k } µ 3,i,k . (2.4)
where {C i } and {CS i } are the activities of each mobile and fixed secondary species given by the mass action law through the activities of each mobile and fixed component species {X k } and {S k }. K m is the equilibrium constant for reactions among mobile species and K s is the equilibrium constant for sorption reactions.

The relationship between the activity of a species E j and its concentration is given by activity coefficient (γ j ) calculated using specific models (Davies, Debye-Huckel, etc.):

{E j } = γ j [E j ].
A solution is said to be ideal when the species does not undergo any interaction. In this case, the activity coefficient (γ) is equal to one. This amounts to confusing activity and concentration. During this work, only the case of ideal solutions will be considered, so [E j ] = E j .

Mass conservation law Assuming a closed system (without exchange of matter with outside) and all the reactions at equilibrium, then the total quantity of the species X j in the system is invariant. This is expressed in terms of the total concentration T m j for an aqueous species and the total concentration T s j for a sorbed species. The law of conservation (also called Lavoisier's law) can be expressed by the following two relations:

T m j = X j + nsm i=1 µ 1,i,j C i + n sf i=1 µ 2,i,j CS i j = 1, ..., n pm T s j = S j + nsm i=1 µ 3,i,j CS i j = 1, ..., n pf .
(2.5)

The two relationships in (2.5) introduce a distinction between the concentration of the component species and the concentrations of the other secondary species. This distinction is not necessarily necessary. Reactions (2.6) for each component species can be quite considered, which has a stoichiometric coefficient equal to one and an equilibrium constant equal to one,

X j C i and S j CS i . (2.6)
Then (2.5) is written more simply

T m j = nsm i=1 µ 1,i,j C i + n sf i=1 µ 2,i,j CS i j = 1, ..., n pm T s j = nsm i=1 µ 3,i,j CS i j = 1, ..., n pf .
(2.7)

or in matrix form

T m = µ T 1 .C + µ T 2 .CS T s = µ T 3 .CS.

Resolution of the chemical equilibrium

Chemical system By substituting the mass action laws (2.3) and (2.4) into the mass conservation equations (2.7), one can write the equilibrium chemistry like a nonlinear system formed by conservation laws and mass action laws

T m j = nsm i=1 µ 1,i,j K m i npm k=1 X µ 1,i,k k + n sf i=1 µ 2,i,j K s i npm k=1 X µ 2,i,k k n pf k=1 S µ 3,i,k k j = 1, ..., n pm T s j = nsm i=1 µ 3,i,j K s i npm k=1 X µ 2,i,k k n pf k=1 S µ 3,i,k k j = 1, ..., n pf .
(2.8) This is a system of (n pm + n pf ) nonlinear algebraic equations with (n pm + n pf ) unknowns. It is of course not possible (in general) to calculate the exact solution of this system which will be calculated numerically by iterative methods.

A first difficulty in solving (2.8) comes from the fact that the unknowns are concentrations of the component species. These concentrations are likely to vary on several orders of magnitude, and must remain positive to keep their physical significance. These two constraints make numerical resolution difficult. Fortunately, a simple change of variables eliminates these two difficulties, and has been adopted by most computer codes: the logarithms of the concentrations are taken as unknowns. Thus, the concentrations will be automatically positive, and the unknowns of the nonlinear system will keep a reasonable order of magnitude. In this work and computer code, the logarithms at base 10, "log 10 ", of the component concentrations is used as a variable change.

ξ j = log 10 (X j ) and η j = log 10 (S j ).

We denote by K m = log 10 (K m ) and K s = log 10 (K s ). The consequences of this transformation on the system are limited. The mass action law in the equations (2.3) and (2.4) becomes reformulated, respectively, as

C i = 10 (K m i + npm k=1 µ 1,i,k ξ k ) and CS i = 10 (K s i + npm k=1 µ 2,i,k ξ k + n pf k=1 µ 3,i,k η k ) .
(2.9)

Then, the nonlinear system (2.8) takes the following form

T m j = nsm i=1 µ 1,i,j .10 (K m i + npm k=1 µ 1,i,k ξ k ) + n sf i=1 µ 2,i,j .10 (K s i + npm k=1 µ 2,i,k ξ k + n pf k=1 µ 3,i,k η k ) j = 1, ..., n pm T s j = nsm i=1 µ 3,i,j .10 (K s i + npm k=1 µ 2,i,k ξ k + n pf k=1 µ 3,i,k η k ) j = 1, ..., n pf .
or the matrix form

T m = µ T 1 × 10 (K m +µ 1 ×ξ) + µ T 2 × 10 (K s +µ 2 ×ξ+µ 3 ×η) T s = µ T 3 × 10 (K s +µ 2 ×ξ+µ 3 ×η) .
(2.10)

where the symbol of matrix product is denoted by ×. The matrix form (2.10) still can be written in a more reduced manner

T = µ T × 10 (K+µ×ω) , ( 2.11) 
where

T = T m T s , K = K m K s , ω = ξ η and µ = µ 1 0 µ 2 µ 3 .
The nonlinear system (2.10) (or (2.11)) corresponds to the chemical problem to be solved for ξ and η given T m and T s . The concentrations of the secondary species can then be computed from (2.9). In the sequel, we assumed that this problem always has a unique positive solution (ξ * , η * ) for all feasible values of the data T m and T s . This assumption is true due to the fact that the chemical equilibrium problem is the consequence of the Gibbs free energy minimization problem. The existence follows from the convexity of the energy functional [START_REF] Shapiro | Mass action laws and the gibbs free energy function[END_REF]. In addition, a condition is given for the uniqueness of the solution, which is particularly verified in the case of a single-phase system, which covers the cases treated here.

In this work, three different iterative numerical methods are applied to solve the chemical equilibrium problem which are the Anderson Acceleration method and the two polynomial vector extrapolation methods (MPE and RRE). According to their definitions, these methods are used to solve a general fixed point problem of the form G(Y ) = (Y ) where G : R n → R n . So it is necessary to write the chemical problem in the form of a fixed point problem. The numerical method most used in a large number of geochemical codes for the resolution of this nonlinear system is the Newton's method. The thesis [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF] by J. Carrayrou contains a comparison of the different methods to solve the problem of chemical equilibrium. His recommendation is to use a combination of Newton's method with a fixed-point method on a particular formulation of the equilibrium system (the PCF positive continuous fraction method). This combination makes it possible to reduce the difficulties due to the lack of total convergence of the method of Newton, if the initial point is not sufficiently close to the solution (which is precisely what one seeks to calculate). Furthermore, J. Carrayrou limits the risk of overflow or under-filling by forcing the method to search for the solution in a neighborhood of a 'reasonable' value and he defines this reasonable neighborhood as an authorized chemical interval. In this work, we use the PCF method to reformulate the chemical problem as a fixed point problem.

Positive continuous fraction method PCF

The continuous fraction method (CF) has been used to solve thermodynamic equilibrium in the computer code WATSPEC [START_REF] Wigley | WATSPEC: A Computer Program for Determining the Equilibrium Speciation of Aqueous Solutions[END_REF], or for preconditioning of the Newton-Raphson method for the major species in the PHREEQC code [START_REF] Parkhurst | User's Guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations[END_REF]. This method, which only needs one computation of the approximate thermodynamic equilibrium per iteration, is the cheapest zero-order method. Often, the component H + has a zero total concentration and is associated with negative stoichiometric coefficients. In the code WATSPEC [START_REF] Wigley | WATSPEC: A Computer Program for Determining the Equilibrium Speciation of Aqueous Solutions[END_REF], the pH value must be imposed to find the thermodynamic equilibrium. Hydrogen and oxygen are excluded from the continuous fraction preconditioning in the code PHREEQC [START_REF] Parkhurst | User's Guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations[END_REF]. Moreover, it has never been used for non ideal system. To take into account a component with zero or negative total concentration, and to be more efficient with negative stoichiometric coefficients, a generalization of the (CF) method has been developed, called the positive continues fraction method (PCF) by Carrayrou [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF]. This new method is an empirical method. Once the equilibrium solution is found, the reactive sum S R is equal to the product sum S P . The reactive sum (S R ) and the product sum (S P ) are defined by

S R j =          µ i,j >0 µ i,j .C i if T j ≥ 0 |T j | + µ i,j >0 µ i,j .C i if T j < 0 and S P j =          T j + µ i,j <0 |µ i,j |.C i if T j ≥ 0 µ i,j <0 |µ i,j |.C i if T j < 0 (2.12) for j = 1, ..., n p , with C = C CS and n p = n pm + n pf .
Using these two new values, the mass balance (2.7) is written, at equilibrium, as S R j = S P j . The coefficient µ i 0 ,j is taken as the smallest value of the strictly positive stoichiometric coefficient in the matrix µ. The mass action laws are written for the reactive sum if µ i 0 ,j is positive (respectively, for the product sum if µ i 0 ,j is negative) by using component concentrations at iterations n and n + 1. In particular, the following equality holds

(X n+1 j ) µ i 0 ,j . µ i,j >0 µ i,j K i k =j (X n j ) µ i,k .(X n j ) µ i,j -µ i 0 ,j = T j + µ i,j <0 |µ i,j |C n i , (2.13)
where X = X S , X n j is the concentration of the jth component species X j at iteration n and C n i is that of the ith secondary species C i at iteration n. After reordering, (2.13) becomes

(X n+1 j ) µ i 0 ,j = (X n j ) µ i 0 ,j (X n j ) µ i 0 ,j T j + µ i,j <0 |µ i,j |C n i µ i,j >0 µ i,j K i k =j (X n j ) µ i,k .(X n j ) µ i,j -µ i 0 ,j . Then, the relationship (2.14) giving X n+1 j is X n+1 j = X n j S P,n j S R,n j 1 µ i 0 ,j .
(

Since ω n+1 = log 10 (X n+1 ), then, written according to the logarithm of the component species concentrations, the relation (2.14) becomes

ω n+1 j = ω n j + 1 µ i 0 ,j log 10 (S P,n j ) -log 10 (S R,n j ) . (2.15)
This relation is considered to be the conventional fixed point iteration

ω n+1 = G(ω n ), n = 0, 1, ..., (2.16) 
where G : R np → R np is the fixed point map defined by

G(ω) = ω + 1 µ 0 log 10 (S P ) -log 10 (S R ) .
(2.17)

Thus, solving the chemical equilibrium problem (2.8) amounts to solving the fixed point problem ω = G(ω).

(2.18)

Iterative methods

The aim is to solve the previous nonlinear fixed point problem (2.18) whose the solution is denoted by ω * . Then starting with a suitable vector ω 0 , as an initial approximation to ω * , the sequence {ω n } is generated by fixed point iterative (FPI) methods defined by (2.16).

Anderson Acceleration

To improve the convergence rate of FPI (2.16), Anderson acceleration [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF] is applied. It is formulated as follows [START_REF] Walker | Anderson acceleration for fixed-point iterations[END_REF]:

Algorithm 1 : Anderson Acceleration (AA).
Given ω 0 and m ≥ 1.

Set x 1 = G(ω 0 ) and f 0 = G(ω 0 ) -ω 0 For k = 0, 1, ... Set m k = min{m, k}. Compute G(ω k ) and let f (ω k ) = G(ω k ) -ω k . Set F k = (f k-m k , ..., f k ). Determine α (k) = (α (k) 0 , ..., α (k) m k ) T that solves min α=(α 0 ,...,αm k ) T ||F k α|| 2 , s.t m k i=0 α i = 1 (3.1)
Set

ω k+1 = (1 -β k ) m k i=0 α (k) i (ω k-m k +i ) + β k m k i=0 α (k) i G(ω k-m k +i )
where β k > 0 is a relaxation parameter. In [START_REF] Walker | Anderson acceleration for fixed-point iterations[END_REF], it is shown that Anderson acceleration with β k = 1 converges when the fixed point map G is a contraction and that the rate of convergence is comparable to that of the Picard iteration. In this work, as in [START_REF] Walker | Anderson acceleration for fixed-point iterations[END_REF], only the case β k = 1 in Algorithm 1 is considered. If m = 0, then Anderson acceleration becomes the FPI (2.16).

Form of least-squares problem

In practical implementation, the constrained least-squares problem (3.1) is often formulated as the following equivalent unconstrained least-squares problem ( [START_REF] Fang | Two classes of multisecant methods for nonlinear acceleration[END_REF], [START_REF] Walker | Anderson acceleration for fixed-point iterations[END_REF]):

Find

γ (k) = (γ (k) 0 , ..., γ (k) m k -1 ) T such that min γ ||f k -F k γ|| 2 (3.2)
where

F k = (∆f k-m k , ..., ∆f k-1 ) (3.3) with ∆f i = f i+1 -f i for i = k -m k , ..., k -1.
The least-squares coefficient vectors α and γ are related by

α 0 = γ 0 , α j = γ j -γ j-1 for 1 ≤ j ≤ m k -1 and α m k = 1 -γ m k -1 . The next iterate then becomes ω k+1 = G(ω k ) -m k -1 i=1 γ (k) i [G(ω k-m k +i+1 ) -G(ω k-m k +i )] = G(ω k ) -G k γ (k)
, where

G k = (∆G k-m k , ..., ∆G k-1 ) (3.4) 
with

∆G i = G(ω i+1 ) -G(ω i ) for i = k -m k , ..., k -1.
Then, a more specific version of the AA algorithm can be given in Algorithm 2.

Algorithm 2 : Anderson Acceleration (AA).

Given ω 0 and m ≥ 1.

Set

ω 1 = G(ω 0 ) and f 0 = G(ω 0 ) -ω 0 . For k = 1, 2, ... Set m k =min(m, k). Compute G(ω k ) and let f k = G(ω k ) -ω k . Update F k and G k by (3.3) and (3.4). Determine γ (k) = (γ (k) 0 , ..., γ (k) m k -1 ) that solves min (γ 0 ,...,γm k-1 ) T ||f k -F k γ|| 2 . Set ω k+1 = G(ω k ) -G k γ (k) .
The least-squares problem (3.2) is solved by performing the QR factorization of F k and using backward substitution to solve the upper triangular system R k γ = Q T k f k . This shows that only Q k and R k need to be computed. In other words, only the "thin" QR decomposition of

F k (F k = Q k R k , Q k ∈ R N ×m k and R k ∈ R m k ×m k ) is necessary. Since F k is obtained from F k-1
by appending a new column on the right and possibly dropping one column from the left, the QR decomposition of F k can be efficiently obtained by updating that of F k-1 . For details about this aspect, see [START_REF] Walker | Anderson Acceleration: Algorithms and Implementations[END_REF].

Condition control

In practice, there is often a risk that F k will become ill-conditioned as iterations go. In this work, the strategy given in [START_REF] Walker | Anderson acceleration for fixed-point iterations[END_REF] is used to monitor the condition number of the matrix F k and, if necessary, to modify the matrix to reduce the condition number, as follows: when the condition number of F k is larger than a given tolerance, then the left-most columns of F k are dropped one by one until the condition number is less than the given tolerance. Note that the l 2 -norm condition number of F k is just that of R k in the QR decomposition of F k . Therefore, for the filtering strategy used in this paper, it is only necessary to monitor the condition number of R k and keep it less than the given tolerance. If the condition number of R k is larger than the given tolerance, then removing the leftmost column of F k involves updating the factors Q k and R k (see [START_REF] Walker | Anderson Acceleration: Algorithms and Implementations[END_REF] for details).

Polynomial Vector Extrapolation Methods MPE and RRE

An important problem that arises in different areas of science and engineering is that of computing the limits of sequences of vectors. Vector sequence arises, for example, in the solution of system of linear or nonlinear equations by fixed-point iterative methods, its limit being simply the required solution. Let {x k } k∈N be a sequence of vectors in R N , and define the first and second forward differences such that

∆x k = x k+1 -x k and ∆ 2 x k = ∆x k+1 -∆x k k = 0, 1, ...
When MPE and RRE are applied to the vector sequence {x k }, an approximation t k,q is produced of the limit or antilimit of {x k } k∈N (cf. [START_REF] Sidi | Convergence and Stability Properties of Minimal Polynomial and Reduced Rank Extrapolation Algorithms[END_REF]). It is clear that t k will be different for each method. Let

t k,q = k j=0 ν (k) j x q+j (3.5) subject to k j=0 ν (k) j = 1 and k j=0 τ i,j ν (k) j = 0 i = 0, 1, ..., k -1 (3.6)
with the scalars τ i,j defined by the inner products in R N : τ i,j = (∆x q+i , ∆x q+j ) for MPE (∆ 2 x q+i , ∆x q+j ) for RRE .

Using (3.6), the transformation (3.5) can also be expressed as a ratio of two determinants as follows

t k,q = x q x q+1 . . . x q+k τ 0,0 τ 0,1 . . . τ 0,k . . . . . . . . . τ k-1,0 τ k-1,1 . . . τ k-1,k 1 1 . . . 1 τ 0,0 τ 0,1 . . . τ 0,k . . . . . . . . . τ k-1,0 τ k-1,1 . . . τ k-1,k . Matrices ∆ i S k,q = [∆ i x q , ..., ∆ i x q+k-1 ], i = 1, 2
, are introduced. Using Schur complements, t k,q can be written, for each method as

t MPE k,q = x q -∆S k,q (∆S T k,q ∆ 2 S k,q ) -1 ∆S T k,q ∆x q t RRE k,q = x q -∆S k,q (∆ 2 S T k,q ∆ 2 S k,q ) -1 ∆ 2 S T k,q ∆x q
provided that det (∆S T k,q ∆ 2 S k,q ) = 0 and det (∆ 2 S T k,q ∆ 2 S k,q ) = 0. These two assumptions are assumed in the following. Then t MPE k,q and t RRE k,q are well defined and unique. For varying value of k and q, the computation of t MPE k,q and t RRE k,q can be done by some of algorithms proposed by Ford and Sidi in [START_REF] Sidi | Extrapolation vs. projection methods for linear systems of equations[END_REF]. An estimate for the residual norm for nonlinear problems is given. Introduce the new approximation

tk,q = k j=0 ν (k) j x q+j+1
In [START_REF] Jbilou | Vector extrapolation methods. Application and numerical comparison[END_REF], the generalized residual of t k,q as is defined by r(t k,q ) = tk,q -t k,q , (

which can be expressed as

r(t MPE k,q ) = ∆x q -∆ 2 S k,q (∆S T k,q ∆ 2 S k,q ) -1 ∆S T k,q ∆x q r(t RRE k,q ) = ∆x q -∆ 2 S k,q (∆ 2 S T k,q ∆ 2 S k,q ) -1 ∆ 2 S T k,q ∆x q .
Implementation Only the case q kept constant is considered. Without restriction, q = 0 is always assumed and t k,0 is denoted by t k ; ∆ i S k,0 by ∆ i S k . The linear system (3.6) can be written as

ν (k) 0 + ν (k) 1 + . . . + ν (k) k = 1 ν (k) 0 (u 0 , ∆x 0 ) + ν (k) 1 (u 0 , ∆x 1 ) + . . . + ν (k) k (u 0 , ∆x k ) = 0 ν (k) 0 (u 1 , ∆x 0 ) + ν (k) 1 (u 1 , ∆x 1 ) + . . . + ν (k) k (u 1 , ∆x k ) = 0 . . . . . . . . . . . . . . . ν (k) 0 (u k-1 , ∆x 0 ) + ν (k) 1 (u k-1 , ∆x 1 ) + . . . + ν (k) k (u k-1 , ∆x k ) = 0 (3.8)
Introduce the scalars θ

(k) i = ν (k) i ν (k) k , for i = 0, ..., k. Then, ν (k) i = θ (k) i k i=0 θ (k) i
, for i = 0, ..., k -1, and θ

(k) k = 1.
With this new variables, the linear system (3.8) becomes

θ (k) 0 (u 0 , ∆x 0 ) + θ (k) 1 (u 0 , ∆x 1 ) + . . . + θ (k) k-1 (u 0 , ∆x k-1 ) = -(u 0 , ∆x k ) . . . . . . . . . . . . θ (k) 0 (u k-1 , ∆x 0 ) + θ (k) 1 (u k-1 , ∆x 1 ) + . . . + θ (k) k-1 (u k-1 , ∆x k-1 ) = -(u k-1 , ∆x k )
This system can be written in the following form

(U T k ∆S k )θ (k) = -U T k ∆x k (3.9)
where θ (k) = (θ

(k) 0 , . . . , θ (k) k-1 ) T , ∆S k = (∆x 0 , ..., ∆x k-1 ) and U k =
∆S k for the MPE method ∆ 2 S k for the RRE method.

Assume now that the coefficients ν

(k) 0 , ..., ν (k) 
k have been calculated and introduce the new variables

σ (k) 0 = 1 -ν (k) 0 , σ (k) j = σ (k) j-1 -ν (k) j , j = 1, ..., k -1, and σ (k) k-1 = ν (k)
k . Then, for both method, the vector t k can be expressed as

t k = x 0 + k-1 j=0 σ (k) j ∆x j = x 0 + ∆S k σ (k) (3.10)
where σ = (σ 0 , ..., σ k-1 ) T .

Note that to determine the coefficient ν

(k)
i , we must first calculate the θ (k) i by solving the linear system of equations (3.9). Using (3.7) and (3.10), the generalized residual r(t k ), for MPE and RRE, can be expressed as

r(t k ) = k i=0 ν (k) i ∆x i = ∆S k+1 ν (k) .
Algorithms for RRE and MPE methods Fast, stable, and storage wise economical algorithms are described in [START_REF] Jbilou | A general projection algorithm for solving linear systems of equations[END_REF]. These algorithms solve least-squares problems by QR factorization. An overview of these algorithms is provided in the following. ∆S k+1 has a full rank, namely rank(∆S k+1 ) = k + 1. Then a QR factorization of ∆S k+1 can be computed. For RRE method, this QR decomposition is defined by k+1) is an upper triangular matrix with positive diagonal coefficients. Q k+1 is obtained from Q k ∈ R N ×k by adding the vector column q k . Similarly, R k+1 is obtained from R k ∈ R k×k by adding a row and a column to R k . For both method, the QR factorization of ∆S k+1 can be computed inexpensively by applying the modified Gram-Schmidt process (MGS) to the vectors x 0 , x 1 , ..., x k+1 (cf. MGS algorithm in [START_REF] Sidi | Efficient implementation of minimal polynomial and reduced rank extrapolation methods[END_REF]). The details of previous algorithms for RRE (resp. MPE) are summarized in Algorithm 3 (resp. Algorithm 4). Note that, in these algorithms, it is only necessary to store the vector x 0 and the matrix Q k . The rest can be overwritten as soon as they have been used. Algorithm 3: RRE method 0. Inputs: Vectors x 0 , x 1 , ..., x k+1 .

∆S k+1 = Q k R K where Q k = (q 0 |q 1 |...|q k ) ∈ R N ×(k+1) has orthonormal columns q j and R k ∈ R (k+1)×(k+1) is an upper triangular matrix with positive diagonal coefficients. Q k is obtained from Q k-1 ∈ R N ×k by adding the column q k . In the same way, R k is obtained from R k-1 ∈ R k×k by adding a row and a column to R k-1 . For MPE method, ∆S k+1 = Q k+1 R k+1 , where Q k+1 = (q 0 |q 1 |...|q k ) ∈ R N ×(k+1) is an orthogonal matrix and R k+1 ∈ R (k+1)×(

Compute v

i = ∆x i = x i+1 -x i , i = 0, 1, ..., k. Set V j = [v 0 |v 1 |...|v j-1 ], j = 0, 1, .... Compute the QR factorization of V k+1 , namely V k+1 = Q k R k . (V k = Q k-1 R k-1 is contained in V k+1 = Q k R k ).

Computation of the ν i :

Solve the linear system:

R T k R k d (k) = e; d (k) = [d (k) 0 , d (k) 1 , ..., d (k) k ] T ; e = [1, 1, ..., 1]
T . (This amounts to solving two upper and lower triangular systems).

Set λ = ( k i=0 d (k) i ) -1 , λ ∈ R + . Set ν (k) i = λd (k) i , i = 0, 1, ..., k. 3. Compute σ (k) = [σ (k) 0 , σ (k) 1 , ..., σ (k) k-1 ] T by: σ (k) 0 = 1 -ν (k) 0 and σ (k) j = σ (k) j-1 -ν (k) j , j = 1, ..., k -1. Compute t k via: t RRE k = x 0 + Q k-1 (R k-1 σ (k) ) Algorithm 4: MPE method 0. Inputs: Vectors x 0 , x 1 , ..., x k+1 . 1. Compute v i = ∆x i = x i+1 -x i , i = 0, 1, ..., k. Set V j = [v 0 |v 1 |...|v j ], j = 0, 1, .... Compute the QR factorization of V k+1 , namely V k+1 = Q k+1 R k+1 . (V k = Q k R k is contained in V k+1 = Q k+1 R k+1 ).

Computation of the ν i :

Solve the upper triangular linear system:

R k d (k) = -r k ; d (k) = [d (k) 0 , ..., d (k) k-1 ] T ; r k = [r 0k , ...r (k-1)k ] T . Set d (k) k = 1 and calculate λ = ( k i=0 d (k) i ) -1 , λ ∈ R + . Set ν (k) i = λd (k) i , i = 0, 1, ..., k. 3. Compute σ (k) = [σ (k) 0 , σ (k) 1 , ..., σ (k) k-1 ] T by: σ (k) 0 = 1 -ν (k) 0 and σ (k) j = σ (k) j-1 -ν (k) j , j = 1, ..., k -1. Compute t k via: t MPE k = x 0 + Q k (R k σ (k) ).
Algorithms 3 and 4 become increasingly expensive as the number of iteration steps k is increasing. Indeed the work requirement grows quadratically with k and the storage requirement grows linearly. A good way to keep the storage requirement and the computation cost low is to periodically restart the RRE and MPE algorithms every c steps, for some integer c > 1. Below, a practical strategy of a restarted method is described in Algorithm 5.

Algorithm 5: Cyclic method every c iterations

For k = 0, choose an integer c and an initial vector x 0 . For k = 1, 2, ..., Compute the vectors x 1 , ..., x c . Calculate t c-1 using the algorithm of the desired method. If t c-1 satisfies accuracy test, stop; Else, set x 0 = t c-1 .

Similarly to linear problems [START_REF] Sidi | Efficient implementation of minimal polynomial and reduced rank extrapolation methods[END_REF], it is more useful to run some basic iterations before applying one of the extrapolation methods for solving (2.18):

• Let run some N 0 basic iterations before cycling is started, e.g, before MPE or RRE is applied for the first time (N 0 refers to the size of extrapolation); • Let run some N basic iterations before MPE or RRE is applied in each cycle after the first cycle.

One way to make the extrapolation process more efficient with high numerical stability is to change (2.16) as follows

ω n+1 = G(ω n ) n = 0, 1, ..., (3.11) 
where

G(ω) = ω + κ(G(ω) -ω). (3.12)
The scalar κ is different than 1 (the sequence generated by taking κ = 1 is the one generated by (2.16)).

Thus ω n+1 is now weighted "average" of ω n and G(ω n ), in which weights 1 -κ and κ do not need to both be positive. By picking κ appropriately, the spectrum of the Jacobian matrix of (1 -κ)ω + κG(ω) at ω = ω * can be taken as it is increasingly favorable to t k,q for large values of q ([43]; Section 7). So, with ω 0 , the initial approximation of ω * , we generate the sequence ω 1 , ω 2 , ω 3 , ... by the fixed-point iteration (3.11). We consider the following algorithm:

Algorithm 6: Extrapolation algorithm for the nonlinear system (2.18) 1. For k = 0, choose ω 0 and the integers p and l.

Basic iteration:

Set t 0 = ω 0 . h 0 = t 0 . h j+1 = G(h j ), j = 0, ..., p -1.

Extrapolation phase:

s 0 = h p . If ||s 1 -s 0 || < , stop, Else s j+1 = G(s j ), j = 0, ..., l.
Compute the approximation t l by RRE or MPE. 4. Set ω 0 = t l , k = k + 1 and go to 2.

Numerical experiments

In this section, numerical experiments are reported. Iterative numerical methods cited above are tested to resolve the chemical equilibrium of two different chemical systems. Anderson acceleration is implemented using the approach cited in section 3.1, in its specific version (Algorithms 1-2). Sometimes, (AA) method is applied to the fixed point problem with relaxation (3.12) instead of (2.18), with κ = 1. The two vector extrapolation methods of the polynomial type MPE and RRE are also applied to the problem of the nonlinear chemical equilibrium system thanks to the implementations previously described. These implementations are done by employing the computer program which is provided in [START_REF] Sidi | Efficient implementation of minimal polynomial and reduced rank extrapolation methods[END_REF] using Matlab R2018a (this computer program written in Fortran has been converted in Matlab language). It gives an estimation of the residual norm at each iteration for this nonlinear problem and it allows to stop algorithms without having to compute the true residual which requires an extra evaluation of G. Some essential numerical parameters for test cases are: For Anderson Acceleration:

• the iteration is stopped when the residual norm falls below 10 -10 ;

• the condition-number monitoring is used with a threshold for deleting columns droptol = 10 10 ;

• The allowed maximal nonlinear iteration number is Kmax = 200 iterations.

For MPE and RRE:

• the maximum number of cycles allowed is N cycle = 30;

• the upper bound of resc/resp used in the stopping criterion is epsc = 10 -10 (where resp is the l 2 -norm of the residual for t(Kmax, N 0 ) at the end of the first cycle and resc is the l 2norm of the residual at t at the end of each cycle, retrieved at the end of the next cycle). If resc ≤ epsc × resp at the end of some cycle, then one additional cycle is performed, and the corresponding t(N, Kmax) is accepted as the final approximation. • the upper bound of res/R(0, 0), the relative residual for t, used in the stopping criterion is eps = 0. Note that R(0, 0) = l 2 norm of the residual of ω 0 , the initial vector. If , for some k, res ≤ eps × R(0, 0) then the corresponding t(0, k) is accepted as the final approximation.

Chemical tests

Gallic acid test This is the simplest test, a system proposed by Brassard and Bodurtha (2000) [START_REF] Brassard | A Feasible Set for Chemical Speciation Problems[END_REF] to illustrate the appearance of problems with numerical methods. The system was originally studied for the speciation of Al(III) in natural waters. It is characterized by the presence of n e = 17 chemical species that can be described through the combination of n pm = 3 mobile components species (n sm = 14). All reactions describing this chemical system are homogeneous, between the mobile species (n pf = n sf = 0). The pH is imposed at 5.8, which gives a problem with two unknowns: concentrations of the two free components Al 3+ and H 3 L.

The chemical system studied is presented in Table 1 where the initial concentrations of Al 3+ and H 3 L are variable and thermodynamic values come from Brassard and Bodurtha (2000) [START_REF] Brassard | A Feasible Set for Chemical Speciation Problems[END_REF]. By fixing the pH of the system, we notice that the matrix of the stoichiometric coefficients is reduced to a matrix whose all the coefficients are positive, moreover, total concentrations of Al MoMas Benchmark easy test case The MoMaS Benchmark has been designed to compare numerical methods for reactive transport model in 1D and 2D. Different methods for coupling have been used to solve this benchmark. The definition has been published in [START_REF] Carrayrou | Reactive transport benchmark of MoMaS[END_REF] and results of participants are compared in the synthesis article [START_REF] Carrayrou | Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case[END_REF]. It is composed of three subsequent cases with increasing chemical complexity, named "easy", "medium" and "hard". Systems do not represent real chemical systems: they were devised by [START_REF] Bourgeat | Benchmark Reactive Transport[END_REF] to create increasing numerical difficulties. In this work, only the resolution of the chemical equilibrium of the easy test case will be simulated. For the easy case, the chemical system is composed of n e = 12 chemical species distributed as follows: four mobile component species X 1 , X 2 , X 3 and X 4 (n pm = 4), one fixed component species S (n pf = 1), five mobile secondary species C 1 , C 2 , C 3 , C 4 and C 5 (n sm = 5), and two fixed secondary species CS 1 and CS 2 ( n sf = 2). The geometry of the test case is shown in Figure 1.

Species H + Al 3+ H 3 L K m C (Equil.) H + 1 0 0 0 1.58×10 -6 Al 3+ 0 1 0 0 2.03×10 -5 H 3 L 0 0 1 0 2.59×10 -7 OH - -1 0 0 -14 6.31×10 -9 H 2 L - -1 0 1 -4.
For the 1D test case, the domain is heterogeneous and composed of two porous media A and B. Medium A is highly permeable with low porosity and low reactivity in comparison with medium B. In order to be close to realistic cases, boundary and initial conditions are not expressed for fundamental variables, i.e., component concentrations. Indeed, chemical analysis can provide quite easily a measure of the total concentration or of the total dissolved concentration for each component. An injection is made on the left side of the domain, followed by leaching on the same side. The injection period corresponds to specific inflow concentrations depending on the MoMas easy test case. All injection periods are 5000 s long. The leaching periods are at least 1000 s long. If needed, leaching period can be extended after 1000 s to reach the following condition: at the end of leaching period, 99, 9% of injected pollutant (X 1 , X 3 and S) has been removed from the domain. Imposed concentrations for the inflow boundary are

T j (x = 0, t) = T inj j t < 5000 s T j (x = 0, t) = T leach j t > 5000 s
These chemical species interact through n r = 7 equilibrium reactions shown in Table 2.

-X 2 C 1 (1) X 2 +X 3 C 2 (2) -X 2 +X 4 C 3 (3) -4X 2 +X 3 +3X 4 C 4 (4) 4X 2 +3X 3 +X 4 C 5 (5) 3X 2 +X 3 +S CS 1 (6) -3X 2 +X 4 +2S CS 2 (7)

Table 2. Chemical reactions for MoMas easy test case

The domain is initially at a local equilibrium with the surface component S in the presence of mobile components X 2 and X 4 . During injection, component X 4 will be removed. Component X 1 is a perfect tracer; X 2 and X 3 will react together, with the surface S and with X 4 still present. During leaching, X 1 and X 3 will be removed. X 2 and X 4 will react with the surface S and with X 3 still present. In this test case, the equilibrium reaction constant is of the order of 10 35 which makes the system very rigid and already presents a great challenge. In addition, stoichiometric coefficients are quite large. This allows us to test the robustness of our implementation in the face of such complexity. Table 3 give the stoichiometric coefficients for mass action laws and conservation equations. The resolution of the thermodynamic equilibrium of this test is carried out at each period and results obtained correspond well to expected results. But first of all it is necessary to put the two medium A

Species X 1 X 2 X 3 X 4 S K C 1 0 -1 0 0 0 10 -12 C 2 0 1 1 0 0 1 C 3 0 -1 0 1 0 1 C 4 0 -4 1 3 0 0.1 C 5 0 4 3 1 0 10 35 CS 1 0 3 1 0 1 10 6 CS 2 0 -3 0 1 2 10 -1 Total concentration T T 1 T 2 T 3 T 4 T S Initial conditions zone A 0 -2 0 2 1 zone B 0 -2 0 2 10 Boundary conditions Injection t ∈ [0, 5000] 0.3 0.3 0.3 0 0 Leaching t ∈ [5000, ...] 0 -2 0 2 0
Table 3. Equilibrium for MoMas easy test case [START_REF] Carrayrou | Reactive transport benchmark of MoMaS[END_REF] and B at local equilibrium, then the chemical equilibrium during injection and leaching periods will be resolved.

Numerical results and comparisons Acid Gallic test

The thermodynamic chemical equilibrium problem (4.1) is studied without relaxation (κ = 1).

For each case defined above, we notice the convergence of Anderson Acceleration method, for a maximal depth m ≥ 1 (cf. Figure 2):

• for ω 0 = log 10 ((10 -11 , 5 × 10 -4 ) T ), i.e in case 1, the convergence of Anderson(m) requires 26 iterations for m = 1 and 16 iterations for m ≥ 2. • for ω 0 = log 10 ((5.012 × 10 -10 , 10 -9 ) T ), i.e in case 2, the convergence of Anderson(m) requires 109 iterations for m = 1 and 15 iterations for m ≥ 2. The first iterations performed present disturbances in terms of the variation in concentrations [Al 3+ ] et [H 3 L], but these disturbances are no complicated and convergence has been obtained without any difficulty. These disturbances result mainly from the choice of the initial concentration of each component. Note that the obtained solution ω * = (-4.6930, -6.5870) T = log 10 ((2.028 × 10 -5 , 2.6 × 10 -7 ) T ) is the same reference solution obtained by J. Carrayrou [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF] and cited in Table 1. It is thus numerically Since a condition-number monitoring strategy is used in Anderson acceleration, it is not necessary to worry about the condition number becoming problematically large. In this Anderson-acceleration implementation, the condition number is monitored to ensure stability and robustness. The tolerance for the condition-number monitoring is 10 10 . We can see in Figure 3 that, for m = 1, 2, the condition number remains less than 10 10 and it becomes more than 10 15 for m ≥ 3 if there is no condition-number monitoring. This shows the specific effects of condition-number monitoring. With condition-number monitoring, cond(F 3 ), at iteration step 3, is initially greater than 10 10 (F k is defined by (3.3)). However, after using the MATLAB's qrdelete function, the condition number is less than 10 10 , and the convergence succeeds after 3 iterations. In addition, from Figure 4 we can see that for m ≥ 2, Anderson Acceleration method begins to accelerate the convergence of the AA iterates after 12 or 13 iterations in the both case, but it is clear that results slowly decrease when m = 1 especially in the second case where convergence requires more than 100 iterations. More precisely, if we now take κ = 0.3, Anderson (m = 1) converges faster and the residual norm decreases requiring 26 iterations instead of 109, to be less than 10 -10 . On the other hand, the "theoretical" slopes of Newton are plotted on the Figure 4. These slopes show that a convergence of order 2 is reached, which confirms that the AA method works really well.

CPU time (s) Anderson (m = 1) 1.11 Anderson (m = 2) 1.3 Anderson (m = 3) 1.13
To apply the two methods MPE and RRE, we generate the vectors ω 1 , ω 2 , ... by (3.11) with different values of the parameter κ, κ ∈ {0.1, 0.45, 0.5, 0.6}. These values of κ are a good choice for this experience, but that does not mean that these parameters cannot take another value Figures 5 and6 show the behavior of the residual norm, using a logarithmic scale. It contains some of the residual history obtained by applying RRE and MPE in cycling mode with • (Kmax, N 0 , N ) = (10, 20, 10), (20, 0, 10), (10, 20, 0) for κ = 0.1,

• (Kmax, N 0 , N ) = [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF], [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF] for κ = 0.45,

• (Kmax, N 0 , N ) = [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Bourgeat | Benchmark Reactive Transport[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF], [START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF][START_REF] Bourgeat | Benchmark Reactive Transport[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF] for κ = 0.5,

• (Kmax, N 0 , N ) = [START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF] for κ = 0.6. Convergence behavior is overall linear, but a small marginally unstable mode is observed that corresponds to almost a periodic half-sinusoidal oscillation of residuals. With κ = 0.1, the first choice of the three data is the best because it yields the fastest convergence of the residual error. By comparing the first and third choices of the data Kmax, N 0 and N , we notice that performing a few basic iterations before MPE or RRE is applied in each cycle after the first cycle results in a faster and more stable convergence as well as more stable behavior of the residual norm. Such a result is observed again in Figure 6 with κ = 0.45, κ = 0.5 and κ = 0.6. These last three values of κ still give a fast convergence represented by an almost stable decrease of the residual norm. In addition, the CPU time required for all iterations in all cycles, for each case and each method, is very short, not exceeding 1 second (see Table 5 for case 1). Therefore, for this chemical test, solving (Kmax, N 0 , N ) MPE RRE κ = 0.1 [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF][START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF] 0.6406 0.8594 [START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF]0,[START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF] 0.6719 0.4688 [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF]0) 0.8594 0.3906 κ = 0.45 (10,10,10) 0.2656 0.2031 [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF] 0.4531 0.2969 κ = 0.5 [START_REF] Carrayrou | Modèlisation du transport de solutés rà c actifs en milieu poreux saturé[END_REF][START_REF] Bourgeat | Benchmark Reactive Transport[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF] 0.2656 0.2656 [START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF][START_REF] Bourgeat | Benchmark Reactive Transport[END_REF][START_REF] Marinoni | Thermodynamic equilibrium solutions through a modified Newton Rphson method[END_REF] 0.3906 0.5 reasonable number of iterations, but Anderson's method seems to be more stable than the MPE and RRE methods, and requires fewer iterations. This results from the cycling strategy applied to the MPE and RRE methods, while the Anderson Acceleration method does not require such a strategy. After having successfully calculated the equilibrium concentrations of the component species H 3 L and Al 3+ by the methods (AA), (MPE) and (RRE), we can then calculate the concentrations of equilibrium of the other secondary species from equations in (2.9). Equilibrium concentrations are reported in the last column of Table 1.

Benchmark MoMas easy test case In this part, numerical results for the resolution of the thermodynamic equilibrium of the easy MoMas test case are presented. First the chemical equilibrium in each medium (A and B) is solved, then the chemical equilibrium for the injection period of the component X 3 , before looking for the chemical equilibrium of the leaching period. We assume, for example, that the initial concentrations of the component species in each of the two mediums A and B are given by the vector ω A,B,0 = log 10 (X A,B,0 ) where and 21 iterations for m ≥ 3 (cf. Figure 7). In B, the convergence of Anderson's method requires 51 iterations for m = 1, 30 iterations for m = 2, 22 iterations for m = 3 and 21 iterations for m ≥ 4 (cf. Figure 8). In Figures 7 and8, no complicated oscillation phenomenon is observed, therefore, convergence is achieved without difficulty. Note that concentrations of components at thermodynamic equilibrium in the two mediums A and B are defined respectively by the two vectors:

X A,B,0 (M) = (X 1,0 , X 2,0 , X 3,
X * A (M) = (X * 1,A , X * 2,A , X * 3,A , X * 4.A , S * A ) T = (10 -20 , 0.2597, 10 -20 , 0.3495, 0.3907) T X * B (M) = (X * 1,B , X * 2,B , X * 3,B , X * 4.B , S * B ) T = (10 -20 , 1
.5116, 10 -20 , 0.5756, 7.9128) T (or ω * A = (-20, -0.5855, -20, -0.4565, -0.4081) and ω * B = (-20, 0.1794, -20, -0.2399, 0.8983) in log 10 ). The influence of the most reactive medium B is demonstrated by the higher concentration of S reached at equilibrium. For the injection period, we consider two cases, injection in medium A (on the left side) and injection in medium B. We previously mentioned that the domain is initially in equilibrium with the species S in the presence of mobile species X 2 and X 4 . Therefore, for this period, we consider as an initial Figure 9 and 10 present the behavior of the components concentrations until reaching thermodynamic equilibrium for the injection period in the two zones A and B by Anderson(m) for all m > 0. A small number of iterations is necessary to achieve convergence. Note that the equilibrium is reached when the vector of components concentrations is

X * inj (M) = (X * 1,inj , X * 2,inj , X * 3,inj , X * 4,inj , S * inj ) T = (0.
3, 0.2416, 0.2416, 10 -50 , 10 -23 ) T (or ω * inj = (-0.5229, -0.6169, -0.6169, -50, -23) T in log 10 ). Once the equilibrium is reached, we notice that the component X 4 is removed to be washed from the domain, X 2 and X 3 remain present in the domain to interact with the surface S and X 4 . X 1 is a tracer, which is why its concentration remains constant at 0.3 M. Leaching follows injection on the same side once the period of 5000 s has passed. To solve the thermodynamic equilibrium for leaching period, an initial approximation the solution of the thermodynamic equilibrium for the injection period is considered, i.e X leach,0 = X * inj (or ω leach,0 = ω * inj ). Figure 11 shows that, with Anderson's method, the thermodynamic equilibrium of the chemical system describing the leaching period is obtained after 61 iterations by Anderson and m = 2 and 39 iterations by Anderson andm = 3. However, after some numerical tests, we find that for m = 1 and m ≥ 4, Anderson's method does not converge or sometimes presents convergence difficulties. However, after some numerical tests, we find that for m = 1 and m ≥ 4, Anderson's method does not converge or sometimes presents some convergence difficulties. That comes back, perhaps, to the choice of the initial concentrations. To overcome these difficulties, we consider the fixed point problem (4.1) with ). We notice that, at the equilibrium of leaching period, 99,9% of the injected pollutant are removed from the domain. These results again show that the AA method works well for every period and every domain. In addition, the convergence is very fast, requiring a very short computation time (CPU time) not exceeding 2 s. The CPU execution time required by Anderson acceleration method, for several values of the maximal depth m (m = 1, 2, 3, 4) to solve the thermodynamic equilibrium in each zone A and B is given in Table 6. This time is given during the two periods of injection and leaching. On other hand, for the equilibrium in medium A and B, we notice that for 1 ≤ m ≤ 4, cond(F k ) always remains less than 10 10 , for any k-th iteration, and it becomes more than 10 15 for m ≥ 5 at iteration step 6. With the strategy of condition-number monitoring, cond(F k ) returns less than 10 10 for k ≥ 6 (cf. Figures 12 and13). Similarly, by solving the equilibrium system for the injection period in medium A using AA (m = 1, 2, 3), cond(F k ) always remains lower than 10 10 , for any k-th iteration. However, for m = 4, at the 13-th iteration, it becomes greater than 10 10 (cf. Figure 14). By apply- ing the strategy of condition number monitoring to the matrix F 13 , cond(F k ) drops below 10 10 for k ≥ 13 and the convergence is reached after 13 iterations. Likewise, for m ≥ 5, the same strategy is applied to the matrix F 6 . In the same way, for the equilibrium chemical systems during the injection period in medium B and the leaching period, the behavior of the condition number of the matrix Figure 17 shows convergence plots with the approximate "theoretical" slopes of Newton for all the cases of MoMas easy test with Anderson method (m = 1, 2, 3, 4, 5). For the equilibrium in zones A and B, Anderson(m = 1) requires twice as many iterations as Anderson(m = 3, 4). Taking these results into account, the slopes prove the order 2 convergence of the AA method and again demonstrate its efficiency.

X * leach (M) = (X * 1,leach , X * 2,leach , X * 3,leach , X * 4,leach , S * leach ) T = (10
We also apply MPE and RRE methods in cyclic mode (through their new implementations described in previous sections) to nonlinear system of thermodynamic equilibrium of MoMas easy test case. The vectors ω 1 , ω 2 , ... is generated by (3.11), where the mixing parameter κ is not the same for all the cases of this test. It is chosen arbitrarily to ensure convergence in the most efficient way. We solve the chemical equilibrium system in medium A by restarted MPE and RRE methods by taking κ = 0.4. Note that the initial concentrations of component species, for equilibrium system in zones A and B, is given by the vector ω A,B,0 defined above. The computer program code was run by taking the maximum number of iterations in each cycle Kmax = 10. Several choices for the couple (N, N 0 ): (N, N 0 ) = (0, 20), [START_REF] Bourgeat | Benchmark Reactive Transport[END_REF][START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF], (20, 0), (10, 0), (5, 0) are considered. We remind that N 0 is the number of iterations performed before cycling is started, e.g, before MPE or RRE is applied for the first time and N is the number of iterations performed before one of this methods is applied in each cycle after the first cycle.

Figure 18 shows the evolution of the nonlinear residual norm, using a logarithmic scale for the restarted MPE and RRE methods. It appears that for (N, N 0 ) = (0, 20), [START_REF] Bourgeat | Benchmark Reactive Transport[END_REF][START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF], methods give convergence to this is achieved again by taking the parameter N non equal to zero (N = 2) (cf. Figure 22). The parameters involved in the numerical conputation must therefore be chosen with care so that MPE and RRE give consistent results. Moreover, the number of cycles is reduced when the value of N is increasing, hence taking the time overhead of cycling into account saves CPU time. This observation confirms the effectiveness concerning the strategy of cycling [START_REF] Sidi | Vector Extrapolation methods with applications to solution of large systems of equations and to PageRank computations[END_REF]. Note that for κ = 1, the convergence is much faster than for κ = 0.2. A perfect result is obtained for this experiment with (N, N 0 ) = (0, 25), (0, 18). The prescribed level of convergence for the injection in media A and B respectively is reached very quickly from the first iteration. In addition, with (N, N 0 ) = (0, 28), (0, 24), the residual norm sometimes seems to be worth a constant lower than the tolerance indicated at this level. Finally, it remains to present the resolution of thermodynamic equilibrium by the restarted methods RRE and MPE for the leaching period provided that initial concentrations of components are defined by the solution vector of the equilibrium system for the injection period. We take κ equal to 0.495. This choice for the parameter κ is the best to reach convergence even if it causes difficulties for the convergence. An unstable mode is observed that corresponds to an oscillation of residuals (cf. Figure 23). For (Kmax, N 0 , N ) = (10, 0, 10), MPE and RRE need the same number of iterations and cycles for convergence, however, for (Kmax, N 0 , N ) = (10, 10, 10), MPE converges faster than RRE. But, the latter accelerates convergence for (Kmax, N 0 , N ) = (10, 5, 18) more than MPE. This example appears to be a critical case in that no convergence rule can be deduced by varying the values of N and N 0 . Consequently, to solve the thermodynamic equilibrium system of the leaching period, Anderson Acceleration method appears to be more efficient than the restarted MPE and RRE methods, in particular for a maximal depth m = 4. It succeeds in achieving convergence without difficulty, with a stable mode of residual decrease well observed in Figure 17. 7. The latter gives the total number of iterations performed N iterations , as well as the number of cycles N cycles and the computation time CPU necessary for performing the N iterations iterations and reach convergence. We notice that this time is very short in all cases, not exceeding 3s. This illustrates the efficiency and robustness of the MPE and RRE methods, especially in cyclic mode.

After the computation of components concentrations at equilibrium state, for each period and for each medium, thermodynamic equilibrium concentrations of mobile secondary species (C 1 , C 2 , C 3 , C 4 , C 5 ) can be computed as well as those of fixed secondary species (CS 1 , CS 2 ) thanks to equations in (2.9).

Comparison with other results

For the acid Gallic test, the fast convergence observed for the Anderson Acceleration method and for the two polynomial extrapolation methods MPE and RRE is comparable to the results of J. Carrayrou [10]. For the Newton Raphson type methods, the computation of the thermodynamic equilibrium of the Gallic acid test presents difficulties of convergence. By following the evolution of the process to search a solution in case 1 (cf. Figure 2(a) in [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF]), we observe a phenomenon of oscillations during the process of finding solution with Newton Raphson method (which means no convergence). On the other hand, we can note that the Simplex and Newton Raphson with PCF methods allow to obtain an approximation of the solution, without oscillation, but these require a long computation time. The Simplex method requires significant computation times because the search procedure is far from the solution for a long time. The Newton-Raphson method modified by polishing factor makes it possible to quickly obtain the solution but Figure 2(a) in [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF] shows that oscillations are located in a neighborhood close to the solution. It is clear that with Newton-Raphson method modified by imposing the CAI, the oscillations responsible for convergence problems are intrinsic to the CAI procedure. Finally, the Newton-Raphson method with the relaxation by the secant method and the SPECY algorithm allow to effectively approach the solution, avoiding the oscillations and reducing the computation time.

If we compare all the Newton type methods mentioned with the Anderson Acceleration method, the search process is not captured with oscillations. It allows a first accurate approximation of the solution to be obtained more quickly, in a short calculation time (cf. Figure 2 and Table 4). In addition, this method converges in both cases and requires a small number of iterations, for all strictly positive values of the maximal depth m (cf. Figure 2). Likewise, we can quickly get a precise approximation of the solution by applying restarted MPE and RRE methods to the sequence (ω n ) n≥0 , in both cases, without difficulty and in short computation time.

For the MoMas easy test case, a comparison of our results with those obtained in [START_REF] Lagneau | HYTEC results of the MoMas reactive transport benchmark[END_REF] is presented. The reactive transport code HYTEC participated in the realization of the benchmark, when all chemical reactions are solved by the speciation code CHESS [START_REF] Van Der Lee | Thermodynamic and mathematical concepts of CHESS[END_REF]. CHESS uses an improved Newton-Raphson scheme to solve the set of nonlinear algebraic equations describing the chemical system. The HYTEC code was applied to the easy MoMas benchmark as such, without any modification to operate more quickly or to improve convergence, taking the precision of the resolution of chemical equations (Newton Raphson) equal to 10 -8 . Far from results concerning transport, we can see in [START_REF] Lagneau | HYTEC results of the MoMas reactive transport benchmark[END_REF] tained by the CHESS code (i.e Newton Raphson's method) is summarized in Table 8. One note that the results are the same and in good agreement (all the concentrations lower than 10 -20 have been represented by "-" in the right part of Table 8). Four other reactive transport codes also participated in the realization of the benchmark (SPECY, MIN3P, GDAE and Hoffmann et al), but the results of chemical equilibrium are not presented independently during transport. All these codes are based on a Newton type method to linearize the chemical system and each uses a specific method to find the solution of the linearized system. A reference solution is given by the calculation of SPECY code [START_REF] Carrayrou | Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY[END_REF] and a comparison of the results is carried out in [START_REF] Carrayrou | Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case[END_REF], where the simulations are given by coupling transport and chemistry. To make a comparison with our results, results of chemistry (our results) on the right and results of the reactive transport on the left are presented. For example, the simulations in [START_REF] Carrayrou | Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY[END_REF] indicate that all codes correctly reproduce the increase and decrease of the concentration front C 2 . Chemical equilibrium results presented in Figure 24 also exhibit the same behavior for the concentration of C 2 and are in good agreement with those of the reactive transport codes (cf. Fig. 7 in [START_REF] Carrayrou | Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY[END_REF]).

On the other hand, chemical equilibrium results obtained for the fixed component S clearly show the influence of the more reactive medium B indicated by the higher concentration of S (S * B = 7.9128 M). This is in good agreement with the results obtained by the reactive transport codes, in advective case (cf. Fig. 5 in [START_REF] Carrayrou | Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case[END_REF]), where at time 10, this high concentration is present in the center of the domain where 1 ≤ x ≤ 1.1 (x designates the space), i.e. in B. In addition, we see that in medium A (for 0 ≤ x ≤ 1 and 1.1 ≤ x ≤ 2.1), the concentration of S converges to the same solution (S * A = 0.39074 M) that we obtained for chemical equilibrium in A by (AA) (Figure 7) and restarted (MPE) and (RRE) methods.

The most important advantage of the Anderson Acceleration method compared to Newton Raphson type methods is that its algorithm does not require the calculation of the Jacobian matrix. In the resolution of small linear systems using the algorithm of Newton-Raphson, the study of the condition number of Jacobian matrices shows that the range of values covered is unusually large, which leads to specific numerical problems. The matrices are quite small (10 × 10) but very ill conditioned (up to 10 200 ) (see Table 3 in [START_REF] Machat | Comparison of linear solvers for equilibrium geochemistry computations[END_REF]). This problem is completely overcome with (AA) method when we study the condition-number of the matrix F k (or R k ) instead of that of the Jacobian matrix. In addition, the condition-number monitoring strategy used in this method never allows to obtain ill-conditioned matrices. The real cond(R k ) is always less than 10 10 with this strategy. In particular, for the Acid Gallic test (respectively MoMas easy test case), with Newton-Raphson type methods, the condition number of the Jacobian matrix varies between 10 0.61 and 10 12.6 (respectively between 10 3.44 and 10 37.7 ), but with Anderson Acceleration method, the condition-number of matrix F k remains less than to 10 10 , after condition-number monitoring (cf. Figures 3,[START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF][START_REF] Carrayrou | Reactive transport benchmark of MoMaS[END_REF][START_REF] Carrayrou | Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case[END_REF]15 and 16). Then, with (AA) method, efficiency and (relatively) good conditioning can be obtained through updated QR factorizations. Similarly, for nonlinear problems, the two polynomial-type vector extrapolation methods MPE and RRE do not need the use of the Jacobian of the function G. Moreover, an important property of these methods is that they can be applied directly to the solution of linear and nonlinear systems. This is because the definitions of these methods do not require explicit knowledge of how the sequence is generated.

Conclusion

The aim of this work is to provide a stable and precise chemical solver to be integrated into an iterative sequential algorithm for reactive transport. The methods presented in this article allow to solve thermodynamic equilibria in a completely new way (without using the Newton-Raphson method). To our knowledge, these iterative acceleration algorithms have never been applied to the resolution of thermodynamic equilibria. The numerical results presented in this article improve the existing results (for example those given in [START_REF] Carrayrou | New efficient algorithm for solving thermodynamic chemistry[END_REF]). Thus, the direct combination of the method of positive continued fractions with AA, RRE or MPE provides efficient algorithms with quadratic convergence from any initial arbitrary data.

It is planned to apply these methods to other cases constituting the MoMas reference test cases for which the chemical complexity is increasing (ie "medium test case" and "hard test case"). For this work to bring sufficient novelty, the project consists in coupling our numerical thermodynamic equilibrium resolution to the transport model recently introduced in [START_REF] Bourel | Modelling of shallow aquifers in interaction with overland water[END_REF]. In this work, the authors establish a model which describes the water flow in shallow aquifers. The model couples the two dominant flows existing in the aquifer: a vertical 1d-Richards problem is considered in the capillary fringe while a vertical average of the mass conservation law is made in the saturated zone of the aquifer. This study is part of a larger project which aims to model the contamination of groundwater by nitrates. Obviously, the potential parallelization of the proposed algorithms is an important step in upcoming works, in particular if we want these algorithms to be implemented in the framework of a parallel opensource platform. The parallelization of the MPE and RRE algorithms has already been discussed, in particular in the context of the article [START_REF] Duminil | Fast solvers of discretized Navier-Stokes problems using vector extrapolation[END_REF]. It seems quite possible to adapt these results to our case. AA algorithm mainly generating QR factorizations, its parallelization should not pose any special complications.

Finally and independently, it would be really very interesting to compare on the problem of thermodynamic equilibria, the results obtained by the AA, RRE or MPE approaches with those obtained thanks to the deep learning methods used in [START_REF] Zhang | A self-adaptive deep learning algorithm for accelerating multicomponent flash calculation[END_REF][START_REF] Zhang | Accelerating flash calculations in unconventional reservoirs considering capillary pressure using an optimized deep learning algorithm[END_REF].
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 7 Figure 7. Acid Gallic test: Thermodynamic equilibrium by restarted MPE and RRE with κ = 0.45, κ = 0.5 and κ = 0.6 -Residual norm curve
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 9 Figure 9. MoMas easy test: Thermodynamic equilibrium in medium B by Anderson Acceleration method
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 11 Figure 11. MoMas easy test, Injection in medium B: Thermodynamic equilibrium by Anderson Acceleration.
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 12 Figure 12. MoMas easy test, leaching period: Thermodynamic equilibrium by Anderson Acceleration.
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 13 Figure 13. MoMas easy test, thermodynamic equilibrium in medium A by Anderson Acceleration method -Condition number curve.
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 14 Figure 14. MoMas easy test: Thermodynamic equilibrium in medium B by Anderson Acceleration method -Condition number curve.
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 16 Figure 16. MoMas easy test, Injection in medium B: Thermodynamic equilibrium by Anderson Acceleration -Condition number curve.

Figure 17 .

 17 Figure 17. MoMas easy test, Leaching period: Thermodynamic equilibrium by Anderson Acceleration method -Condition number curve.
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 20 Figure 20. MoMas easy test: Thermodynamic equilibrium in the medium B by restarted MPE and RRE, with κ = 0.3 -Residual norm curve
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 21 Figure 21. MoMas easy test: Thermodynamic equilibrium for injection in media A and B by restarted MPE and RRE, with κ = 0.2 -Residual norm curve
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 22 Figure 22. MoMas easy test: Thermodynamic equilibrium for injection in media A and B by restarted MPE and RRE, with κ = 1 -Residual norm curve
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 2324 Figure 23. MoMas easy test: Thermodynamic equilibrium for injection in medium A by restarted MPE and RRE, κ = 1, N 0 = 25, N = 2, Kmax = 10 -Residual norm curve
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 25 Figure 25. MoMas easy test, elution curve for species C2 during injection and leaching periods; chemical equilibrium by Anderson (2), MPE and RRE.
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 4 Gallic acid test, thermodynamic equilibrium by Anderson Acceleration method: CPU time (s) established that Anderson Acceleration method converges towards the solution in a short computation time (CPU time) (cf.Table4) for different values of the maximal depth m, m = 1, 2, 3.
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Gallic test, thermodynamic equilibrium by restarted RRE and MPE: CPU time (s) the thermodynamic equilibrium using Anderson's acceleration method and the two polynomial methods MPE and RRE works well. The convergence is obtained in a very short computation time and a
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 6 MoMas easy test, thermodynamic equilibrium by Anderson Acceleration method: CPU time.
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 7 MoMas easy test, thermodynamic equilibrium by restarted MPE and RRE methods.

	1.0469 1.9531

Table 8 .

 8 that authors give in a table, results of computation of chemical speciation in initial zones A and B independently, obtained with CHESS code. A comparison between results obtained with Anderson Acceleration, MPE and RRE with those ob-Comparison of the chemical speciation in initial zones obtained by Anderson Acceleration, MPE and RRE methods (on the left) with the chemical speciation obtained by CHESS code (on the right).

		Medium A Medium B	Injection	Leaching		zone A	zone B	Injection	Leaching
	species					species				
	X 1	1e-20	1e-20	0.3	1e-20	X 1	-	-	0.3	-
	X 2	0.2597	1.5116	0.2416	5.7734e-07	X 2	0.25972	1.5116	0.24162	5.7735e-07
	X 3	1.4604e-24 3.6593e-28	0.2416	7.2169e-27	X 3	-	-	0.24162	-
	X 4	0.3495	0.5756	2.0800e-51	1.1547e-06	X 4	0.34954	0.57561	-	1.1547e-06
	C 1	3.8503e-12 6.6157e-13	4.1387e-12	1.7321e-06	C 1	3.8503e-12 6.6157e-13 4.1387e-12 1.7321e-06
	C 2	3.7928e-25 5.5312e-28	0.0584	4.1667e-33	C 2	-	-	0.05838	-
	C 3	1.3458	0.3808	8.6087e-51	2	C 3	1.3458	0.38081	-	2
	C 4	1.3707e-24 1.3369e-30 6.3800e-152	1e-20	C 4	-	-	-	-
	C 5	4.9532e-40 1.4724e-47	1e-20	4.8225e-75	C 5	-	-	-	-
	sites					sites				
	S	0.3907	7.9128	2.9332e-24	1e-20	TS	0.39074	7.9128	-	-
	CS 2	0.3046	1.0436	1.2687e-97	6e-29	CS 2	0.30463	1.0436	-	-
	CS 1	9.9968e-21	1e-20	9.9971e-21	1.3889e-59	CS 1	-	-	-	-
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