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We simulate a sharp-diffuse interface model issuing from a seawater intrusion problem in unconfined aquifer. We study a semi-implicite in time scheme for a P k , (k ≥ 1) Lagrange finite element approximation. Using the specific regularity of the exact solution, we state that the scheme is of order 1 in time and k in space. We propose a finite volume method for a regular mesh and we compare the results given by these two approximations.

Introduction

In this paper, we are interested in the optimal exploitation of fresh water in coastal zones. Indeed coastal zones are densely populated areas and the intensive extraction of fresh water yields to a local water table depression causing sea intrusion problems. In order to control these seawater intrusions, we need efficient and accurate models to simulate the transport of salt water front in coastal aquifers. We consider unconfined aquifers which are bounded by two layers: the lower layer is always supposed to be impermeable and the upper surface is a permeable layer constituted by gravels, sand or alluvia. The basis of the modeling is the mass conservation law written for each species (fresh and salt water) combined with the classical Darcy law for porous media. In the present work we have essentially chosen to adopt a sharp interface approach, based on the assumption that the two fluids are immiscible. We assume that each fluid is confined to a well defined portion of the flow domain with a smooth interface separating them called sharp interface, effects of capillary pressure type are thus neglected. This approximation is often reasonable (see e.g. [START_REF] Bear | Seawater intrusion in coastal aquifers: Concepts, Methods and Practices[END_REF] and below, [START_REF] Chan Hong | The interface between fresh and salt groundwater: a numerical study[END_REF][START_REF] Van Duijn | The Interface Between Fresh and Salt Groundwater in Horizontal Aquifers: The Dupuit?Forchheimer Approximation Revisited[END_REF][START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF]). Following [START_REF] Choquet | Derivation of a Sharp-Diffuse Interfaces Model for Seawater Intrusion in a Free Aquifer. Numerical Simulations[END_REF], we can mix this abrupt interface approach with a phase field approach (here an Allen-Cahn type model in fluid-fluid context, see e.g. [START_REF] Alfaro | Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local, Interfaces Free Bound[END_REF][START_REF] Alfaro | Optimal interface width for the Allen-Cahn equation[END_REF][START_REF] Cahn | Free energy of non-uniform systems. I. Interfacial free energy[END_REF][START_REF] Dubé | Liquid Conservation and Nonlocal Interface Dynamics in Imbibition[END_REF]) in re-including the existence of a diffuse interface between fresh and salt water where mass exchanges occur. In such a way, we combine the advantage of respecting the physics of the problem and that of the computational efficiency. The same process is also applied to model the transition between the saturated and unsaturated zones.

The evolutions of the depths of the free interfaces h and h 1 are given by a 2D strongly coupled system of nonlinear parabolic equations. From a theoretical point of view, two advantages resulting from the addition of diffuse areas compared to the sharp interface approximation are stated in [START_REF] Choquet | Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion[END_REF]: if diffuse interfaces are both present, the system has a parabolic structure, the degeneracy appearing only in the sharp interface case. This allows us to demonstrate a more efficient and logical maximum principle from the physical point of view (see for instance [START_REF] Essaid | A Multilayered Sharp Interface Model of Coupled Freshwater and Saltwater Flow in Coastal Systems: Model Developpement and Application[END_REF][START_REF] Talibi | Existence of solutions for a degenerate seawater intrusion problem[END_REF]). But above all, we can prove that the solution belongs to the space L r (0, T ; W 1,r (Ω)) for some r > 2. This regularity allows us to manage the nonlinearity of the system, the main consequence being then the uniqueness of the solution. It should be noted that the assumption ensuring the uniqueness result is very restrictive from the physical point of view, namely we assume a very low hydraulic conductivity inside the aquifer (cf. [START_REF] Choquet | Uniqueness for a cross-diffusion system issuing from seawater intrusion problems[END_REF]). In this article, we are only interested in the model resulting from a sharp-diffuse interface approach in unconfined aquifers. More precisely, if δ denotes the thickness of the diffuse interfaces, assumed positive throughout, this necessary parameter guarantees the regularity of the solution and allows the convergence analysis of the finite element scheme presented here.

In the first part of the paper, we study a semi-implicit in time scheme combined with a P k (k ≥ 1) finite element method to discretize our problem. A first study concerning a finite element method applied to seawater intrusion in confined aquifer is done in [START_REF] Abudawia | Numerical analysis for a seawater intrusion problem in a confined aquifer[END_REF]. In that case, the model consists in a coupled system of nonlinear elliptic-parabolic equations describing the evolutions of h and of the freshwater hydraulic head φ f . Assuming (h, φ f ) ∈ C([0, T ], H 3 (Ω)) 2 , it was established in [START_REF] Abudawia | Numerical analysis for a seawater intrusion problem in a confined aquifer[END_REF] that the P 1 Lagrange finite element scheme is of order 1 in time and in space under restrictive assumptions on physical parameters. Moreover, it was considered a classical experiment where the freshwater/saltwater interface is described by a linear profile pivoting around a fixed point (see [START_REF] Essaid | A Multilayered Sharp Interface Model of Coupled Freshwater and Saltwater Flow in Coastal Systems: Model Developpement and Application[END_REF][START_REF] Shamir | Motion of the seawater interface in coastal aquifers : A numerical solution[END_REF]). Thanks to the analytic solution proposed by Keulegan, numerical comparisons were performed, thus illustrating the convergence order of the finite element method.

In this paper, we improve the convergence result given in [START_REF] Abudawia | Numerical analysis for a seawater intrusion problem in a confined aquifer[END_REF] since the present proof of the convergence result is based on the specific properties of the exact solution instead of supplementary regularity assumptions. Namely, we use the maximum principle satisfied by the solution and the bound in L r -norm (r > 2) of the gradient of the solution. Thanks to the Gagliardo-Nirenberg inequality written for space L 4 , we can handle the nonlinearity of the problem. We emphasize that the regularity required for (h, h 1 ) in the error estimates results is the minimal regularity necessary to establish interpolation error estimates, i.e. (h, h 1 ) [START_REF] Ern | Finite elements: theory, applications[END_REF], Thm 2.7.4, chapter 2). Nevertheless, in each case (confined and unconfined), we need the same kind of stability condition between the time step and the space discretization to ensure the convergence of the scheme. It should be noted that the theoretical stability condition assumed in our convergence theorem is very constraining. But in practice, it is enough to take a time step of the order of the square of the space step.

∈ C 1 ([0, T ], H k+1 (Ω)), k ≥ 1 ([
Contrary to the confined case, we do not have a test case by which we could illustrate totally the convergence order proved for the finite element method given in this paper. More precisely, if we impose a Dirichlet boundary condition on the left boundary to the saltwater elevation h, we can compare the numerical approximation of h to the solution computed with the Ferris model. But, this comparison is not possible for h 1 , since there is no analytic solution. On the other hand, we know that if the hydraulic conductivity is sufficiently low, the exact problem admits a unique solution. Given this result, the convergence theorem makes it possible to conclude that the numerical solution is a suitable approximation of the unique exact solution, but only if the hydraulic conductivity is assumed to be low. To confirm the numerical results in more realistic conditions from a physical point of view, we propose to compare them with those obtained by another numerical approximation. To this end, we present a finite volume scheme based on the intrinsic nature of the model that derives from conservative laws. The main aim is to validate the numerical results obtained with the finite element scheme. The numerical simulations show that the two numerical methods lead to similar qualitative results when the system evolves without forcing term. In the cases of injection or pumping scenario, we need to refine the space discretization in order to get a relative difference between the two numerical solutions in L ∞ norm of order 10 -2 .

The outline of the paper is the following one. Section 2 is devoted to the model and its derivation. In section 3 we recall all mathematical notations, the global in time existence result and the regularity result verified by the solution.

In section 4 we describe the P 1 Lagrange finite element scheme and we prove the existence and uniqueness of the numerical solution. We then state the main result establishing that the scheme is of order 1 in time and k in space. Section 5 is devoted to the presentation of the finite volume method with a regular mesh. In section 6, we perform numerical simulations illustrating the convergence analysis presented in section 4. First, we impose, on the left of the domain, oscillating Dirichlet boundary conditions in order to simulate the tidal effects on the aquifer. Given the analytic solution deduced from Ferris model, we compute the error in L ∞ norm and in L 2 norm for the saltwater elevation. Then, we perform numerical experiments in order to compare the approximate solutions obtained with the finite element scheme and the finite volume scheme. We next consider homogeneous Neumann boundary conditions, in such a way that the system can freely evolve. Three scenarios are considered: the situation without forcing term, another with an injection of freshwater in a part of the aquifer, and the last one corresponding to the freshwater pumping.

Modeling

Introducing specific index for the fresh ( f ) and salt (s) waters, we write the mass conservation law for each species (fresh and salt water) combined with the classical Darcy law for porous media. Hydraulic heads Φ i , i = f, s are defined at elevation z by

Φ i = P i ρ i g + z,
where P i denotes the pressure. The Darcy law relating together the effective velocity q i of the flow and the hydraulic head Φ i reads:

q i = -K i ∇(Φ i ), K i = κρ i g µ i . (1) 
Characteristics ρ i and µ i are respectively the density and the viscosity of the fluid, κ is the permeability of the soil and g the gravitational acceleration constant. The matrix K i is the hydraulic conductivity. It expresses the ability of the ground to conduct water, K i is proportional to κ the permeability of the ground which only depends on the characteristics of the porous medium and not on the fluid. At this point, using (1), we derive from the mass conservation law for each species (fresh and salt water) the following model:

S i ∂ t Φ i + ∇ • q i = Q i , q i = -K i ∇Φ i , K i = kgρ i /µ i .
The coefficient of water storage S i (i = f, s) characterizes the workable water volume. It accounts for the rock and fluid compressibility. In general, this coefficient is extremely small because of the weak compressibility of the fluid and of the rock. In the present work, we choose to neglect it but we emphasize that, in the case of free aquifer, S f ∂ t Φ f is of order of φ∂ t Φ f , with φ the porosity of the medium.

Let us now exploit Dupuit approximation which legitimates the upscaling of the 3D problem to a 2D model by vertical averaging. We integrate the mass conservation law between the interfaces depths h and h 1 in the fresh layer and between h and the lower topography h 2 , in the salty zone. The averaged mass conservation laws for the fresh and salt water thus read

S f B f ∂ t Φ f = ∇ • (B f K f ∇ Φ f ) -q f |z=h 1 • ∇(z -h 1 ) + q f |z=h • ∇(z -h) + B f Q f , (2) 
S s B s ∂ t Φs = ∇ • (B s Ks ∇ Φs ) + q s|z=h 2 • ∇(z -h 2 ) -q s|z=h • ∇(z -h) + B s Qs , (3) 
where

∇ = (∂ x 1 , ∂ x 2 )
. The coefficients B f = h 1h and B s = hh 2 denote the thickness of the fresh and salt water zones and Φi , i = f, s, the vertically averaged hydraulic heads

Φ f = 1 B f h 1 h Φ f dz and Φs = 1 B s h h 2 Φ s dz.
Finally the source terms Qi , i = f, s represent distributed surface supplies of fresh and salt water into the aquifer. Furthermore sharp interface assumption implies the continuity of the pressure at the interface between salt and fresh water, it follows that (1

+ α) Φs = Φ f + αh, α = ρ s ρ f -1. ( 4 
)
Here parameter α characterizes the densities contrast. Equation (4) allows us to avoid Φs in the final system. Our aim is now to include in the model the continuity properties across interfaces in view of expressing the four flux terms in (2)-(3). First, since the lower layer is impermeable, there is no flux across the boundary z = h 2 :

q s|z=h 2 • ∇(z -h 2 ) = 0. ( 5 
)
At the interface between fresh and salt water, we present the two following approaches :

• Sharp interface approach With the traditional sharp interface characterization, there is no mass transfer across the interface between fresh and salt water, i.e. the normal component of the effective velocity v is continue at the interface z = h :

q f |z=h φ -v • n = q s|z=h φ -v • n = 0,
where n denotes the normal unit vector to the interface. We thus obtain :

q f |z=h • ∇(z -h) = q s|z=h • ∇(z -h) = φ∂ t h (6) 
• Sharp-diffuse interface This approach includes now existence of miscible zone, taking the form of diffuse interface of characteristic thickness δ between fresh and salt water. Upscaling the 3D-dynamics of the diffuse interface assumed ruled by a phase field model, we get the following continuity equation instead of (6) (see [START_REF] Choquet | Derivation of a Sharp-Diffuse Interfaces Model for Seawater Intrusion in a Free Aquifer. Numerical Simulations[END_REF] for more details about the derivation of this equation):

q f |z=h • ∇(z -h) = q s|z=h • ∇(z -h) = φ(∂ t h -δ∆ h) (7) 
The same approach for the capillary fringe in the unconfined case yields

q f |z=h 1 • ∇(z -h 1 ) = φ(∂ t h 1 -δ∆ h 1 ) (8) 
Finally, the following assumptions are introduced for sake of simplicity in the notations. The medium is assumed to be isotrope and the viscosity the same for the salt and fresh water, then

Ks = (1 + α) K f . (9) 
In the case of an unconfined aquifer, the unknowns are the interfaces depths h and h 1 . Since quantities h and h 1 are only meaningful inside the aquifer, we introduce in the final model h + = sup(0, h) and h + 1 = sup(0, h 1 ). Neglecting the storage coefficient S f and introducing the characteristic function X 0 on the interval (0, +∞), the sharp-diffuse interface model finally reads

         φX 0 (h 1 )∂ t h 1 -∇ • ( K f X 0 (h 1 )((h -h 1 ) + (h 2 -h))∇h 1 ) -β∇ • (δX 0 (h 1 )∇h 1 ) -∇ • ( K f α(h 2 -h)X 0 (h 1 )∇h) = -B f Q f -B s Qs , φX 0 (h)∂ t h -∇ • (α K f (h 2 -h)X 0 (h)∇h) -β∇ • (δX 0 (h)∇h) -∇ • ( K f X 0 (h 1 )(h 2 -h)∇h 1 ) = -B s Qs .
The coefficient β is equal to 0 in the case of sharp interfaces and to 1 in the case of sharp-diffuse interfaces.

In the previous two systems, the first equation models the conservation of total mass of water, while the second is modeling the mass conservation of fresh water. This is a 2D model, the third dimension being preserved by the upscaling process via the depth informations h and h 1 .

Mathematical setting

We consider an open bounded domain Ω of R 2 describing the projection of the aquifer on the horizontal plane. The boundary of Ω, assumed C 1 , is denoted by Γ. The time interval of interest is (0, T ), T being any nonnegative real number, and we set Ω T = (0, T ) × Ω.

Some auxiliary results

For any n ∈ N * and any p ∈ (1, +∞), let W n,p (Ω) denote the usual Sobolev space endowed with the norm φ W n,p (Ω) = α∈N 2 ,α≤n ∂ α φ L p (Ω) . For the sake of brevity we shall write H 1 (Ω) = W 1,2 (Ω) and

V = H 1 0 (Ω), E = H 1 0 (Ω) ∩ L ∞ (Ω), H = L 2 (Ω).
The embeddings V ⊂ H = H ⊂ V are dense and compact. For any T > 0, let W(0, T ) denote the space

W(0, T ) := ω ∈ L 2 (0, T ; V), ∂ t ω ∈ L 2 (0, T ; V ) endowed with the Hilbertian norm ω W(0,T ) = ω 2 L 2 (0,T ;V) + ∂ t ω 2 L 2 (0,T ;V ) 1/2 .
The following embeddings are continuous ([27] prop. 2.1 and thm 3.1, chapter 1)

W(0, T ) ⊂ C([0, T ]; [V, V ] 1 2 ) = C([0, T ]; H) while the embedding W(0, T ) ⊂ L 2 (0, T ; H) (10) 
is compact (Aubin's Lemma, see [START_REF] Simon | Compact sets in the space L p (0, T, B)[END_REF]).

Global in time existence result

We focus here on the unconfined case. K f is now denoted by K and we set α = 1. We assume that depth h 2 is constant, h 2 > 0. We define functions T s and T f by

T s (u) = h 2 -u, T f (u) = u, for u ∈ (0, h 2 )
and T s and T f are extended continuously and constantly outside (0, h 2 ). We then consider the following set of equations in Ω T :

φ∂ t h -∇ • KT s (h)∇h -∇ • βδ∇h -∇ • KT s (h)X 0 (h 1 )∇h 1 = -Qs T s (h) := -Q s , ( 11 
)
φ∂ t h 1 -∇ • K T f (h -h 1 ) + T s (h) ∇h 1 -∇ • βδ∇h 1 -∇ • KT s (h)X 0 (h 1 )∇h = -Q f T f (h -h 1 ) + Qs T s (h) := -(Q f + Q s ). ( 12 
)
Notice we have canceled the terms X 0 (h) (resp. X 0 (h 1 )) in front of ∂ t h and ∇h (resp. ∂ t h 1 and ∇h 1 ) because a maximum principle will ensure that these supremums are useless. System ( 12) is completed by the following boundary and initial conditions:

h = h D , h 1 = h 1,D in Γ × (0, T ), (13) 
h(0, x) = h 0 (x), h 1 (0, x) = h 1,0 (x) in Ω, (14) 
with the compatibility conditions

h 0 (x) = h D (0, x), h 1,0 (x) = h 1,D (0, x), x ∈ Γ.
Let us now detail the mathematical assumptions. We begin with the characteristics of the porous structure. We assume the existence of two positive real numbers K -and K + such that the hydraulic conductivity tensor is a bounded elliptic and uniformly positive definite tensor:

0 < K -|ξ| 2 ≤ i, j=1,2 K i, j (x)ξ i ξ j ≤ K + |ξ| 2 < ∞ x ∈ Ω, ξ ∈ R 2 , ξ 0.
We assume that porosity is constant in the aquifer. Indeed, in the field envisaged here, the effects due to variations in φ are negligible compared with those due to density contrasts. From a mathematical point of view, these assumptions do not change the complexity of the analysis but rather avoid complicated computations. Source terms Q f and Q s are given functions of L 2 (0, T ; H) such that Q s ≤ 0. Notice for instance that pumping of freshwater corresponds to assumption Q f ≤ 0 a.e. in Ω × (0, T ). Functions h D and h 1,D belong to the space L 2 (0, T ; H 1 (Ω)) ∩ H 1 (0, T ; (H 1 (Ω)) ) while functions h 0 and h 1,0 are in H 1 (Ω). Finally, we assume that the boundary and initial data satisfy physically realistic conditions on the hierarchy of interfaces depths:

0 ≤ h 1,D ≤ h D ≤ h 2 a.e. in Γ × (0, T ), 0 ≤ h 1,0 ≤ h 0 ≤ h 2 a.e. in Ω.
We state the following existence result.

Theorem 1. Assume a spatial heterogeneity for the symmetric hydraulic conductivity tensor:

K -≤ K + ≤ 3 2 K -
. Then for any T > 0, problem ( 11)-( 14) admits a weak solution (h, h 1 ) satisfying

(h -h D , h 1 -h 1,D ) ∈ L 2 (0, T ; H 1 0 (Ω)) × L 2 (0, T ; H 1 0 (Ω)) ∩ H 1 (0, T ; (H 1 0 (Ω)) ) 2
Furthermore the following maximum principle holds true:

0 ≤ h 1 (t, x) ≤ h(t, x) ≤ h 2 for a.e.
x ∈ Ω and for any t ∈ (0, T ).

Remark 1. This theorem is proven in [START_REF] Choquet | Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion[END_REF]. The proof of the degenerate case (when δ = 0) is done in [START_REF] Choquet | Global existence for seawater intrusion models: comparison between sharp interface and sharp-diffuse interface approaches[END_REF], the spatial heterogeneity thus becoming

K + ≤ 2 √ γ K -, 0 < γ < 8 9 .
Furthermore, it is no more possible to state a natural hierarchy between the two depths h 1 and h, we only can establish 0 ≤ h 1 (t, x) and 0 ≤ h(t, x) ≤ h 2 for a.e. x ∈ Ω and for any t ∈ (0, T ).

The arguments of this proof are similar to those given in [START_REF] Antontsev | Space and time localization in the flow of two immiscible fluids through a porous medium: energy methods applied to systems[END_REF].

Regularity result

We now give the regularity result establishing that the solution belongs to the space L r (0, T ; W 1,r (Ω)) for some r > 2, this regularity allows us to handle with the nonlinearity of the system. It is the main argument to prove the uniqueness. We first remind a preliminary useful lemma which is a consequence of Meyers regularity results [START_REF] Meyers | An Lp-estimate for the gradient of solution of second order elliptic divergence equations[END_REF]. Let A ∈ (L ∞ (Ω)) n be a symmetric tensor such that there exists α > 0 satisfying

n i, j=1 A i, j (x)ξ i ξ j ≥ α|ξ| 2 , ∀x ∈ Ω and ξ ∈ R n . We denote β = max 1≤i, j≤n ||A i, j || L ∞ (Ω) . Let c be a constant, we set µ = α + c β + c and ν = c (β + c) , ( 15 
)
where c is s.t. c > 0 in order to ensure ν < µ. We define X p = L p (0, T ; W 1,p 0 (Ω)), endowed with the norm (

T 0 ||v(t)|| p W 1,p 0 (Ω) dt) 1/p = ||∇v|| L p (Ω T ) n .
We introduce Y p = L p (0, T ; W -1,p (Ω)) and we point out that the application v → div x v sends (L p (Ω T )) n into L p (0, T ; W -1,p (Ω)). We endow Y p with the norm || f || Y p = min div x g= f ||g|| L p (Ω T ) n , we can state the following Lemma (cf. [START_REF] Bensoussan | Asymptotic analysis for periodic structure[END_REF]).

Lemma 1. Let f ∈ L 2 (0, T, H -1 (Ω)) and u 0 ∈ H, there exists u ∈ L 2 (0, T ;

H 1 0 (Ω)) solution of :          ∂u ∂t + Au = f in Ω T u(0) = u 0
Then, assuming that Γ is sufficiently regular, there exists r(α, β) > 2, depending on α, β and Ω such that if f ∈ L r (0, T ; W -1,r (Ω)) and u 0 ∈ W -1,r (Ω) then u ∈ L r (0, T ; W 1,r 0 (Ω)). Furthermore, there exists C(α, β, r) > 0 such that

||u|| W 1,r 0 (Ω) ≤ C(α, β, r)(|| f || L r (0,T ;W -1,r (Ω)) + ||u 0 || W 1,r 0 (Ω) ). ( 16 
)
Remark 2. It is possible to precise the dependency of r(α, β) with respect to physical parameters. We set P = ∂ ∂t -∆, the operator associated to the homogeneous Dirichlet boundary conditions.

We know, that, being given F ∈ Y p , there is an unique solution u ∈ X p such that :

Pu = F in Ω T . u(0) = u 0
We introduce the real g(p) = ||P -1 || L(Y p ;X p ) and we recall that g(2) = 1. Then, we can find r > 2 such that

0 < k(r) := g(r)(1 -µ + ν) < 1, (17) 
where the constants µ, ν and c are those previously defined by (15) thanks to α, β.

The smaller (1 -µ + ν) is, the bigger r can be, the determination of r will thus depend on constants α, β characterizing the elliptic operator A.

In our case, α = δ φ and

β = δ + K + h 2 φ
. Hence, for some c > 0

µ = α + c β + c = δ + φc δ + φc + K + h 2 and ν = c (β + c) = φc (δ + K + h 2 + φc) . ( 18 
)
Then, if r > 2 is such that k(r) := g(r)(1 -µ + ν) < 1, this exponent is appropriate.

We can now state a regularity result in space W 1,r (Ω T ), r > 2 (cf. [START_REF] Choquet | Uniqueness for a cross-diffusion system issuing from seawater intrusion problems[END_REF]).

Theorem 2. Let (h, h 1 ) be a solution of ( 11)-( 14), then there exists r(α, 2 . Furthermore, we have

β) > 2 such that, if (h D , h 1,D ) ∈ L r (0, T ; W 1,r (Ω)) 2 , (h 0 , h 1,0 ) ∈ W -1,r (Ω) 2 , (Q s , Q f ) ∈ L r (Ω T ) 2 , then ∇h et ∇h 1 are in L r (Ω T )
||∇h|| L r (Ω T ) ≤ C r,1 (h 0 , h D , h 1,0 , h 1,D , Q s , Q f , h 2 , δ, K, Φ) ||∇h 1 || L r (Ω T ) ≤ C r,2 (h 0 , h D , h 1,0 , h 1,D , Q s , Q f , h 2 , δ, K, Φ)
Until now, we assume that (h 2 , δ,

K + ) ∈ R +3 * satisfy K + h 2 δ < 1 g(4) -1 . ( 19 
)
The assumption [START_REF] Cooper | A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer[END_REF] ensures the uniqueness result and it is clearly a very restrictive assumption from the physical point of view. Namely we assume a very low hydraulic conductivity inside the aquifer. In the following, we will denote C 4 > 0 the constant such that:

C 4 (h 0 , h D , h 1,0 , h 1,D , Q s , Q f , h 2 , δ, K, Φ) = Max(C 4 4,1 , C 4 4,2 ), ( 20 
)
where the real numbers C 4,1 , C 4,2 are defined in Theorem 2.

Finite element method approximation and main result

Let T b , b ∈ [0, 1] a regular triangulation of the domain Ω, we introduce the approximate space

V k b := {w ∈ H 1 0 (Ω); ∀K ∈ T b , w |K ∈ P k (K)}, k ≥ 1.
We denote by I b ∈ L(H k+1 (Ω), V k b ) the Lagrange interpolation operator then there exists a constant C I > 0 such that

∀v ∈ H k+1 (Ω), v -I b (v) L 2 + b v -I b (v) H 1 ≤ C I b k+1 v H k+1 . (21) 
Since we consider k ≥ 1, the following embedding is continuous

H k+1 (Ω) ⊂ C 0 ( Ω).
We introduce P b the orthogonal projection operator on V k b such that

∀v b ∈ V k b , a(P b (w), v b ) = a(w, v b ) := Ω ∇w • ∇v b dx, (22) 
we deduce from ( 21) that ∀w ∈ C 1 ([0, T ]; H k+1 (Ω)), ∀ j ∈ {0, 1} :

w -P b (w) C j ([0,T ];L 2 ) + b w -P b (w) C j ([0,T ];H 1 ) ≤ C I b k+1 w C j ([0,T ];H k+1 (Ω)) . (23) 
We recall that there exists a constant C(b) > 0 such that

w H 1 0 (Ω) ≤ C(b) w L 2 (Ω) , ∀w ∈ V k b , (24) 
where the constant C(b) depends on the space discretization V k b , in our case and for a quasi-uniform mesh

C(b) ≤ c b -1 .
Finally we denote ψ n the approximation of any function ψ at time t n = n • δt, n = 1, N with δt = T N .

Description of the numerical scheme

In this section we present the scheme that we are going to use for the numerical analysis.

Provided that (h n b , h n 1,b ) s.t. 0 ≤ h n 1,b ≤ h n b ≤ h 2 are given in (I b (h D )+V k b )×(I b (h 1,D )+V k b ), we consider the approximate problem Find (h n+1 b , h n+1 1,b ) ∈ (I b (h D ) + V k b ) × (I b (h 1,D ) + V k b ) such that ∀w ∈ V k b : Ω φ h n+1 1,b -h n 1,b δt w + [δ∇h n+1 1,b -T f (h n b -h n 1,b )K∇h n+1 1,b ) -T s (h n b )K∇(h n+1 1,b + h n b )] • ∇w -(Q n+1 s + Q n+1 f ) w dx = 0 , ( 25 
) Ω φ h n+1 b -h n b δt w + [T s (h n b ) K ∇(h n+1 b -h n+1 1,b ) + δ∇h n+1 b ] • ∇w + Q n+1 s w dx = 0, (26) 
and

(h 0 b , f 0 b ) = (I b (h 0 ), I b (h 1,0 )).
Remark 3.

Since we do not prove a discrete maximum principle for the numerical solution (h n b , h n 1,b ), we have to assume 25)-( 26) is the discrete version of the weak formulation given in section (2). ), the approximate problem ( 25)-( 26) has a unique solution

0 ≤ h n 1,b ≤ h n b ≤ h 2 in order to compute (h n+1 b , h n+1 1,b ). Clearly, (
(h n b , h n 1,b ) ∈ (I b (h D ) + V k b ) × (I b (h 1,D ) + V k b ).
Proof. We prove this result by induction on n : Let A 1 , A 2 the bilinear continuous forms defined on

V k b × V k b by A 1 (u, w) = Ω φuw δt dx + Ω δ + (T f (h n b -h n 1,b ) + T s (h n b )) ∇u.∇w dx, A 2 (v, w) = Ω φvw δt dx + Ω (δ + T s (h n b )K)∇v • ∇w dx,
and L 1 , L 2 linear continuous forms defined on V k b by

L 1 (w) = Ω T s (h n b )K∇h n b • ∇w dx + Ω ( h n 1,b δt + Q n+1 f + Q n+1 s )w dx, L 2 (w) = Ω T s (h n b )K∇h n 1,b • ∇w dx + Ω ( h n b δt -Q n+1 s )w dx.
The approximate problem can be written :

A 1 (h n 1,b , w) = L 1 (w) ∀w ∈ V k b , A 2 (h n+1 b , w) = L 2 (w) ∀w ∈ V k b .
As T f (h n bh n 1,b ) ≥ 0 and T s (h n b ) ≥ 0, the coercivity of A 1 and A 2 on V k b are clear. Using Lax-Milgram Theorem, the couple (h n+1 b , h n 1,b ) is well defined and unique. We are in position to state the convergence result.

Convergence result

We are using in this part, the specific regularity of our problem, namely the L 4 regularity of the gradients of the unknowns. Suppose the parameters δ, K + and K -satisfy

(δ -5α K + K - ) > 0, (27) 
with 0 < α < 1. We have the following convergence result

Theorem 3. If the stability condition is fulfilled φ - 2 h 2 2 K + δ (2 K + + K -)C(b) 2 δt > 0, ( 28 
)
there exists a constant C > 0, such that for any solution (h, h 1 ) of the problem (11

)-(14) in Y(Ω T ) = C 2 ([0, T ], L 2 (Ω))∩ C 1 ([0, T ], H k+1 (Ω)), k ≥ 1, we have max 0≤n≤N h(t n ) -h n b L 2 ≤ C (b k + δt) max( h Y(Ω T ) , h 1 Y(Ω T ) ), ( 29 
) max 0≤n≤N h 1 (t n ) -h n 1,b L 2 ≤ C (b k + δt) max( h Y(Ω T ) , h 1 Y(Ω T ) ), (30) 
φ δt N n=1 h(t n ) -h n b 2 H 1 1 2 ≤ C (b k + δt) max( h Y(Ω T ) , h 1 Y(Ω T ) ), (31) 
φ δt N n=1 h 1 (t n ) -h n 1,b 2 H 1 1 2 ≤ C (b k + δt) max( h Y(Ω T ) , h 1 Y(Ω T ) ). ( 32 
)
Remark 4.

As mentioned in the introduction, we emphasize that the regularity required for (h, h 1 ) in Theorem 3 is the minimal regularity necessary to state interpolation error estimates, i.e. (h, h 1 ) ∈ C 1 ([0, T ], H k+1 (Ω)), k ≥ 1 (see [START_REF] Ern | Finite elements: theory, applications[END_REF], Thm 2.7.4 and Thm 2.7.5, chapter 2).

In [START_REF] Abudawia | Numerical analysis for a seawater intrusion problem in a confined aquifer[END_REF], the convergence theorem is not optimal since we suppose that (h, 2 to deal with the nonlinearity of the coupled system. Nevertheless, the Theorem 3 have the same kind of stability condition (28) than the theorem given in [START_REF] Abudawia | Numerical analysis for a seawater intrusion problem in a confined aquifer[END_REF].

h 1 ) ∈ Y(Ω T ) ∩ C([0, T ], H 3 (Ω))
Proof.

At the time t n+1 (we recall the notation h n+1 = h(t n+1 ) we have :

∀v b ∈ V k b Ω φ ∂h ∂t (t n+1 )v b dx + Ω [T s (h n+1 )K(∇h n+1 + ∇h n+1 1 ) + δ∇h n+1 ].∇v b dx = - Ω Q n+1 s v b dx , (33) 
Since 0 ≤ h 1 ≤ h n+1 ≤ h 2 , we have T s (h n+1 ) = h 2 -h n+1 .
Thanks to [START_REF] Essaid | A Multilayered Sharp Interface Model of Coupled Freshwater and Saltwater Flow in Coastal Systems: Model Developpement and Application[END_REF], we deduce from (33) that:

φ δt (P b (h n+1 ) -P b (h n ), v b ) + ((h 2 -P b (h n ))K∇(h n+1 + h n+1 1 ) + δ∇h n+1 , ∇v b ) = (-Q n+1 s , v b ) + R n+1 (v b ); (34) 
with the classical notation ( f, g) = Ω f g dx and where R n+1 denotes the residual

R n+1 (v b ) = φ ( P b (h n+1 ) -P b (h n ) δt - ∂ h ∂t (t n+1 ), v b ) -((h 2 -h n+1 )K∇(h n+1 -h n+1 1 ), ∇v b ) + ((h 2 -P b (h n ))K∇(h n+1 -h n+1 1 ), ∇v b ).
We first establish an uniform estimate for the residual R n+1 . Letting

D = P b (h n+1 ) -P b (h n ) δt - ∂ h ∂t (t n+1 ) := (A) -(B), with A = 1 δt t n+1 t n (∂ t P b (h) -∂ t h)(s)ds = P b (h n+1 ) -P b (h n ) δt - h n+1 -h n δt , and 
B = 1 δt t n+1 t n (s -t n ) ∂ 2 h ∂t 2 ds = - 1 δt t n+1 t n ∂h ∂t (s)ds + 1 δt [(s -t n ) ∂h ∂t ] t n+1 t n = - h n+1 -h n δt + ∂h ∂s (t n+1 ).
Applying Poincaré inequality and Young inequality, we get

|φ(D, v b )| ≤ φ ( P b (h) -h C 1 ([0,T ],L 2 ) + δt h C 2 ([0,T ],L 2 ) ) v b L 2 ≤ φ C P (C I b k+1 + δt) h Y(Ω T ) ∇v b L 2 , then |φ(D, v b )| ≤ δ 4 ∇v b 2 L 2 + 2 δ φ 2 C 2 P (C I b k+1 + δt) 2 h 2 Y(Ω T ) . (35) 
Besides, setting

C := R n+1 (v b ) -φ (D, v b ) = ((h n+1 -P b (h n ))(K∇(h n+1 -h n+1 1 ), ∇v b ),
we decompose C as follows

C = ((h n+1 -P b (h n+1 ))K∇(h n+1 -h n+1 1 ), ∇v b ) + ((P b (h n+1 ) -P b (h n ))K∇(h n+1 -h n+1 1 ), ∇v b ).
We are estimating C thanks to the L 4 (Ω T ) regularity result obtained for the gradients of h and h 1 and the Gagliardo-Nirenberg inequality ([10], ex. 2, chapter 9)

u L 4 (Ω) ≤ G 4 u 1 2 L 2 (Ω) u 1 2 H 1 (Ω) , ∀u ∈ H 1 (Ω). ( 36 
)
Then, we obtain

|C| ≤ K + h n+1 -P b h n+1 L 4 ( ∇h n+1 L 4 + ∇h n+1 1 L 4 ) ∇v b L 2 +K + P b h n+1 -P b h n L 4 ( ∇h n+1 L 4 + ∇h n+1 1 L 4 ) ∇v b L 2 , ≤ K + G 4 ( ∇h n+1 L 4 + ∇h n+1 1 L 4 ) h n+1 -P b h n+1 1/2 L 2 h n+1 -P b h n+1 1/2 H 1 ∇v b L 2 +K + G 4 ( ∇h n+1 L 4 + ∇h n+1 1 L 4 ) P b h n+1 -P b h n 1/2 L 2 P b h n+1 -P b h n 1/2 H 1 ∇v b L 2 ≤ K + G 4 ( ∇h n+1 L 4 + ∇h n+1 1 L 4 ) h -P b h 1/2 C([0,T ],L 2 ) h -P b h 1/2 C([0,T ],H 1 ) + h n+1 -h n 1/2 L 2 h n+1 -h n 1/2 L 2 ∇v b L 2 ≤ K + G 4 ( ∇h n+1 L 4 + ∇h n+1 1 L 4 ) {C I b (k+ 1 2 ) h C([0,T ],H k+1 ) + δt h C 1 ([0,T ],H 1 ) } ∇v b L 2 .
Applying Cauchy-Schwarz and Young inequalities and taking into account (35), we get

|R n+1 (v b )| ≤ ( δ 4 + 2ηK + G 4 ) ∇v b 2 L 2 + 2 δ φ 2 C 2 P (C I b k+1 + δt) 2 h 2 Y(Ω T ) + K + G 4 2 η ( ∇h n+1 4 L 4 + ∇h n+1 1 4 L 4 + 2) (C I b k+1/2 + δt) 2 h 2 Y(Ω T ) . (37) 
In the same way, the equation for h n+1 can be written as:

φ Ω ∂h 1 ∂t (t n+1 )w b dx + Ω δ∇h n+1 1 .∇w b dx + Ω K (h n+1 -h n+1 1 )∇h n+1 1 .∇w b dx + Ω (h 2 -h n+1 )K ∇(h n+1 1 + h n+1 ).∇w b dx = Ω -(Q n+1 s + Q n+1 f ) w b dx. ( 38 
)
Introducing the residual R n+1 1 as follows

R n+1 1 (w b ) = ( P b (h n+1 1 ) -P b (h n 1 ) δt - ∂h 1 ∂t (t n+1 ), w b ) -((h n+1 -h n+1 1 )K ∇h n+1 1 , ∇w b ) + ((P b (h n ) -P b (h n 1 ))K ∇h n+1 1 , ∇w b ) -((h 2 -h n+1 )K ∇(h n+1 1 + h n+1 ), ∇w b ) + ((h 2 -P b (h n ))K ∇(h n+1 1 + h n+1 ), ∇w b ).
We deduce from (38) that:

φ( P b (h n+1 1 ) -P b (h n 1 ) δt , w b ) + δ(∇h n+1 1 , ∇w b ) + (P b (h n ) -P b (h n 1 ))K ∇h n+1 1 , ∇w b + (h 2 -P b (h n ))K ∇(h n+1 1 + h n+1 ), ∇w b = -((Q n+1 s + Q n+1 f ), w b ) + R n+1 1 (w b ) (39) 
We are now going to establish an uniform estimate for R n+1 1 : Letting

D 1 = P l (h n+1 1 ) -P l (h n 1 ) δt - ∂ h 1 ∂t (t n+1 ) := (A 1 ) -(B 1 ), with A 1 = 1 δt t n+1 t n (∂ t P l h 1 -∂ t h 1 )(s)ds = P l h n+1 1 -P l h n 1 δt - h n+1 1 -h n 1 δt ,
and

B 1 = 1 δt t n+1 t n (s -t n ) ∂ 2 h 1 ∂t 2 ds = - 1 δt t n+1 t n ∂h 1 ∂t (s)ds + 1 δt [(s -t n ) ∂h 1 ∂t ] t n+1 t n = - h n+1 1 -h n 1 δt + ∂h 1 ∂s (t n+1 ).
Hence

φ|(D 1 , v b )| ≤ ( P b h 1 -h 1 C 1 ([0,T ],L 2 ) + δt h 1 C 2 ([0,T ],L 2 ) ) w b L 2 ≤ φ (C I b k+1 + δt) h 1 Y(Ω T ) w b L 2 ,
and then

|φ(D 1 , w b )| ≤ δ 4 ∇w b 2 L 2 + 2 δ φ 2 C 2 P (C I b k+1 + δt) 2 h 1 2 Y(Ω T ) . (40) 
Furthermore:

C 1 := R n+1 1 (w b ) -(D 1 , w b ) = ((-P b (h n ) + h n+1 ) K ∇(h n+1 1 + h n+1 ), ∇w b ) + ((P b (h n ) -h n+1 ) K ∇h n+1 1 , ∇w b ) +((h n+1 1 -P b (h n 1 )) K ∇h n+1 1 , ∇w b ) = ((h n+1 -P b (h n )) K ∇h n+1 , ∇w b ) + ((h n+1 1 -P b (h n 1 )) K ∇h n+1 1 , ∇w b ) We decompose C 1 as C, i.e. C 1 = ((h n+1 -P b (h n+1 ))K∇h n+1 , ∇w b ) + ((P b (h n+1 ) -P b (h n ))K∇h n+1 , ∇w b ) +((h n+1 1 -P b (h n+1 1 ))K∇h n+1 1 , ∇w b ) + ((P b (h n+1 1 ) -P b (h n 1 ))K∇h n+1 1 , ∇w b ).
Taking into account the L 4 (Ω T ) regularity of the gradients of (h, h 1 ), we deduce that

|C 1 | ≤ K + G 4 ∇h n+1 L 4 {C I b (k+ 1 2 ) h C([0,T ],H k+1 ) + δt h C 1 ([0,T ],H 1 ) } ∇w b L 2 + K + G 4 ∇h n+1 1 L 4 {C I b (k+ 1 2 ) h 1 C([0,T ],H k+1 ) + δt h 1 C 1 ([0,T ],H 1 ) } ∇w b L 2 .
Thanks to (40), we obtain the analogous of (37)

|R n+1 1 (w b )| ≤ ( δ 4 + 2ηK + G 4 ) ∇w b 2 L 2 + 2 δ φ 2 C 2 P (C I b k+1 + δt) 2 h 1 2 Y(Ω T ) + K + G 4 2 η ( ∇h n+1 4 L 4 + ∇h n+1 1 4 L 4 + 2) (C I b k+1/2 + δt) 2 max( h 2 Y(Ω T ) , h 1 2 Y(Ω T ) ). ( 41 
)
Introducing the errors e n b = P b (h n )h n b , and s n b = P b (h n 1 )h n 1,b , the differences ( 39)-( 25) and ( 34)- [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF] give 

φ δt e n+1 b -e n b , v b + δ ∇e n+1 b , ∇v b + (h 2 -P b (h n ))K∇(h n+1 + h n+1 1 ), ∇v b -(h 2 -h n b )K∇(h n+1 b + h n+1 1,b ), ∇v b = R n+1 (v b ), (42) φ δt s n+1 b -s n b , w b + δ ∇s n+1 b , ∇w b + (P b (h n ) -P b (h n+1 1 ))K∇h n+1 1 , w b + (h 2 -h n b )K∇(h n+1 1,b + h n+1 b + h n b - h n+1 b ), ∇w b -(h n b -h n 1,b )K∇h n+1 1,b , ∇w b + (h 2 -P b (h n ))K∇(h n+1 1 + h n+1 ), ∇w b = R n+1 1 (w b ). ( 43 
((h 2 -P b (h n ))K∇(h n+1 + h n+1 1 ), ∇e n+1 b + ∇s n+1 b ) -((h 2 -h n b )∇(h n+1 b + h n+1 1,b ), ∇(e n+1 b + s n+1 b )) +((h 2 -h n b )K∇(h n+1 b -h n b ), ∇s n+1 b ) + ((P b (h n ) -P b (h n 1 ))K∇h n+1 1 , ∇s n+1 b ) -((h n b -h n 1,b )K∇h n+1 1,b , ∇s n+1 b ) = R n (e n+1 b ) + R n+1 1 (s n+1 b ) ⇔ φ δt e n+1 b -e n b , e n+1 b + φ δt s n+1 b -s n b , s n+1 b + δ(∇e n+1 b , ∇e n+1 b ) + δ(∇s n+1 b , ∇s n+1 b )+ ((h 2 -h n b )K∇(e n+1 b + s n+1 b ), ∇(e n+1 b + s n+1 b )) -((h 2 -h n b )K∇(P b (h n+1 b ) + P b (h n+1 1 )), ∇e n+1 b + ∇s n+1 b ) +((h n b -P b (h n ))K∇(h n+1 + h n+1 1 ), ∇(e n+1 b + s n+1 b )) + ((h 2 -h n b )K∇(h n+1 + h n+1 1 ), ∇(e n+1 b + s n+1 b ))+ ((h 2 -h n b )K∇(h n+1 b -h n b ), ∇s n+1 b ) + ((e n b -s n b )K∇h n+1 1 , ∇s n+1 b ) + ((h n b -h n 1,b )K∇(h n+1 1 -h n+1 1,b ), ∇s n+1 b ) = R n (e n+1 b ) + R n+1 1 (s n+1 b ) ⇔ φ δt e n+1 b -e n b , e n+1 b + φ δt s n+1 b -s n b , s n+1 b + δ(∇e n+1 b , ∇e n+1 b ) + δ(∇s n+1 b , ∇s n+1 b ) + (h 2 -h n b )K∇(e n+1 b + s n+1 b ), ∇(e n+1 b + s n+1 b ) ≥ 0 + (h n b -h n 1,b )K∇s n+1 b , ∇s n+1 b ≥ 0 + (h 2 -h n b )K∇ h n+1 -P b (h n+1 ) + h n+1 1 -P b (h n+1 1 ) , ∇e n+1 b + ∇s n+1 b =E 0 + (h n b -P b (h n ))K∇(h n+1 + h n+1 1 ), ∇(e n+1 b + s n+1 b ) =E 1 + (e n b -s n b )K∇h n+1 1 , ∇s n+1 b =E 2 + (h n b -h n 1,b )K∇(h n+1 1 -P b (h n+1 1 ), ∇s n+1 b ) =E 3 + (h 2 -h n b )K∇(h n+1 b -h n b ), ∇s n+1 b =E 4 = R n (e n+1 b ) + R n+1 1 (s n+1 b )
We are going now to estimate E i , i = 1, 4, thanks to Cauchy-Schwarz and Young inequalities and thanks to Gagliardo-Nirenberg inequality. First, we have

|E 0 | K + h 1 2 2 h 2 -h n b ∇(e n+1 b + s n+1 b ) L 2 (Ω) ∇(h n+1 -P b (h n+1 )) L 2 (Ω) C I b k h Y(Ω T ) + ∇(h n+1 1 -P b (h n+1 1 )) L 2 (Ω) C I b k h 1 Y(Ω T )
and then

|E 0 | K - 2 h 2 -h n b ∇(e n+1 b + s n+1 b ) 2 L 2 (Ω) + h 2 K 2 + 2 K - C 2 I b 2k ( h 2 Y(Ω T ) + h 1 2 Y(Ω T ) ). ( 44 
)
Concerning E 1 , we write We are detailing the majoration of S 1 , we can get the other ones in the same way:

|E 1 | K + ∇h n+1 1 L 4 (Ω) + ∇h n+1 L 4 (Ω) e n b L 4 (Ω) ( ∇e n+1 b L 2 (Ω) + ∇s n+1 b L 2 (Ω) ) ≤ K + ∇h n+1 L 4 (Ω)
|S 1 | ≤ K + G 4 C(b) 1/2 ∇h n+1 L 4 e n b -e n+1 b L 2 ∇e n+1 b L 2 + K + G 4 ∇h n+1 L 4 e n+1 b 1/2 L 2 ∇e n+1 b 3/2 L 2 ≤ K + G 4 C(b) 2 1 e n b -e n+1 b 2 L 2 ∇h n+1 2 L 4 + 1 2 + -1 3 2 ∇e n+1 b 2 L 2 + 2 e n+1 b 2 L 2 ∇h n+1 4 L 4 ,
then

|S 1 | ≤ K + G 4 C(b) 2 1 2 1 2 3 e n b -e n+1 b 2 L 2 + 1 2 + -1 3 2 ∇e n+1 b 2 L 2 + ( 3 + 2 ) max k∈(0,N+1) ( e k b 2 L 2 ) ∇h n+1 4 L 4 .
As the same, we have for S 2 :

|S 2 | ≤ K + G 4 C(b) 2 1 2 1 2 3 e n b -e n+1 b 2 L 2 + 1 2 + -1 3 2 ∇e n+1 b 2 L 2 + ( 3 + 2 ) max k∈(0,N+1) ( e k b 2 L 2 ) ∇h n+1 1 4 L 4 .
Concerning the terme S 3 , we write

|S 3 | ≤ K + G 4 C(b) 1/2 ∇h n+1 L 4 e n b -e n+1 b L 2 ∇s n+1 b L 2 + ∇h n+1 L 4 e n+1 b 1/2 L 2 ∇e n+1 b 1/2 L 2 ∇s n+1 b L 2 ≤ K + G 4 1 2 4 C(b) e n l -e n+1 b 2 L 2 ∇h n+1 2 L 4 + 4 2 ∇s n+1 b 2 L 2 + 5 2 ∇s n+1 b 2 L 2 + 1 2 5 ∇h n+1 2 L 4 e n+1 b L 2 ∇e n+1 b L 2 , hence |S 3 | ≤ K + G 4 C(b) 2 4 2 1 2 6 e n b -e n+1 b 2 L 2 + 1 2 ( 4 + 5 ) ∇s n+1 b 2 L 2 + 7 2 ∇e n+1 b 2 L 2 + ( 6 + 1 8 7 -2 5 ) max k∈(0,N+1) ( e k 
b 2 L 2 ) ∇h n+1 4 L 4 .
In the same way, we get for S 4 :

|S 4 | ≤ K + G 4 C(b) 2 4 2 1 2 6 e n b -e n+1 b 2 L 2 + 1 2 ( 4 + 5 ) ∇s n+1 b 2 L 2 + 7 2 ∇e n+1 b 2 L 2 + ( 6 + 1 8 7 - 2 
5 ) max k∈(0,N+1) ( e k b 2 L 2 ) ∇h n+1 1 4 L 4 .
Finally, the term E 1 can be estimated as follows:

|E 1 | ≤ K + G 4 C(b) 2 1 2 1 3 + C(b) 2 4 2 1 6 e n b -e n+1 b 2 L 2 + 1 + 2 -1 3 2 + 7 ∇e n+1 b 2 L 2 (45) 
+( 4 + 5 ) ∇s n+1 b 2 L 2 + ( 3 + 2 + 6 + -2 5 8 7 ) max k∈(0,N+1) ( e k b 2 L 2 ) ∇h n+1 4 L 4 + ∇h n+1 1 4 L 4 .
The estimation of E 2 will be done as for E 1 , more precisely we have :

|E 2 | K + ∇h n+1 1 L 4 (Ω) ∇s n+1 b L 4 (Ω) e n b L 2 (Ω) + s n b L 2 (Ω) ≤ K + G 4 ∇h n+1 1 L 4 (Ω) e n b -e n+1 b L 4 + e n+1 b L 4 ∇s n+1 b L 2 (Ω) T 1 + K + G 4 ∇h n+1 1 L 4 (Ω) s n b -s n+1 b L 4 + s n+1 b L 4 ∇s n+1 b L 2 (Ω) T 2
.

We remark that T 1 = S 4 , then we have:

|T 1 | ≤ K + G 4 C(b) 2 4 2 1 2 6 e n b -e n+1 b 2 L 2 + 1 2 ( 4 + 5 ) ∇s n+1 b 2 L 2 + 7 2 ∇e n+1 b 2 L 2 + ( 6 + 1 8 7 - 2 
5 ) max k∈(0,N+1) ( e k b 2 L 2 ) ∇h n+1 1 4 L 4 .
We notice that we can use for T 2 , the estimate obtained for S 2 by substituting s n b to e n b , this yields

|T 2 | ≤ K + G 4 C(b) 2 1 2 1 2 3 s n b -s n+1 b 2 L 2 + 1 2 + -1 3 2 ∇s n+1 b 2 L 2 + ( 3 + 2 ) max k∈(0,N+1) ( s k b 2 L 2 ) ∇h n+1 1 4 L 4 .
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|E 2 | ≤ K + G 4 C(b) 2 1 2 1 2 3 s n b -s n+1 b 2 L 2 + C(b) 2 4 2 1 2 6 e n b -e n+1 b 2 L 2 + 7 2 ∇e n+1 b 2 L 2 + 1 2 ( 1 + 4 + 5 ) + -1 3 2 ∇s n+1 b 2 L 2 + ( 3 + 2 ) max k∈(0,N+1) ( s k b 2 L 2 ) ∇h n+1 1 4 L 4 +( 6 + 1 8 7 - 2 
5 ) max k∈(0,N+1) ( e k b 2 L 2 ) ∇h n+1 1 4 L 4 . (46) 
Besides

|E 3 | K + (h n b -h n 1,b ) 1 2 ∇s n+1 b L 2 h 2 ∇(h n+1 1 -P b (h n+1 1 )) L 2 |E 3 | ≤ K - 2 h n b -h n 1,b ∇s n+1 b 2 L 2 + h 2 K 2 + 2K - C 2 I b 2k h 1 2 Y(Ω T ) . (47) 
Finally, we recall that

E 4 = ((h 2 -h n b )K∇(h n+1 b -h n b ), ∇s n+1 b
), and we write

h n+1 b -h n b = -e n+1 b + e n b + (P b (h n+1 ) -h n+1 ) -(P b (h n ) -h n ) + h n+1 -h n . Hence |E 4 | h 2 C(b)K + e n+1 b -e n b L 2 ∇s n+1 b L 2 +h 2 K + ∇(P b (h n ) -h n ) L 2 C I b k h Y(Ω T ) + ∇(P b (h n+1 ) -h n+1 ) L 2 C I b k h Y(Ω T ) + ∇(h n+1 -h n ) L 2 ≤δt h Y(Ω T ) ∇s n+1 b L 2 ,
and therefore

|E 4 | 2 h 2 2 C(b) 2 K 2 + δ e n+1 b -e n b 2 L 2 + δ 2 ∇s n+1 b 2 L 2 + ( 4h 2 2 K 2 + C 2 I b 2k δ + 2 h 2 2 K 2 + δt 2 δ ) h 2 Y(Ω T ) .
Putting together (37)-( 41)-( 44)-( 45)-( 46)-( 47) and (48), we get after simplifications

φ 2 δt e n+1 b 2 L -e n b 2 L 2 + e n+1 b -e n b 2 L 2 + φ 2δt s n+1 b 2 L 2 -s n b 2 L 2 + s n+1 b -s n b 2 L 2 + 3 4 δ -K + G 4 2 η + 1 + 2 -1 3 2 + 3 2 7 ) ∇e n+1 b 2 L 2 + δ 4 -K + G 4 2 η + 1 2 + -1 3 2 + 3 2 ( 4 + 5 ) ∇s n+1 b 2 L 2 - 2 h 2 2 C(b) 2 K 2 + δ + K + G 4 C(b) 2 4 2 1 3 + C(b) 2 4 2 4 6 e n+1 b -e n b 2 L 2 -K + G 4 C(b) 2 8 2 1 3 s n b -s n+1 b 2 L 2 + K - 2 h 2 -h n b ∇(e n+1 b + s n+1 b ) 2 L 2 + K - 2 h n b -h n 1,b ∇s n+1 b 2 L 2 ≤ ( 3 + 2 + 6 + -2 5 8 7 ) ∇h n+1 4 L 4 + 2 ∇h n+1 1 4 L 4 max k∈(0,N+1) ( e k b 2 L 2 ) + ( 3 + 2 ) ∇h n+1 1 4 L 4 max k∈(0,N+1) ( s k b 2 L 2 ) +C f (φ, K -, K + , δ , h 2 , C I , C P , G 4 ) (1 + ∇h n+1 4 L 4 + ∇h n+1 1 4 L 4 ) max( h 2 Y(Ω T ) , h 1 2 Y(Ω T ) ) (b k + δt) 2 .
If the real numbers η and { i > 0} i=1,7 are chosen such that:

3 4 δ -K + G 4 2 η + 1 + 2 -1 3 2 + 3 2 7 ) > 0 and δ 4 -K + G 4 2 η + 1 2 + -1 3 2 + 3 2 4 + 5 > 0, (48) 
and if the following condition is fulfilled

φ 2δt - 2 h 2 2 C(b) 2 K 2 + δ + K + G 4 C(b) 2 4 2 1 3 + C(b) 2 4 2 4 6 > 0, ( 49 
) then φ( e n+1 b 2 L 2 -e n b 2 L 2 ) + φ( s n+1 b 2 L 2 -s n b 2 L 2 ) + 2 δt 3 4 δ -K + G 4 2 η + 1 + 2 -1 3 2 + 3 2 7 ) ∇e n+1 b 2 L 2 + 2 δt δ 4 -K + G 4 2 η + 1 2 + -1 3 2 + 3 2 ( 4 + 5 ) ∇s n+1 b 2 L 2 ≤ 2 δt ( 3 + 2 ) ∇h n+1 1 4 L 4 max k∈(0,N+1) ( s k b 2 L 2 ) + 2 δt ( 3 + 2 + 6 + -2 5 8 7 ) ∇h n+1 4 L 4 + 2 ∇h n+1 1 4 L 4 max k∈(0,N+1) ( e k b 2 L 2 ) + 2 δt C f (φ, K -, K + , δ , h 2 , C I , C P , G 4 ) (1 + ∇h n+1 4 L 4 + ∇h n+1 1 4 L 4 ) max( h 2 Y(Ω T ) , h 1 2 Y(Ω T ) ) (b k + δt) 2 . ( 50 
)
By adding this inequality for n ∈ {0, ..., p} and ∀p ∈ {0, ..., N + 1}, we get

φ e p+1 b 2 L 2 + s p+1 b 2 L 2 ≤ φ e 0 b 2 L 2 + s 0 b 2 L 2 + 2 ( 3 + 2 ) max k∈(0,N+1) ( s k b 2 L 2 ) × p k=0 ∇h k+1 1 4 L 4 +2 ( 3 + 2 + 6 + -2 5 8 7 ) max k∈(0,N+1) ( e k b 2 L 2 ) × δt p k=0 ∇h n+1 4 L 4 + 2 ∇h n+1 1 4 L 4 +2 C f (φ, K -, K + , δ , h 2 , C I , C P , G 4 ) (b k + δt) 2 max( h 2 Y(Ω T ) , h 1 2 Y(Ω T ) ) × δt p k=0 (1 + ∇h k+1 4 L 4 + ∇h k+1 1 4 L 4 ).
Then, if δt is sufficiently small to have ≤ φ e 0 b 2

L 2 + s 0 b 2 L 2 + 2 C f (φ, K -, K + , δ , h 2 , C I , C P , G 4 ) (T + 2 C 4 ) (b k + δt) 2 max( h 2 Y(Ω T ) , h 1 2 Y(Ω T ) ).
If the parameter φ satisfy :

(φ -6 C 4 F 1 ( 2 , 3 , 5 , 6 ) > 0, (51) 
then, since e 0 b 2

L 2 ≤ C 2 I (b k + δt) 2 h 2 Y(Ω T ) and s 0 b 2 L 2 ≤ C 2 I (b k + δt) 2 h 2 Y(Ω T )
, we obtain the L 2 stability ( 29) -( 30) of Theorem 3. We establish the estimates [START_REF] Simon | Compact sets in the space L p (0, T, B)[END_REF], [START_REF] Talibi | Existence of solutions for a degenerate seawater intrusion problem[END_REF] by adding (50) for n = 1, ..., N.

It is now necessary to give a meaning to the conditions (48), ( 49) and (51), in particular by choosing η and i , i = 1, 7. We remind that δ is the thickness of the diffuse interface, we can, without lost of generality, assume that δ = O(1). We take

η = α 16 K -G 4 , 1 = α 4 K -G 4 , 2 = K 3 -G 3 4 α 3 and 4 = 5 = 7 = α 6 K -G 4 ,
with 0 < α < 1. These choices give a meaning to (48), in particular if the medium is assumed to be homogeneous, indeed, the parameters δ, K -, K + have to satisfy the first hypothese of ( 27)

(δ -5α K + K - ) > 0.
Next, by taking

3 = 8 δ K -G 3 4 α 2 h 2 2 and 6 = 12 δ K -G 3 4 α 2 h 2 2 , F i, j+ 1 2 = h i (α(h) i, j+1 -α(h) i, j ) k j+ 1 2
, for i = 0, ..., N, j = 1, ..., M.

The term (T s (h

) ∂ f ∂x )(x i+ 1 
2 ) is approximated as follows:

G i+ 1 2 , j = λ i, j k j f i+ 1 2 , j -f i, j h + i on K i, j , = 1, ..., N, and 
G i+ 1 2 , j = -λ i+1, j k j f i+ 1 2 , j -f i j h - i+1
on K i+1, j , i = 0, ..., N.

Requiring the two above approximations of T s (h) ∂ f ∂x to be equal (due to the conservativity of the flux) yields the value of f i+ 1 2 , j for i = 1, ..., N -1

f i+ 1 2 , j = f i+1, j λ i+1, j h - i+1 + f i, j λ i, j h + i λ i+1, j h - i+1 + λ i, j h + i with λ i+1, j = (h 2 -h i+1, j
) and λ i, j = (h 2h i, j ). Which, in turn, allows to give the expression of the approximation

G i+ 1 2 , j of T s (h) ∂ f ∂x (x i+ 1 2 , y j ) : G i+ 1 2 , j = k j τ i+ 1 2 , j ( f i+1, j -f i, j ), i = 1, ..., N -1. with τ i+ 1 2 , j = λ i, j λ i+1, j h + i λ i+1, j + h - i+1 λ i, j , i = 1, ..., N -1,
If the structured mesh is regular and if the point (x i , y j ) is assumed to be the center of K i j then h + i = h - i = h 2 and h i+ 1 2 = h (and the same for k), so that

G i+ 1 2 , j = 2 × k × λ i, j λ i+1, j λ i+1, j + λ i, j f i+1, j -f i, j h ,
and therefore the mean harmonic value of λ is involved. The explicit in time numerical scheme for the approximation of the equation ( 11) is therefore

φ h n+1 i, j -h n i, j δt - 1 h 2 (α(h) n i+1, j -2α(h) n i, j + α(h) n i-1, j ) - 1 k 2 (α(h) n i, j+1 -2α(h) n i, j + α(h) n i, j-1 ) (53) 
+ 2 h 2 { λ n i, j λ n i+1, j λ n i+1, j + λ n i, j ( f n i+1, j -f n i, j )- λ n i, j λ n i-1, j λ n i, j + λ n i-1, j ( f n i, j -f n i-1, j )}+ 2 k 2 { λ n i, j λ n i, j+1 λ n i, j + λ n i, j+1 ( f n i, j+1 -f n i, j )- λ n i, j λ n i, j-1 λ n i, j + λ n i, j-1 ( f n i, j -f n i, j-1 )} = -I s n+1 i, j .
In the same way, the numerical explicit in time scheme for the approximation f is:

φ f n+1 i, j -f n i, j δt - 1 h 2 (α( f ) n i+1, j -2α( f ) n i, j + α( f ) n i-1, j ) - 1 k 2 (α( f ) n i, j+1 -2α(h) n i, j + α(h) n i, j-1 ) + 1 h 2 (α(h) n+1 i+1, j -2α(h) n+1 i, j + α(h) n+1 i-1, j ) + 1 k 2 (α(h) n+1 i, j+1 -2α(h) n+1 i, j + α(h) n+1 i, j-1 ) = -(I f + I s ) n+1 i, j . (54) 
Since we suppose the existence of two diffuse interfaces of thickness δ 0, we need to add to equation ( 53

) the discrete diffusive term δ 1 h 2 (h n+1 i+1, j -2h n+1 i, j + h n+1 i-1, j ) + 1 k 2 (h n+1 i, j+1 -2h n+1 i, j + h n+1 i, j-1
) . and to add to equation ( 54) the discrete diffusive term

δ 1 h 2 ( f n+1 i+1, j -2 f n+1 i, j + f n+1 i-1, j ) + 1 k 2 ( f n+1 i, j+1 -2 f n+1 i, j + f n+1 i, j-1 ) .

Numerical simulations

We focus on the case of free aquifers but we note that the case of confined aquifers is done in [START_REF] Abudawia | Numerical analysis for a seawater intrusion problem in a confined aquifer[END_REF]. As mentioned in Introduction, in the confined case we have the analytical solution of Keulegan which makes it possible to illustrate the results of Theorem 3. In unconfined case, we are going to compare the numerical approximation of the salt elevation h to the solution computed with the Ferris model describing the tidal fluctuations. Then, we are applying to our problem the previous two numerical schemes, namely the P 1 Lagrange finite element method (FEM) and the finite volume method (FVM) in order to show that, if the spatial resolution is sufficiently small, the two methods lead to the same results.

We used the package FreeFem++ for FEM and we refer to [START_REF] Pironneau | FreeFem++ version 2[END_REF] for more details about this library. For FVM, we wrote a Matlab code. We indicate in Table 1 the CPU time obtained for both FEM and FVM.

In each of the following simulations, we numerically solve the full 2D problem and we plot at different times, the cross section (with respect to y) of h, the freshwater/saltwater interface depth, and of h 1 , the depth of the interface between the saturated and unsaturated medium. The aquifer is approximated with the square domain (0 m, 50 m) × (0 m, 50 m) and we take h 2 = 10 m for the aquifer thickness, K = 39.024 m/ day for the hydraulic conductivity and φ = 0.3 for the porosity. In the first part of this section, an oscillating Dirichlet boundary condition at x = 0, computed with Ferris model, is imposed on the left of the domain for h (while h 1 freely evolves with an homogeneous Neumann boundary condition on the left). The numerical solution obtained for h with FEM is then compared with the analytic solution derived from Ferris model. In the second part of this section, we impose homogeneous Neumann boundary conditions, in such a way that the system can freely evolve. Then, we compare FEM and FVM in three cases: the situation without forcing term, the situation where we inject fresh water around the point (25 m, 25 m ) during all the simulation and the last case corresponds to the freshwater pumping located around the same previous point ( 

With Dirichlet boundary conditions

We couple the problem with the tides effects. Tidal fluctuations of the sea produce progressive pressure waves in adjacent aquifers. For this simulation we use the parameters in [START_REF] Cooper | A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer[END_REF] after a rescaling to our small aquifer. We impose a Dirichlet boundary condition on the left boundary {x = 0} for the saltwater elevation h. Its value is computed with the classical tide-produced change model for the artesian head of [START_REF] Ferris | Cyclic fluctuations of water level as a basis for determining aquifer transmissibility[END_REF]. Parameter δ is calibrated using the formula for the amplitude of the dispersive zone (eq. ( 2) in [START_REF] Cooper | A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer[END_REF]). It is of order one. In view of comparing the result obtained with FEM, we thus have plotted a reference solution, here derived from the analytic formula of [START_REF] Ferris | Cyclic fluctuations of water level as a basis for determining aquifer transmissibility[END_REF]. The mesh is built with N = 100 points in each direction of the aquifer. The numerical solution fit quite well the analytic solution except near the tidal fluctuations (see Figure 1). The error E h between the saltwater elevation obtained with FEM and the analytic solution in L 2 -norm and L ∞ -norm is given in Table 2. By increasing N (namely N = 200), the error is divided by 4 which confirms the order of convergence established in Theorem 3 (cf. Figure 2 and Table 2).

With Neumann boundary conditions

Neumann boundary conditions are now considered. First, we take N = 100 points on each direction of the aquifer and we take δt = 0.01 day.

Figure 3 illustrates that FEM and FVM give similar qualitative results when the system evolves without forcing term. The computations of the relative difference between the two solutions in L ∞ norm and in L 2 norm confirm this result (see Table 3). We emphasize that the physical parameters satisfy the two assumptions ( 27)- [START_REF] Meyers | An Lp-estimate for the gradient of solution of second order elliptic divergence equations[END_REF] given in Theorem 3 . In the cases of injection or pumping scenario around the (25 m, 25 m), we observe that the impact on the levels of depths h and h 1 are lower when using the finite volume method rather than the finite element method. The injection process (or pumping process) affects globally the aquifer with the finite element method while the impact is localized around the area of injection for the finite volume method. But if we refine the mesh by increasing N (for both methods), these observations are not valid anymore. The relative difference between the two solutions in L ∞ norm (resp.. in L 2 norm) is of order 10 -2 (resp. 10 -4 ) when we take N = 200 (see Figures 4,5 and Table 4 ). 

Lemma 2 .

 2 Let h 0 b and h 0 1,b in (I b (h D )+V k b )×(I b (h 1,D )+V k b

)

  Taking v b = e n+1 b in equation (42) and w b = s n+1 b in (43), we obtain after summing up (42)-(43) : b ) + δ(∇e n+1 b , ∇e n+1 b ) + δ(∇s n+1 b , ∇s n+1 b )+

+K + ∇h n+1 1 L 4 (

 14 Ω) e n be n+1 b L 4 + e n+1 b L 4 ∇s n+1 b L 2 (Ω) := S 1 + S 2 + S 3 + S 4 .

δt p k=0 ∇h k+1 4 L 4 ≤ ∇h 4 L 4 (Ω T ) ≤ C 4 and δt p k=0 ∇h k+1 1 4 L 4 ≤ ∇h 1 4 L 4 (φ - 6 C 4 F 1 ( 2 , 3 , 5 , 6 , 2 L 2 ) + φ - 2 C 4 F 2 ( 2 , 3 , 5 ,

 44444444641235622242235 Ω T ) ≤ C 4 , therefore (since nδt ≤ T )
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Figure 1 :hh

 1 Figure 1: Comparison between FE solution and analytic solution derived from Ferris model. Times t=0,5 day (on the left) and t=1 day (on the right), N=100.

Figure 2 :

 2 Figure 2: Comparison between FE solution and analytic solution derived from Ferris model. Times t=0,5 day (on the left) and t=1 day (on the right), N=200. L 2 -norm L ∞ -norm N = 100 N = 200 N = 100 N = 200 E h (t = 0.5) 0.4325 0.0120 0.2558 0.0220 E h (t = 1) 0.6811 0.1901 0.3869 0.0474

Indeed, in our

  case K + = K -= 4.518 10 -4 m/s, δ = 1.5 m, then (27) is fulfilled by choosing α < δ 5 = 0.3 < 1. Besides, since C(b) = O 100 50 , δt = 864 s, we get 2 h 2 2 K + δ (2 K + + K -)C(b) 2 δt = 4 × 6 × (4.518) 2 × 864 × 10 -6 1.5 = 0.28218 < φ = 0.3.

h 1 (h 1 (Figure 3 :hh

 113 Figure 3: Comparison between FEM and FVM without forcing term. Times t=0,5 day (on the left) and t=1 day (on the right).

Figure 4 :

 4 Figure 4: Comparison between FEM and FVM during a pumping process. N=100 (on the left) and N=200 (on the right).
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Figure 5 :

 5 Figure 5: Comparison between FEM and FVM during an injection process. N=100 (on the left) and N=200 (on the right).

Table 1 :

 1 25 m, 25 m). CPU time.

	N = 100	N = 200
	FEM 60,129 s 473,646 s
	FVM 8,821 s	45,938 s

Table 2 :

 2 Norms of the error E h between the FE solution and the analytic solution of Ferris model.

Table 3 :

 3 Norms of the relative difference between the FE solution and the FV solution. Case without forcing terms, N = 100.

		L 2 -norm		L ∞ -norm	
		Case with pumping Case with injection process Case with pumping Case with injection process
	∆h	2.9084 e-04	6.9508e-04	0.0093	0.0316
	∆h 1	1.7273 e-04	1.4913e-04	0.0188	0.0206

Table 4 :

 4 Norms of the relative difference between the the FE solution and the FV solution, N = 200.

(49) leads to the stability condition [START_REF] Meyers | An Lp-estimate for the gradient of solution of second order elliptic divergence equations[END_REF] given in Theorem 3:

and inequality (51) becomes φ -10 δ

Condition (52) may look very restrictive. However, we can pick the coefficient φ arbitrary large (for it corresponds to a time scaling), so that the conditions (52) can indeed be satisfied. More precisely, setting

we proved the convergence result for the short time t ∈ [0, t 0 ]. But taking t = t 0 as new initial data, the result is obtained for all t 0 ≤ t ≤ 2 t 0 . Using this observation inductively, we derive the convergence on the whole range of study [0, T ]. The Theorem 3 is thus proved.

A finite volume method for the seawater intrusion problem

We follow the presentation of finite volume method presented in [START_REF] Eymard | Finite Volume Method[END_REF] and we adapt it to our case. Let us define the rectangular mesh denoted by T , of the interval (0, L x ) × (0, L y ) consisting of N × M cells denoted by K i j 1 ≤ i ≤ N. 1 ≤ j ≤ M, and N × M points of (0, L x ) × (0, L y ). (x i , y j ) 1≤i≤N, 1≤ j≤M satisfying the following assumptions:

The discrete unknowns are denoted by u n i, j , and are expected to be some approximation of the value of u(t n , x i , y j ) (or of the mean value of u over K i j ). We set

In order to simplify the presentation, we first consider the case of δ = 0 and the depth of the interface between saturated and unsaturated medium will be denoted by f instead of h 1 . Integrating the first equation over each cell [t n , t n+1 ] × K i j yields :

Q s (x, y)dxdy the mean value of Q s over K i j . The fluxes are then approximated by differential quotients with respect to the discrete unknowns u i, j , i = 1, ..., N, j = 1, ..., M, : 1 2 , j = k j (α(h) i+1, j -α(h) i, j ) h i+ 1 2 , for i = 0, ..., N, j = 1, ..., M