
HAL Id: hal-04202542
https://ulco.hal.science/hal-04202542

Submitted on 11 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Models to classify the difficulty of genetic algorithms to
solve continuous optimization problems

Noel Rodríguez-Maya, Juan Flores, Sébastien Verel, Mario Graff

To cite this version:
Noel Rodríguez-Maya, Juan Flores, Sébastien Verel, Mario Graff. Models to classify the diffi-
culty of genetic algorithms to solve continuous optimization problems. Natural Computing, 2023,
�10.1007/s11047-022-09936-9�. �hal-04202542�

https://ulco.hal.science/hal-04202542
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Models to Classify the Difficulty of Genetic
Algorithms to Solve Continuous Optimization
Problems

Noel E. Rodríguez-Maya · Juan J. Flores ·
Sébastien Verel · Mario Graff

Received: date / Accepted: date

Abstract What constitutes a hard optimization problem to an Evolutionary
Algorithm (EA)? To answer the question, the study of Fitness Landscape (FL)
has emerged as one of the most successful techniques. FL measures the land-
scape depicted by the problem’s cost function. Fitness Landscape Analysis
(FLA) uses a set of metrics to try to determine the hardness of problems; FL
metrics can be divided in descriptive and dynamic. Descriptive metrics mea-
sure the intrinsic problem features, examples of these measures are ruggedness,
neutrality, basins of attraction, and epistasis. Dynamic metrics measure the
evolvability of EA, examples of these measures are fitness distance correlation,
and negative slope coefficient. This contribution presents a procedure called
Performance Classification Models (PCM) which creates learnings models to
predict the performance exhibited by Genetic Algorithms (GA) in the solution
of optimization problems in the continuous domain. PCM classifies the perfor-
mance in two classes (easy or difficult). The dataset has as predictor variables,

Noel E. Rodriguez-Maya
Tecnológico Nacional de México / Instituto Tecnológico de Zitácuarp
Av. Tecnológico 186, Col. Manzanillos, Zitácuaro, Michoacán, México
E-mail: noel.rm@zitacuaro.tecnm.mx B

Juan J. Flores
Universidad Michoacana de San Nicolás de Hidalgo
Gral. Francisco J. Múgica S/N, Morelia, Michoacán, México
E-mail: juanf@umich.mx

Sébastien Verel
Laboratoire d’Informatique Signal et Image Universite du
Littoral Côte d’Opale, Calais, France
E-mail: verel@lisic.univ-littoral.fr

Mario Graff
INFOTEC - Centro de Investigación e Innovación en Tecnologías de la
Información y Comunicación, Cátedras CONACyT, Aguascalientes, México,
CONACyT Consejo Nacional de Ciencia y Tecnología, Dirección de Cátedras,
Insurgentes Sur 1582, Crédito Constructor, Ciudad de México 03940, México
E-mail: mario.graff@infotec.mx

2 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

FL features, and as target variable the performance exhibited by the GA. The
problems used in experiments are benchmark optimization functions. A prod-
uct of this approach, is a procedure to Recommend Population Size (RPS):
given an optimization problem, RPS recommends the minimal population size
to get an efficient level of performance. This work can be easily extended to
use other metrics, or a different set of problems, or the use of other EA. De-
veloping performance models for other EA, we can solve an instance of the
algorithm selection problem.

Keywords Optimization · Performance · Genetic Algorithms · Fitness
Landscape Analysis

1 Introduction

When researchers and practitioners of Evolutionary Algorithms (EA) face new
optimization problems, their main difficulties are the determination of the best
algorithm and its optimal input parameters that guarantee a good approxi-
mation to the optimal solution. The prediction of hardness of optimization
problems (in EA) can help us set our expectations to get a solution for those
problem, as well as to determine suitable parameter settings.

During the last decades, many researchers have tried to determine which
are the features of optimization problems that make them difficult to solve.
One of the first tools to analyze the features of problems and algorithms is the
Fitness Landscape (FL) metaphor. FL was introduced in the biology field in
the 30’s by Sewall Wright (S. Wright, 1932), for the study of biology evolution
(natural selection). He studied evolution through the relationship between the
genotype space (organism) and its reproductive success (fitness). This can be
viewed as an optimization problem: searching through search space to find the
best fitness. Each position in the search space, has its corresponding fitness
value, those values depict peaks, rugged and smooth areas, etc.

In optimization, FL is defined as the geometric form depicted by the cost
functions, in other wods, the materialization of the genotype space (for each
point in the search space, it corresponds a fitness value). Literature reports
many FL techniques (in this work we refer to them as FL metrics) for the
characterization (related with hardness) of optimization problems. Some of
the most popular are: Neutrality measures the rate of neutral regions, Rugged-
ness measures multimodality by the number of peaks and valleys found in
a random walk, Basins of Attraction obtains the rate of basins of attraction
present in a FL with respect to the sample size, Epistasis establishes a rate of
gene interactivity, Fitness Distance Correlation measures the deceptiveness of
optimization problems, and Negative Slope Coefficient measures the hardness
of optimization problems through their evolvability.

The aforementioned FL metrics have shown success in estimating the hard-
ness of optimization problems, however, in isolation, their performances are
weaknesses in the sense that only some optimization problems can be correctly
characterized. It is necessary to establish a strongest metric or set of metrics,

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 3

that can more accurately predict the hardness of optimization problems. The
metric or set of metrics to be used, must characterize different benchmark
optimization problems, and not only a family of problems. This contribution
presents an approach to predict the difficulty of solving optimization problems
in the continuous domain using GA. This approach is called Performance Clas-
sification Models (PCM). A byproduct of PCM is a recommender-system, a
procedure to Recommend Population Size (RPS), which given an optimiza-
tion problem, suggests the smallest efficient population size to be used by GA
in the solution of that problem. PCM complements previous work by using
a set of learning models to classify the difficulty of GA to solve continuous
optimization problems in two dimensions. PCM uses as predictor variables
the following FL metrics: neutrality, ruggedness, basins of attraction, epista-
sis, fitness distance correlation, and negative slope coefficient, and, as target
variable, the performance obtained from GA experiments.

To establish the hardness of optimization problems, we approximate its
difficulty with the performance of GA to solve them. We categorize the per-
formance in two classes: easy and difficult. The experiments were performed
using the Real-Coded Genetic Algorithms (RCGA). The learning models gen-
erated by PCM, are based on Random Forests. The models map from a set of
problems to a set of difficulty indicators:

M : F → {easy, difficult}

where F is the set of optimization problems in the continuous domain in two
dimensions, and easy and difficult are the problem difficulty indicators. Based
on PCM, a direct application of this approach is the procedure to Recom-
mend Population Size (RPS): for a given optimization problem, RPS tries to
establish the minimal population size that ensures the best GA performance.
Results suggest a high correlation between the recommended population size
and the performance exhibited by optimization problems.

This work is organised as follows: Section 2 reviews the related work, Sec-
tion 3 defines Fitness Landscape Analysis and its related metrics, Section 4
presents a brief introduction to Real-coded GA, Section 5 presents the main
proposal of this contribution the Performance Classification Models, Section 6
presents the main results and the Procedure to Recommend Population Size,
and Section 7 presents a discussion and conclusions.

2 Related Work

Evolutionary Algorithms (EA) are bio-inspired optimization tools, capable of
solving a variety of optimization problems. According to the nature of phe-
nomena, some EA are more successful at solving certain problems. For ex-
ample, in the case of combinatorial optimization problems, the well known
No-Free-Lunch (NFL) theorem, says “No single optimization algorithm is at
all times superior to any other” (Wolpert & Macready, 1995, 1997). It would
be helpful to know a priori what algorithm from a set of them, is the best one

4 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

to solve a given optimization problem (K. Malan & Engelbrecht, 2009). The
hardness of optimization problems, is related to features of both, problems,
and EA’s heuristic. Some of those features are the structure of problems, the
internal operation of the EA’s heuristic, and the sampling method, among
others (Jones, 1995; Vanneschi, 2004; Vanneschi, Valsecchi, & Poli, 2009; He,
Reeves, Witt, & Yao, 2007). To select the best EA for a given problem, many
authors suggest the characterization of the problem through the use of Fitness
Landscape features. Fitness Landscape (FL) was proposed by Wright in the
1930’s (S. Wright, 1932), it refers to the geometric form of problems. FL uses
the search space’s features, and its orthogonal projection materialized by the
cost function; with the use of fitness function (cost function), FL measures the
number of peaks, the rate of neutral areas, the rate of basins of attraction, etc.
(Volke, Bin, Zeckzer, Middendorf, & Scheuermann, 2014). E.g., for a smooth
landscape with a single optimum will be relatively easy to solve for many algo-
rithms, while a very rugged landscape, with many local optima, may be more
difficult to solve (Horn & Goldberg, 1995; Kauffman & Johnsen, 1991).

Literature reports different approaches to predict the hardness of optimiza-
tion problems when solved by EA. Recent works use different types of Fitness
Landscape features: some authors make use of an isolated FL metric, while
others make use of a set of FL metrics. Other approaches capture the dynam-
ics of EA on fitness landscapes, looking for a relation between the dynamics
and the problem difficulty. Results in approaches, vary according to problem’s
features and the efficacy of the FL metrics.

The following are examples of works that use a single FL metric. Grefen-
stette (Jones, 1995) demonstrates that deception alone is not necessary nor suf-
ficient to ensure that a problem is difficult for GA. Naudts and Kallel (Naudts
& Kallel, 2000b) use as difficulty metrics, epistasis variance and fitness distance
correlation on easy and hard problems. They conclude that isolated metrics
are no capable to establish the main characteristics of easy and hard problems.
Reeves and Wright (Reeves & Wright, 1995) use epistasis as problem difficulty
in bit-string problems using GA, their conclusions show a low relation between
problem difficulty and epistasis.

Some authors, capture the search dynamics of EA on optimization prob-
lems. Vanneschi et al. (Vanneschi, Tomassini, Collard, & Vérel, 2006; Van-
neschi, Tomassini, Pirola, Verel, & Mauri, 2006) proposed the use of Negative
Slope Coefficient (NSC) to try to predict the hardness of Genetic Programming
problems. NSC uses the term of fitness clouds, which is a 2-dimensional rep-
resentation of evolvability, where the fitness of individuals are plotted against
the fitness of its neighbours. The results show an accurate metric in the predic-
tion of hardness of some family of problems in Genetic Programming. Fitness
Distance Correlation (FDC) measures the level of deceptiveness of GA prob-
lems in a bit-string encoding (Jones & Forrest, 1995). According to the metric,
problems below a threshold (−0.15) are considered as deceptives, the more de-
ceptive, the harder the problem. FDC has been tested in different optimization
problems without final results.

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 5

To improve the accuracy of FL metrics, some authors suggest the use of
a set of metrics (mixing features of problems and algorithms). In the field
of Genetic Programming (GP), Graff and Poli proposed a model of perfor-
mance (Mario Graff and Riccardo Poli, 2010), estimating the performance
of a GP system, for a given problem, using a set of points from the search
space. Their results showed how the algorithm’s features are related to its per-
formance. Caamaño et al. (Caamaño, Prieto, Becerra, Bellas, & Duro, 2010;
Caamaño, Bellas, Becerra, & Duro, 2013) proposed the use of FL features
based on modality and separability to characterize benchmark optimization
problems. They conclude that there exist a relation between those features
and the performance exhibited by EA. Malan et al. (K. Malan & Engelbrecht,
2009; K. M. Malan & Engelbrecht, 2013) proposed the characterization of
optimization problems (its static features) before trying to predict their per-
formance using some EA; based on the problem’s characteristics the users can
select the best EA that solves the problem. Trujillo et al. (Trujillo, Martínez,
Galván López, & Legrand, 2012; Trujillo, Martínez, López, & Legrand, 2011)
use a set of FL features (dynamic and static metrics) to predict the hardness
of GP problems. They use a black-box process: the FL features of a set of GP
problems are passed to the ML process to generate a prediction model. Their
results show an accurate model to predict the performance of GP.

Recently many works have emerged, due to the popularity of GECCO’s
workshop on Black Box Optimization Benchmark (BBOB) (Auger et al., 2012),
where the contestants test the performance of their heuristics through the plat-
form COmparing Continuous Optimisers (COCO) (Hansen, Auger, Finck, &
Ros, 2010). COCO is a real-parameter optimization benchmark, where the
users can perform systematic tests on a set of real-optimization problems.
Mario Muñoz et al. (Muñoz, Kirley, & Halgamuge, 2015) proposed a classifi-
cation model based on four FL features called “Information Content of Fitness
Sequences (ICoFiS)”; their results showed an accurate model using a low rate
of function evaluations. Olaf Mersman et al. (Mersmann et al., 2011) proposed
the use of a reduced number of fitness landscape metrics (low-level features’) to
try to classify the BBOB real optimization problems into 6 classes, their results
classified efficiently the problems. Another approach based on the cell map-
ping techniques (global behavior of non-linear dynamical systems) developed
by Kerschke et al. (Kerschke et al., 2014). Their results show an interesting
method for the construction of high level features, using a reduced number of
function evaluations.

The methodology proposed in this article differs from our previous work
(Rodriguez-Maya, Graff, & Flores, 2014) and complements the related work in
several ways. First, in our previous work we classify the optimization problems
using a mixture of FL measures and GA parameters, this is not practical in
real life applications since GA attributes are not part of optimization prob-
lems. In this work we use only FL features which were computed from the
optimization problems. Second, the majority of works related to the predic-
tion of hardness of optimization problems, take into consideration problems’s
features (static features) or algorithms’s features (dynamic features), but not

6 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

both at the same time. Third, based on the proposed models, a population size
recommender was developed, which recommends the optimal population size
for a given optimization problem. Fourth, this work uses a relatively large set
of benchmark optimization problems 110 problems in the continuous domain
in two dimensions.

3 Fitness Landscape Analysis

Currently, there is not a successful technique or set of techniques in the EA
field, that ensure an accurate estimation of difficulty for the majority of opti-
mization problems (K. Malan & Engelbrecht, 2009). One of the most promising
tools to try to estimate the difficult of optimization problems, is the concept of
Fitness Landscape (FL); generally the use of a set of FL metrics is called Fit-
ness Landscape Analysis (FLA). FLA measures different features of optimiza-
tion problems and optimization algorithms, those features that can provide
some insight about the hardness of optimization problems when are solved by
EA (K. Malan & Engelbrecht, 2009).

Ruggedness, smoothness, basins of attraction, and deceptiveness appear as
some of the most important features to relate the difficulty of optimization
problems. However, in isolation, these features are not sufficient to describe
the difficulty of optimization problems when solved by EA (Caamaño et al.,
2010; Jones, 1995). It is necessary to use a set of FL features, that ensure
a more accurate predictions. This approach uses different difficulty metrics
to measure different features of optimization problems. The set must capture
the most representative features of problems and the evolutiveness of EA. To
do this, we propose the use of two types of FL metrics: descriptive and dy-
namic (K. Malan & Engelbrecht, 2009; Merkuryeva G., 2011; Reidys & Stadler,
2002). Descriptive metrics focus on the problem’s features while dynamic met-
rics focus mainly on the algorithm.

3.1 Terminology

The following glossary states the general terms used in the following concepts
and definitions included in the remainder of the paper.

Ω - search space on the RD domain.
D - problem dimension.
S = {s1, . . . , sm} - set of points sampled from the search space (S ⊂ Ω).
f : Ω → R - fitness function
ϵ - precision required in GA.
n - population size used in GA.
nT - number of independent executions of GA.
NS(s, δ) = {s′ ∈ S |s ̸= s′ ∧ dE(s, s

′) ≤ δ} - the neighborhood function
defined on S , where δ is the maximum euclidean distance between s and
its neighbours.

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 7

dE(x, y) - Euclidean Distance in Ω.
δ - radious of a neighbourhood in S .

3.2 Descriptive metrics

Descriptive metrics measure some of the main features of optimization prob-
lems. The descriptive metrics used in this paper are: Ruggedness, Neutrality,
Basins of attraction, and Epistasis. The rest of the sub-section describes those
metrics.

3.2.1 Neutrality

Neutrality was introduced in biological evolution theory by Kimura (Kimura,
1983). In the field of EA, neutral regions are areas of the FL that have similar
fitness values (López & Poli, 2006), i.e. similar fitness values within a neigh-
borhood. Neutrality is the rate of neutral areas in S , Equation 1 computes an
estimate of neutrality based on a sample S .

neutralityS(δ, γ) =

∑
s∈S

|NN S (s,δ,γ)|
|NS (s,δ)|

|S | (1)

where S is a set of points from the search space, δ is the maximum distance
between neighbours, and γ is the maximum distance between two fitnesses
considered as similar, NN S(·) is the neutral neighborhood function (defined
in Equation 2), and NS(·) is the neighborhood function defined in section 3.1.

NN S(s, δ, γ) = {∀s′ ∈ S |s ̸= s′ ∧ dE(s, s
′) ≤ δ ∧ dE(f(s), f(s

′)) ≤ γ} (2)

High rates of neutrality, are not desirable in an FL to produce a suitable
evolutive environment (Smith, Philippides, Husbands, & O’Shea, 2002), i.e.
neutrality can affect the distribution of local optima and as a consequence the
success of searching (K. M. Malan & Engelbrecht, 2013).

3.2.2 Ruggedness

Ruggedness is a measure related to the number of peaks surrounded by valleys
in a FL; a problem has high degree of ruggedness when the fitness function in
the search space has a high rate of changes (Vassilev, Miller, & Fogarty, 1999;
Lobo, Miller, & Fontana, 2004; Pitzer & Affenzeller, 2012). In a rugged FL,
the individuals of many EA can get trapped in local optima as a consequence
of premature convergence (K. M. Malan & Engelbrecht, 2013); generally, the
more rugged a function, the harder it is to optimize (Weise, 2009). There are
many techniques to measure the level of ruggedness (Vassilev et al., 1999;
K. Malan & Engelbrecht, 2009), this work uses entropy to estimate the rate
of ruggedness (K. Malan & Engelbrecht, 2009). Entropy measures ruggedness

8 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

by means of three-point paths; a 3-point path is: neutral when the points have
similar fitnesses, smooth when the fitnesses of points change in one direction,
and rugged when the fitnesses of points change in two directions (K. Malan &
Engelbrecht, 2009).

To compute the rate of ruggedness it is necessary to consider the sequence
{ϕt}nt=0 of fitness values picked from a simple random walk on Ω. The aim
is to extract information from that sequence of shapes. The information is
represented by a string S(γ) = s1s2s3...sn of symbols si ∈ {1̄, 0, 1} obtained
by Equation(3).

si = Ψϕt
(i, γ) =


1̄, if ϕi − ϕi−1 < −γ

0, if |ϕi − ϕi−1| ≤ γ

1, if ϕi − ϕi−1 > γ

(3)

The parameter γ is a real number that determines the accuracy of the cal-
culation for S(γ). Equation (4) estimates the rate of ruggedness through the
entropic measure H(S) exhibited by the sequence S.

H(S) = −
∑
p ̸=q

P[pq]log6P[pq] (4)

where p and q are elements from the set {1̄, 0, 1}, and the number 6 in the
log function represents all possible shapes of the sequence. H(S) ∈ [0, 1] is
a rate of the variety of shapes present in the Fitness Landscape. The higher
the value of H(S), the wider the variety of rugged shapes in S (K. Malan &
Engelbrecht, 2009). P[pq] is calculated according to Equation 5:

P[pq] =
n[pq]

n
(5)

where n[pq] is the number of sub-blocks pq in the sequence S(γ). For each
rugged element, P[pq] calculates the probability of occurrence of that element.

3.2.3 Basins of Attraction

Basins of attraction are areas in the search space that lead to a local optimum
(Pitzer, Affenzeller, & Beham, 2010). That is, a basin of attraction is a region
containing a single locally optimal attractor, where all the points contained
in it, are attracted by the basin (Xin, Chen, & Pan, 2009). In this work, we
approximate the set of basins of attractions by the proportion of local optimal
found in S ; Equation 6 computes the proportion of local optima found in S
based on the neighborhood NS .

BS(δ) =
|{H(s, δ); s ∈ S}|

|S | (6)

δ is the maximum distance between neighbours, H(·) is a hill-climber algo-
rithm that calculates the number of local optimums (attractor) for each point
in S (see Equation 7).

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 9

H(s, δ) = {s′ ∈ NS(s, δ)|f ′∗ ≤ f(s′)} (7)

where NS(·) is the neighbourhood function defined in Section 3.1, and f ′∗ is the
minimum fitness value found in the neighborhood. A procedure for determining
the attractors is mentioned in (Ochoa, Tomassini, Vérel, & Darabos, 2008).

3.2.4 Epistasis

Epistasis was introduced in GA by Davidor (Davidor, 1990) as an indication
of problem difficulty. Epistasis is defined as the effect of one gene being de-
pendent on the presence of one or more modifier genes, that is, the effects
of a set of genes caused on another set of genes (the gene interaction); in a
fitness function, this metric measures the level of separability of variables. It
is possible to measure the level of epistasis through an Analysis of Variance
(ANOVA). An analysis of variance measures the level of the contribution of
factors (variables) in a model (fitness function); in this case we are interested
in the interaction between factors. Chan et al. (Chan, Aydin, & Fogarty, 2003)
have adapted ANOVA on optimization problems in continuous domains. To
measure the variance, the variability of fitness values are measured by the
sum of square deviations from the mean fitness (SS), partitioned in its orthog-
onal components. To measure the level of epistasis in optimization problems
(in two dimensions), we are interested in getting to know the level of inter-
action between variables x and y. Equation 8 measures the level of epistasis
(contribution) of the variables x and y in a cost function f .

SSxy =
1

|S |
∑
x∈S

∑
y∈S

f(x, y)− 1

|S |2 (
∑
x∈S

∑
y∈S

f(x, y))2 − SSx − SSy (8)

where SSx and SSy are the level of contribution of factors x and y into the
model, and SSxy is the contribution for both variables x and y. Equations 9
and 10 compute the level of contribution for the variables x and y, respectively.

SSx =
1

|S |
∑
x∈S

(
∑
y∈S

f(x, y))2 − 1

|S |2 (
∑
x∈S

∑
y∈S

f(x, y))2 (9)

SSy =
1

|S |
∑
y∈S

(
∑
x∈S

f(x, y))2 − 1

|S |2 (
∑
x∈S

∑
y∈S

f(x, y))2 (10)

3.3 Dynamic metrics

Dynamic metrics try to capture the difficulty of optimization problems from
the point of view of the algorithm. To measure the hardness of problems, this
approach considers the intrinsic features of EA, e.g. genetic distance between
individuals, rate of improvement in neighbors of individuals, etc. All those

10 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

features are expressed in terms of genetic operators (e.g. selection, mutation,
and crossover) or evolvability (the level of improvements between individuals
and their neighbors). In this work we use two of the most successful metrics:
Fitness Distance Correlation, and Negative Slope Coefficient. This subsection
describes these metrics.

3.3.1 Fitness Distance Correlation

Fitness Distance Correlation (FDC), developed by Jones and Forrest (Jones &
Forrest, 1995), was one of the first metrics devised to predict the difficulty of
EA to solve optimization problems. FDC measures the level of deceptiveness
of optimization problems; generally, deceptiveness mislead the search to local
optima rather than to global optima (Chen, Hu, Hirasawa, & Yu, 2008). The
main advantage of FDC, is that it has been proved, as a suitable indicator of
problem difficulty in GA and Genetic Programming (Vanneschi & Tomassini,
2002; Vanneschi, Tomassini, Collard, & Vérel, 2006; Vanneschi, Tomassini,
Collard, & Clergue, 2005; Pitzer & Affenzeller, 2012). Its main disadvantage
is that the optimal solutions must be known a priori, which is unrealistic in
real life applications (Vanneschi, Clergue, Collard, Tomassini, & Vérel, 2004;
Altenberg, 1997; Naudts & Kallel, 2000a; Vanneschi et al., 2005). Nonetheless,
we are using this metric because we do know the global optimum for all the
problems in the training and test sets.

Let f be the function to optimize (with a global optimum located at x∗), S
a set of n individuals scattered through the function’s domain, Φ = {ϕ1, ..., ϕn}
the corresponding evaluations of the objective function at those points, and
D = {d(x1, x

∗), ..., d(xn, x
∗)} the distance of the individuals to the global

optimum. fdc is defined by Equation 11.

fdc =
CΦD

σΦσD
(11)

where σΦ and σD standard deviations, ϕ̄ and d̄ means of Φ and D, respectively,
and the covariance of Φ and D is defined by Equation 12.

CΦD =
1

n

n∑
i=1

(ϕi − ϕ̄)(di − d̄) (12)

3.3.2 Negative Slope Coefficient

NSC was developed by Vanneschi et al. (Vanneschi, Tomassini, Collard, &
Vérel, 2006) to capture the evolvability of EA; evolvability is the capacity
of genetic operators to improve the fitness quality of individuals (Pitzer &
Affenzeller, 2012). To measure evolvability, NSC uses the concept of Fitness
Cloud (FC): the fitnesses of individuals against the fitnesses their neighbors
are plotted creating a cloud of evolvability (the level of improvement between
individuals and neighbors) (Vérel, Collard, & Clergue, 2007). In a FC each
set of individuals (bins) creates a cloud, that cloud represents the neighbors’

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 11

improvements; all the clouds have a centroid (the mean of fitness for the x and
y axis), those centroids serve as points to trace a line and its related slope is
the key of this measure. The main disadvantages of the usage of NSC is the
fact that its values are not normalized (Pitzer & Affenzeller, 2012; Vanneschi,
Tomassini, Collard, & Vérel, 2006), and that NSC does not converge for large
samples (Vanneschi, Verel, Tomassini, & Collard, 2009).

To compute NSC, we use S as an approximation of the search space Ω.
Let S be a set of individuals, f is a fitness function that assigns a real value
to each individual x, and Vxj

= {vj1, v
j
2, ..., v

j
mj

} the set of neighbors of a given
individual xj ,∀j ∈ [1, n]. The neighbors are obtained by applying one step
of a genetic operator. The FC can be visualized as a plot where abscissas
are the set of all individuals’ fitnesses, and the ordinates the fitnesses of their
neighbors, see Equation (13).

FC = {(f(xj), f(v
j
k)),∀j ∈ [1, n],∀k ∈ [1,mj]} (13)

where n is the number of individuals and m is the number of predefined neigh-
bors for each individual.

Once the fitness cloud is determined, each element of abscissas and ordi-
nates are split into k segments {I1, I2, ..., Ik}, {J1, J2, ..., Jk}. Then, the av-
erages of abscissae {M1,M2, ...,Mk} and ordinates, {N1, N2, ..., Nk} are cal-
culated. The segment set S = {S1, S2, ..., Sk−1}, where each Si connects the
points (Mi, Ni) to point (Mi+1, Ni+1) is created. The slope set P is calcu-
lated, where Pi = (Ni+1 − Ni)/(Mi+1 − Mi), ∀i ∈ [1, k − 1]. The Negative
Slope Coefficient is computed by Equation 14.

nsc =

k−1∑
i=1

min(0, Pi) (14)

Vanneschi et al. (Vanneschi, Tomassini, Collard, & Vérel, 2006) proposed
the following hypothesis with respect to nsc: negatives values correspond to
difficult problems, and values equal to 0 correspond to easy problems.

4 Real-Coded Genetic Algorithms

Genetic Algorithms (GA) is a population-based optmization method, invented
by John Holland in the 1960’s (Holland, 1992). The GA original representa-
tion is based on bit-strings; this representation can solve a variety of prob-
lems including problems in continuous search spaces. However, for many opti-
mization problems (e.g. real-coded problems), it is necessary a codification-
decodification process, this has as consequence a high computational cost
and low precision. Alternatively, its real-encoding representation, called Real-
Coded Genetic Algorithms (RCGA) (A. H. Wright, 1991), can be used with
problems in continuous domains (Herrera, Lozano, & Verdegay, 1998).

The general procedure for the RCGA consists of three basic operations (Herrera
et al., 1998):

12 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

1. Evaluation of individual’s fitness,
2. Formation of a gene pool (intermediate population) through selection,
3. Recombination through crossover and mutation operators.

The mechanisms to evolve populations are called Genetic Operators (GO).
GO can be defined as the heuristic procedures that guide the optimization pro-
cess within an EA. The behavior (and success) of a RCGA is also related with
the type of genetic operators and with the numerical values of its input param-
eters (e.g. population size, crossover rate, mutation rate, etc.) (A. H. Wright,
1991).

GA is the metaheuristic used in this work. The performance of this opti-
mization metaheuristic to solve a problem, expressed as success rate, will be
used as a measure of the problem’s difficulty. We assume that easy problems
are those that can be solved with a high success rate. On the other hand, hard
problems are those whose solution is seldom found, exhibiting a low success
rate.

5 Performance Classification Models

This section presents a procedure called Performance Classification Models
(PCM), PCM creates learning models to classify the performance obtained by
GAs to solve continuous optimization problems in two dimensions. The proce-
dure and models, are based on a set of optimization problems (110 problems)
in the continuous domain in two dimensions, whose FL have different features.
Without loss of generality, we are only considering minimization problems in
this article.

The learning models are based on supervised methods, particularly Ran-
dom Forests1. The models use as predictor variables, fitness landscape features
derived from the objective function of optimization problems; we use the FL
metrics described in the previous section: neutrality, ruggedness, basins of at-
traction, epistasis, fitness distance correlation and negative slope coefficient.
As we mentioned in section 3, these metrics capture both, problems’s and
algorithm’s features.

The optimization method used to derive performance and therefore dif-
ficulty is the Real-Coded Genetic Algorithm (RCGA). To assign a difficulty
measure for each problem, we approximate the difficulty of the problems with
the performance obtained by the GA to solve it. The performance is the suc-
cess rate for reaching the global optimal (given an error margin) by the GA.
Then, the performance is discretized and classified into two categories: easy,
and difficult. The target values for the learning models, are the (discretized)
performances obtained by the GA.

The procedure can be extended easily to use other FL metrics, problems
in higher dimensions, the incorporation of other Evolutionary Algorithms, the

1 Several learning methods were tested and Random Forests was the one with the best classification
performance.

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 13

use of a finer classification granularity, and even the creation of applications
(e.g. the system to recommend population sizes). The following paragraphs
explain in more detail the proposed procedure.

5.1 Problem statement

In this contribution, we propose to solve the following problem: given an op-
timization problem involving function f , derive models capable of predicting
the difficulty encountered by GA when solving it. Formally, the models Mn

(created by PCM) are supervised models that map from a set of problems F
to a set of difficulty indicators DI. See Equation (15).

Mn : F → {easy, difficult} (15)

Mn refers to a learning model developed using a population size n. F is a
set of continuous optimization problems.

We define performance as the rate of successful trials on which the global
optimum was found in GA experiments. We set the number of trials, nT to 100
and the maximum number of generations of the GA to 1, 000. Performance,
P , has two parameters (related to the GA operation): population size (n) and
precision (ϵ): for different population sizes and/or different precisions, we get
different performances. For each f ∈ F , we consider the sets of population
sizes N = {50i}, i ∈ [1, 10] and precisions E = {10−i}, i ∈ [5, 10]. Perfomance
is defined by Equation 16.

Pn,ϵ(f) =
|{x|x = GAn,ϵ(f) and |f(x)− f∗| ≤ ϵ}|

nT
(16)

where x is the solution returned by GAn,ϵ(f) — the GA-based problem solver
with a population size n and a required precision ϵ — and nT is the number
of trials. Given a performance value p, DI(p) discretizes its value according to
Equation (17). We decided to call difficult to all problems whose performance
is smaller than or equal to 0.5, and easy the rest of them.

DI(p) =

{
difficult, if 0 ≤ p ≤ 1

2

easy, if 1
2 < p ≤ 1.0

(17)

The function MoD (Metrics of Difficulty) (defined in Equation 18), computes
the FL metrics (computation details in Section 3) for a given problem, specified
by its objective function.

MoD : F → R6 (18)

where F are optimization problems in the continuous domain, and R6 is a
6-dimensional vector in the R domain.

14 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

5.2 Dataset

The dataset D is defined by the couple D = ⟨M,P⟩, where M are the fitness
landscape features of F (see Equation 18), and P are the performance values
of GA when solving functions in F (see Equation 17). The idea is to construct
as many models as population sizes; i.e., 10 learning models. To construct a
learning model Mn which considers a specific population size n, its predictor
variables Mn are the fitness landscape features of F , and its target values Pn

are the average performance, the average performance is computed from the
set of performances described by GAn,ϵ∈E . Algorithm 1, Dataset, generates
the training set to produce a model Mn.

Algorithm 1 Dataset(n)
1: F = {110 optimization problems};
2: E = {1× 10−5, 1× 10−6, ..., 1× 10−10};
3: M = ⟨⟩;
4: P = ⟨⟩;
5: for f ∈ F do
6: sum = 0;
7: for ϵ ∈ E do
8: sum = sum+ Pn,ϵ(f);
9: end for

10: avg = sum
|E| ;

11: M = append(M,MoD(f));
12: P = append(P , DI(avg));
13: end for
14: return ⟨M,P⟩;

F , and E are the sets of optimization problems, and level of precisions,
respectively (lines 2 and 3). M and P are the initial sequences (predictor
and target) to be computed (initialized in lines 3 and 4). For each f ∈ F
and for each ϵ ∈ E the average of performance is computed (lines 5-10). For
each f ∈ F , a 6-dimensional array representing its FL features is computed
through the MoD function (see Equation 18) and stored in M (line 11), and
its corresponding average performance is discretized through DI function (see
Equation 17) and stored in P (line 12), once all the functions were considered
to form the dataset, the dataset ⟨M,P⟩ is returned by the procedure (line
14).

5.3 Model

The generated models are based on Random Forest method, which is a en-
semble of random decision trees. Algorithm 2 shows the basic operation of
Random Forest (Breiman, 2001).

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 15

Algorithm 2 RF_Ensemble(D)
1: for b=1 to B do
2: select a bootstrap sample d of size m from D
3: build a random decision tree Tb using d:
4: recursively repeat the following steps for each terminal node of Tb:
5: a. pick the best variable and set it as split-point.
6: b. split the node into two child nodes.
7: end for
8: return the ensemble of trees{Tb}B1

The ensemble of decision trees are composed by B decision trees (line 1), to
build the decision trees is necessary sampling the training data (line 2). The
samples are selected in random and the size is an input parameter. For each
decision tree, is selected (from the set of variable) the best variable (according
to different criterion), and it is set as the split node (line 5), and the node is
split into two child nodes (line 6). The process is repeated recursively for each
node (line 4). Finally the ensemble of random trees is returned (line 7). The
classification task is performed as follows: let Ĉb(x) be the class prediction of
the bth random-forest tree, then, Ĉrf (x) = majority vote{Ĉb(x)}B1 .

6 Experimental Results

This section shows the experimental results of this proposal. The first part de-
scribes the optimization problems used in the experiments, and the parameters
setting for both, Fitness Landscape metrics and for the GA metaheuristic. The
second part shows the accuracy and confusion matrix obtained by the learning
models. Finally, we show a practical application of this approach: the Procedure
to Recommend Population Size.

6.1 Benchmark Problems

This work is based on a set of optimization problems in the continuous domain
in two dimensions. The problems consist of 110 benchmark functions with
different features; these functions are to be minimized (see Appendix A.1).

6.2 Parameters Settings

Table 1 shows the main parameters settings used to compute the Fitness Land-
scape metrics (defined in Section 3).

16 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

Table 1 Parameters of Fitness Landscape metrics.

FL metric Parameter-value
Neutrality δ = dE(Lb, Ub)× 0.1, γ = |fmax − f∗| × 0.001
Ruggedness γ = |fmax − f∗| × 0.001
Basins of attraction δ = dE(Lb, Ub)× 0.1
Epistasis no parameters

Fitness Distance Correlation distances = number of genetic steps to reach
the optimal

Negative Slope Coefficient evolvability = one step of genetic operators

fmax and f∗ are the maximum and minimum fitness values, respectively,
Lu and Ub are the lower and upper bounds of the search space defined for
function f ∈ F . All the FL metrics use a sample of 1000 points picked at
random using uniform distribution within each problem’s domain. The GA’s
performances to solve the functions, were obtained varying the population size
and precision; Table 2 shows the parameters setting used by GA.

Table 2 Parameters to determine the performance GA on problems in F .

Parameter Value
Population Size (n) {50i}, i ∈ [1, 10]

Precision (ϵ) {1× 10−i}, i ∈ [5, 10]
Number of Generations 1, 000

Crossover type Arithmetical
Crossover rate 70%
Mutation type random (uniform)
Mutation rate 30%

Selection Tournament of size 10
Codification Real

To get a statistically significant measure, the experiments were repeated
100 times and the mean was reported.

6.3 Learning Models

Although several learning methods were tested, we are only reporting results
obtained by Random Forests (Breiman, 2001), since this was the most accurate
method. This work uses the WEKA framework (using 10 trees, and descriptive
and dynamic features) (Hall et al., 2009) for developing the models.

The effectiveness of models were tested using different sets of input vari-
ables in the dataset: only descriptive metrics, only dynamic metrics, and all
metrics. The target values (GA’s performance) for the dataset were deter-
mined, for f ∈ F , computing the average of performance obtained for the
precisions ϵ = 1 × 10−i, i ∈ [5, 10], given a population size n ∈ N . Figure 1
shows the average performance for each function, for the considered popula-
tion sizes. The average performance is the mean of performances obtained in

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 17

a set of performances computed through a fixed population size and different
precision errors, that is, the performance for a population size is the mean of
performance considering different precision errors (ϵ = 1 × 10−i, i ∈ [5, 10]).
We considered the average performance as an measure of performance since
the variation of population size and error margin affects the final performance,
then an indicator of performance considering those variations is the average
performance.

Fig. 1 Average performance for ech f ∈ F considering different population sizes.

In Figure 1 the x axis are the population sizes, and, the y axis the normalized
performance. The figure shows that the performance for some problems does
not tend to improve (maintaining the performance below 0.5), while others,
its performance increases at the same time that population size. This behavior
in the majority of bins (dotted lines), the performances are grouped into two
groups, between 0.0 ≤ p ≤ 0.5 and 0.5 < p ≤ 1.0 approximately; we can
consider this as an indication of problem’s difficulty. This fact leads to grouping
functions is two classes, according to difficulty: difficult and easy.

Table 3 shows the accuracy of the learned models; the first column (n) is
the population size, considered to form the models Mn, the last three columns
are the accuracy of the models obtained by the the models derived using
three sets of metrics (descriptive, dynamic, and all). To train and validate the
classification models, we used 10-fold cross-validation. The models with the
best classification accuracy are highlighted in bold-face.

18 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

Table 3 Accuracy obtained for different population sizes (n) by models using descriptive,
dynamic, and all metrics.

Fitness Landscape Metrics
n Descriptive Dynamic All
50 66% 68% 76%
100 70% 67% 75%
150 68% 68% 70%
200 65% 66% 74%
250 70% 72% 71%
300 70% 72% 71%
350 70% 73% 70%
400 67% 66% 73%
450 67% 66% 73%
500 70% 65% 65%

Mean 67% 68% 72%

From Table 3 we can establish that the most accurate models are those
based on both descriptive and dynamic FL metrics. To measure the quality of
models, Tables 4 and 5 show the confusion matrices for the best (n = 50) and
worst (n = 500) models, based on all FL metrics.

Table 4 Confusion matrix for the best model (n = 50) — input variables are all metrics
and target value is performance.

class/predict difficult easy Recall Precision ROC Area
difficult 47 13 0.78 0.78 0.81

easy 13 37 0.74 0.74 0.81
Mean 0.76 0.76 0.81

Table 5 Confusion matrix for the best model (n = 500) — input variables are all metrics
and target value is performance.

class/predict difficult easy Recall Precision ROC Area
difficult 20 20 0.5 0.51 0.72

easy 19 51 0.73 0.72 0.72
Mean 0.65 0.64 0.72

Tables 4 and 5 show the details on the precision (column 5) to classify the
hardness of the problems: easy problems present rates between 72% and 74%,
while difficult problems exhibit rates between 51% and 78%. These results
give us some indications about the models classification capacities: in the worst
case, models can predict the difficult problems with a precision of 51% (random
capacities), and in the best case, models can predict the easy problems with a
precision of 74%. It is important to mention that in average, the models can
predict both easy and difficult problems with a precision of 72%.

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 19

6.4 Procedure to Recommend Population Size

Based on the learning models generated by PCM, a procedure to Recommend
Population Size (RPS) for GA was proposed (Algorithm 3); the recommenda-
tion is based on the capacity of models to predict the hardness of optimization
problems. Basically the procedure tests the models Mn (according to Equa-
tion 15) to find the output class where the optimization problem f is classified
as easy. The population size that corresponds to that model will be the rec-
ommended population.

Algorithm 3 RPS(f)
1: for n ∈ (50, ..., 500) do
2: dataset = DATASET(n) //according to Algorithm 1.
3: Mn = RF_Ensemble(dataset) //according to Algorithm 2.
4: if Mn(f)=easy then
5: return n
6: end if
7: end for
8: return undef

RPS has as input parameter f which is an optimization function in two di-
mensions, an iterative process is performed taking into consideration different
population sizes (line 1), the dataset is created considering the current pop-
ulation size (line 2), using the dataset created in the last step, the learning
model is built (line 3), the models’ output is compared with the easy label,
if some output matches with the easy label then, the population associated
to the model is returned (line 5), otherwise, undef is returned (line 6). The
returned population size can be considered as optima (in the range 50− 500):
the problem is tested into the models Mn, n ∈ [50, 500], and is selected the
smallest n where the problem is classified as easy.

To validate the procedure to Recommend Population Size (RPS) (Algo-
rithm 3) we compare the optimal population size against the population size
recommended by RPS; we called optimal population size to such population
size where the average performance (discretized in easy or difficult according
to Equation 17) is easy, in other words, the smallest populations where its
average performance is categorized as easy. Figure 2 shows a scatter plot be-
tween the optimal population size against the recommended population size
by RPS for the F set.

20 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

Fig. 2 Population sizes recommended by the RPS procedure.

Points in Figure 2 show a strong positive correlation (Pearson’s Correlation,
r = 0.92) and an accuracy of prediction of 95% between the optimal population
size and the recommended population size for the F set. This indicates the
accuracy exhibited by the learning models; the majority of problems in F are
classified correctly.

7 Discussion and Conclusions

This section concludes the article presenting a summary of the findings pre-
sented in this contribution, followed by our conclusions.

7.1 Discussion

Generally, many approaches use isolated Fitness Landscape metrics to predict
the hardness of Evolutionary Algorithms to solve optimization problems. The
results were not very persuasive in the majority of cases. The performance of
some metaheuristic algorithms to solve optimization problems (e.g., GA) is
closely related to the geometric form of the problem’s landscape. They often
have problems to solve rugged landscapes. What happens when the landscape
is not rugged but is deceptive?, surely some FL metrics will categorize the prob-
lem as an easy problem. However, some deceptive problems are categorized as
hard problems. So it is necessary the use of a set of FL metrics that capture
the majority of aspects of optimization problems: multimodality, neutrality,
separability, evolvability, etc. In this approach, PCM uses a set of Fitness
Landscape metrics to perform a Fitness Landscape Analysis; the metrics are
grouped into descriptive and dynamic. While descriptive metrics measure the

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 21

statistical properties of optimization problems, the dynamic metrics capture
the evolvability of the heuristic.

The models to classify the hardness of GA to solve optimization problems
in two dimensions, presented in this work, are based purely on FL metrics and
performances obtained by GA. It is important to remark that given a new
optimization problem, the generated models can predict (easy or difficult) the
performance of GA to solve it, based uniquely on the problem’s FL-metrics.
The generated models (using all FL metrics) obtained a mean of 72% of ac-
curacy to classify the problems correctly. Contrary to our assumptions, in
some cases, the models generated by dynamic or by descriptive metrics (M250,
M300, M350, and M500) obtained slightly more accurate models than using all
FL metrics. Our hypothesis about the accuracy of the models generated by
the dynamic features, is about the intrinsic behavior of the metaheuristic, the
larger the population size (in this case 250, 300, and 350) the greater the op-
portunity (perhaps, due to increased diversity in genetic material) to converge
to global optimal. The number of instances considered in the dataset, play
an important role to construct accurate models; the more instances, the more
accurate models. In this work we used a set of 110 optimization problems,
these are not enough to construct more accurate models, however, literature
reports a limited number of benchmark functions.

We approximate the hardness of GA to solve optimization problems with
the performance of GA to solve them; the performance is the rate of times when
the global optimal was reached, given population size and precision. Literature
reports other types of performances as the number of function evaluations, the
expected running time, etc. We decided to use “the rate of times to get the
optimal” because it is closer to the natural aim of metaheuristics (to get the
global optimum) and because the result is a number between [0, 1]. In future
works, we will develop models using other performance measures.

A second problem that can be solved using this approach is to recommend
the population size that guarantees a good success rate. The proposed proce-
dure uses the set of generated models to try to determine the smallest where
the GA will be successful to solve a particular optimization problem. The first
results show a strong correlation and prediction between the optimal popu-
lation size and the recommended population size, having a correlation value
equal to 0.92 and an accuracy of prediction of 95%. Another interesting ap-
plication is to determine based only on its descriptive FL properties, which
heuristic parameters (e.g. crossover rate, mutation rate, among others) could
be the most appropriate to solve an optimization problem (this application
will be developed in the near future). These approaches can be applied using
different metaheuristics, and once these problems have been solved, we can
finally propose a first approximation of the Algorithm Selection Problem.

22 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

7.2 Conclusions

This contribution presents a procedure called Performance Classification Mod-
els (PCM) to construct learning models to predict the difficulty of GA to solve
continuous optimization problems in two dimensions. The models are based on
a supervised machine learning technique: Random Forests. The models classify
the difficulty of problems into two groups: easy and difficult. Models use as
predictor variables two kinds of Fitness Landscape features: descriptive and
dynamic. As target variable, it uses performance, expressed as success rate.
The predictor and target variables are based on 110 continuous optimization
problems in two dimensions. The models generated by PCM obtained a mean
of accuracy of 72%. The generated models were used in an application called
Procedure to Recommend Population Size (RPS). RPS reports a correlation
(0.92) and an accuracy of prediction of 95% with respect to the optimal pop-
ulation size and the recommended population size.

As future directions, we are interested in the incorporation of other FL
metrics and other benchmark problems. Another interesting topic is to incor-
porate others EA to our proposal, and other dimensions.

A Appendices

A.1 Optimization problems

The following table shows the definition of functions used in this paper, more details in
(Jamil & Yang, 2013).

M
odels

to
C

lassify
the

D
iffi

culty
of

G
A

to
Solve

C
.
O

ptim
ization

P
roblem

s
23

No. Name Function Lower and Upper
bounds

Global Optima

f1 Ackley f(x⃗) = 20 + e− 20 · e−
1
5

√
1
2

∑2
i=1 x2

i − e
1
2

∑2
i=1 cos(2πxi) −15 ≤ xi ≤ 30, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f2 Beale f(x1, x2) =
(
x1x3

2 − x+ 2.625
)2

+
(
x1x2

2 − x1 + 2.25
)2

+
(x1x2 − x1 + 1.5)2

−4.5 ≤ xi ≤ 4.5, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (3, 0.5)

f3 Bohachevsky f(x1, x2) = x2
1 − 0.3 cos(3πx1) + 2x2

2 − 0.4 cos(4πx2) −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = −0.7,
x⃗∗ = (0, 0)

f4 Booth f(x1, x2) = (2x1 + x2 − 5)2 + (x1 + 2x2 − 7)2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 3)

f5 Branin f(x1, x2) =
(
−0.129185x2

1 + 5x1
π

+ x2 − 6
)2

+

10
(
1− 1

8π

)
cos(x1) + 10

−5 ≤ xi ≤ 15, i ∈ [1, 2] f(x⃗∗) = 0.397887,
x⃗∗ = (−π, 12.275)

f6 Dixon Price f(x1, x2) = 2
(
2x2

2 − x1

)2
+ (x1 − 1)2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0,

x⃗∗ = (1, 1.707107)
f7 Goldstein

Price
f(x1, x2) = ((3x2

1+6x1x2−14x1+3x2
2−14x2+19)(x1+x2+

1)2 + 1)((12x2
1 − 36x1x2 − 32x1 + 27x2

2 + 48x2 + 18)(2x1 −
3x2)2 + 30)

−2 ≤ xi ≤ 2, i ∈ [1, 2] f(x⃗∗) = 3, x⃗∗ = (0,−1)

f8 Griewank f(x1, x2) =
x2
1

4000
+

x2
2

4000
− cos(x1) cos

(
x2√
2

)
+ 1 −600 ≤ xi ≤ 600, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f9 Hump f(x1, x2) =
x6
1
3

− 2.1x4
1 + 4x2

1 + x1x2 + 4x4
2 − 4x2

2 + 1.03163 −5 ≤ xi ≤ 5, i ∈ [1, 2] f(x⃗∗) = 0,
x⃗∗ = (0.0898,−0.7126)

f10 Michalewicz f(x1, x2) = − sin(x1) sin
20

(
x2
1
π

)
− sin(x2) sin

20

(
2x2

2
π

)
0 ≤ xi ≤ π, i ∈ [1, 2] f(x⃗∗) = −1.8013,

x⃗∗ = (2.2023, 1.57073)
f11 Rastrigin f(x1, x2) = x2

1 + x2
2 − 10 cos(2πx1)− 10 cos(2πx2) + 20 −5.12 ≤ xi ≤ 5.12, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f12 Rosenbrock f(x1, x2) = (x1 − 1)2 + 100
(
x2 − x2

)2 −5 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 1)

f13 Schwefel f(x1, x2) = −x1 sin
(√

|x1|
)
− x2 sin

(√
|x2|

)
+ 837.966 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 1)

f14 Shubert f(x1, x2) = (cos(2x1 + 1) + 2 cos(3x1 + 2) + 3 cos(4x1 + 3) +
4 cos(5x1+4)+5 cos(6x1+5))(cos(2x2+1)+2 cos(3x2+2)+
3 cos(4x2 + 3) + 4 cos(5x2 + 4) + 5 cos(6x2 + 5))

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = −186.7309, x⃗∗ =
(−7.708309818,
−0.800371886)

f15 Sphere f(x⃗) =
∑n−1

i=0 x2
i −5.12 ≤ xi ≤ 5.12, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f16 Trid f(x1, x2) = (x1 − 1)2 + (x2 − 1)2 − x1x2 + 1 −4 ≤ xi ≤ 4, i ∈ [1, 2] f(x⃗∗) = −1, x⃗∗ = (2, 2)
f17 Zakharov f(x1, x2) = (0.5x1 + 1.x2)4 + (0.5x1 + 1.x2)2 + x2

1 + x2
2 −5 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

24
N

oel
E

.
R

odríguez-M
aya,

Juan
J.

F
lores,

Sébastien
V
erel,

M
ario

G
raff

No. Name Function Lower and Upper
bounds

Global Optima

f18 Dropwave f(x1, x2) =
− cos

(
12

√
x2
1+x2

2

)
−1

0.5(x2
1+x2

2)+2
−5.12 ≤ xi ≤ 5.12, i ∈ [1, 2] f(x⃗∗) = −1, x⃗∗ = (0, 0)

f19 Egg Holder f(x1, x2) = (−x2 − 47) sin(
√

|x1
2

+ x2 + 47|) −

x sin(
√

|x1 − x2 − 47|)

−512 ≤ xi ≤ 512, i ∈ [1, 2] f(x⃗∗) = −959.6407, x⃗∗ =
(512, 404.2319)

f20 Holder f(x1, x2) = −|e|1−
√

x2
1+x2

2
π

| cos(x2) sin(x1)| −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = −19.2085,
x⃗∗ = (8.05502,9.66459)

f21 Levy13 f(x1, x2) = (x1 − 1)2(1 − sin2(3πx2)) + sin2(3πx1) + (x2 −
1)2(sin2(2πx2) + 1)

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 1)

f22 Styblinski
Tang

f(x1, x2) = 0.5(x4
1 − 16x2

1 + 5x1 + x4
2 − 16x2

2 + 5x2) −5 ≤ xi ≤ 5, i ∈ [1, 2] f(x⃗∗) = −39.16599 ∗ 2,
x⃗∗ = (−2.903534,
−2.903534)

f23 Randompeaks f(x1, x2) = −2e−0.5((x1−21)2+(x2−25)2) −
2e−0.5((x1−8)2+(x2−25)2) + 5e−0.1((x1−15)2+(x2−20)2) +

2e−0.5((x1−25)2+(x2−16)2) − 2e−0.08((x1−20)2+(x2−15)2) +

2e−0.5((x1−5)2+(x2−14)2) + 3e−0.08((x1−25)2+(x2−10)2) +

2e−0.1((x1−10)2+(x2−10)2) − 2e−0.5((x1−5)2+(x2−10)2) −
4e−0.1((x1−15)2+(x2−5)2)

0 ≤ xi ≤ 30, i ∈ [1, 2] f(x⃗∗) = −3.98654, x⃗∗ =
(15.01369, 4.9643)

f24 Sum of Dif-
ferent Power

f(x1, x2) = |x2|3 + |x1|2 −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f25 Levy f(x1, x2) =
1
16

(x1 − 1)2(10 sin2(π(1
4
(x1 − 1) + 1) + 1) + 1) +

sin2(π(x1−1
4

+ 1)) + 1
16

(x2 − 1)2(sin2(2π(x2−1
4

+ 1)) + 1)

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 1)

f26 Dejong a =
[[−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,
− 32,−16, 0, 16, 32,−32,−16, 0, 16, 32], [−32,−16, 0, 16,
32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0,
16, 32,−32,−16, 0, 16, 32]]
f(x1, x2) = (0.002 +

∑25
i=1

1
i+(x1−a1i)6+(x2−a2i)6

)−1

−65.536 ≤ xi ≤ 65.536,
i ∈ [1, 2]

f(x⃗∗) =
0.73008956798374342,
x⃗∗ = (−31.97855,
− 31.97855)

M
odels

to
C

lassify
the

D
iffi

culty
of

G
A

to
Solve

C
.
O

ptim
ization

P
roblem

s
25

No. Name Function Lower and Upper
bounds

Global Optima

f27 Langermann A = [[3.0, 5.0, 2.0, 1.0, 7.0]], [5.0, 2.0, 1.0, 4.0, 9.0]]
c = [3.0, 5.0, 2.0, 1.0, 7.0]

f(x⃗) =
∑2

i=1 ci exp(−
1
π

2∑
j=1

(xj − Aij)
2) cos(π

d∑
j=1

((xj −

Aij)
2))

0 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) =
−5.1197918057700552,
x⃗∗ = (6.06958, 8.68035)

f28 Himmelblau f(x1, x2) = −
(
x1 + x2

2 − 7
)2 −

(
x2
1 + x2 − 11

)2
+ 200 0 ≤ xi ≤ 6, i ∈ [1, 2] f(x⃗∗) = −1986,

x⃗∗ = (6, 6)
f29 Sum squares f(x1, x2) = x2

1 + 2x2
2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f30 Schaffer2 f(x1, x2) =
sin2(x2

1−x2
2)−0.5

(0.001(x2
1−x2

2)+1)2
+ 0.5 −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0,

x⃗∗ =
(−0.231665, 0.232741)

f31 Easom f(x1, x2) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2 −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = −1, x⃗∗ = (π, π)

f32 Matyas f(x1, x2) = 0.26
(
x2
1 + x2

2

)
− 0.48x1x2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f33 Cross in
Tray

f(x1, x2) = −0.0001(|e|100−
√

x2
1+x2

2
π

|

sin(x1) sin(x2)|+ 1)0.1
−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = −2.06261,

x⃗∗ = (1.3492, 1.3491)

f34 Bukin f(x1, x2) = 0.01|x1 + 10|+ 100
√

|x2 − 0.01x2
1| −15 ≤ xi ≤ 3, i ∈ [1, 2] f (⃗∗) = 0, x⃗∗ = (−10, 1)

f35 Schaffer4 f(x1, x2) =
cos(sin(|x2

1−x2
2|))−0.5

(0.001(x2
1+x2

2)+1)2
+ 0.5 −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0.500092,

x⃗∗ =
(−99.99634,−99.8942)

f36 Equal peaks f(x1, x2) = sin2(x2) + cos2(x1) 0 ≤ xi ≤ 5, i ∈ [1, 2] f(x⃗∗) = 0,
x⃗∗ = (1.5708, 0)

f37 Ackley2 f(x1, x2) = −200e
−0.02

√
x2
1+x2

2 −32 ≤ xi ≤ 32, i ∈ [1, 2] f(x⃗∗) = −200,
x⃗∗ = (0, 0)

f38 Ackley3 f(x1, x2) = 5esin(3x2)+cos(3x1) − 200e
−0.02

√
x2
1+x2

2 −32 ≤ xi ≤ 32, i ∈ [1, 2] f(x⃗∗) = −195.629,
x⃗∗ =
(−0.682577,−0.360702)

26
N

oel
E

.
R

odríguez-M
aya,

Juan
J.

F
lores,

Sébastien
V
erel,

M
ario

G
raff

No. Name Function Lower and Upper
bounds

Global Optima

f39 Ackley4 f(x1, x2) = 0.818731
√

x2
1 + x2

2 + 3(sin(2x2) + cos(2x1)) −35 ≤ xi ≤ 35, i ∈ [1, 2] f(x⃗∗) =
−4.5901016341586682,
x⃗∗ =
(−1.50962,−0.75487)

f40 Adjiman f(x1, x2) = sin(x2) cos(x1)− x1

x2
2+1

−1 ≤ xi ≤ 2, i ∈ [1, 2] f(x⃗∗) = −2.02181,
x⃗∗ = (2, 0.10578)

f41 Alpine1 f(x⃗) =
∑D

i=1 |xisin(xi) + 0.1xi| −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f42 Alpine2 f(x⃗) =
∏D

i=1

√
xisin(x) 0 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = −6.1295,

x⃗∗ = (7.91705, 4.81584)
f43 Bartels f(x1, x2) = |x2

1 + x2
2 + x1 ∗ x2|+ |sin(x1)|+ |cos(x2)| −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 1, x⃗∗ = (0, 0)

f44 Bigg exp2 f(x1, x2) =
∑10

i=1(exp(−0.1 ∗ i ∗ x1)− 5 ∗ exp(−0.1 ∗ i ∗ x2)−
exp(−0.1 ∗ i)− 5 ∗ exp(10 ∗ 0.1 ∗ i))2

0 ≤ xi ≤ 20, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 10)

f45 Bird f(x1, x2) = sin(x1) ∗ exp((1− cos(x2))2) + cos(x2) ∗ exp((1−
sin(x1))2) + (x1 − x2)2

−2π ≤ xi ≤ 2π, i ∈ [1, 2] f(x⃗∗) = −106.764537,
x⃗∗ = (4.70104, 3.15294)

f46 Bohachevsky2 f(x1, x2) = x2
1+2∗x2

2−0.3∗cos(3∗π∗x1)∗0.4∗cos(4∗π∗x2)+0.3 −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)
f47 Bohachevsky3 f(x1, x2) = x2

1 +2 ∗ x2
2 − 0.3 ∗ cos(3 ∗ π ∗ x1 +4 ∗ π ∗ x2) + 0.3 −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f48 Branin Rcos f(x1, x2) = (x2 − (5.1 ∗ x2
1)/(4 ∗ π2) + (5 ∗ x1)/π − 6)2 + 10 ∗

(1− 1/(8 ∗ π)) cos(x1) + 10
−5 ≤ xi ≤ 15, i ∈ [1, 2] f(x⃗∗) = 0.3978873,

x⃗∗ = (3.14159, 2.275)
f49 Branin

Rcos2
f(x1, x2) = (x2 − (5.1 ∗ x2

1)/(4 ∗ π2) + (5 ∗ x1)/π − 6)2 + 10 ∗
(1− 1/(8 ∗ π)) cos[x1) cos(x2) log(x2

1 + x2
2 + 1) + 10

−5 ≤ xi ≤ 15, i ∈ [1, 2] f(x⃗∗) =
−39.195653917977752,
x⃗∗ = (−3.1721, 12.58567)

f50 Brent f(x1, x2) = (x1 + 10)2 + (x2 + 10)2 + exp(−x2
1 − x2

2) −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f51 Brown f(x1, x2) = (x2
1)

(x2
2+1) + (x2

2)
(x2

1+1) −1 ≤ xi ≤ 4, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)
f52 Bukin2 f(x1, x2) = 100 ∗ (x2 − 0.01x2

1 + 1) + 0.01(x1 + 10)2 −15 ≤ xi ≤ 3, i ∈ [1, 2] f(x⃗∗) = −1624.75, x⃗∗ =
(−15,−15)

f53 Bukin4 f(x1, x2) = 100x2
2 + 0.01 ∗ |x1 + 10| −15 ≤ xi ≤ 3, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (−10, 0)

f54 Three Hump
Camel func-
tion

f(x1, x2) = 2x2
1 − 1.05x4

1 + x6
1/6 + x1x2 + x2

2 −5 ≤ xi ≤ 5, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

M
odels

to
C

lassify
the

D
iffi

culty
of

G
A

to
Solve

C
.
O

ptim
ization

P
roblem

s
27

No. Name Function Lower and Upper
bounds

Global Optima

f55 Six Hump
Camel func-
tion

f(x1, x2) = (4− 2.1x2
1 + x2

1/3)x
2
1 + x1x1 + (4x2

2 − 4)x2
2 −5 ≤ xi ≤ 5, i ∈ [1, 2] f(x⃗∗) = −1.0316, x⃗∗ =

(−0.0898, 0.7126)

f56 Chen Bird f(x1, x2) = −0.001/(0.0012 + (x1 − 0.4x2 − 0.1)2) −
0.001/(0.0012 + (2x1 + x2 − 1.5)2)

−500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = −1000, x⃗∗ =
(0.149371, 0.123427)

f57 Chenv f(x1, x2) = −(0.001/(0.0012 + (x2
1 + x2

2 − 1)2)) −
0.001/(0.0012+(x2

1+x2
2−0.5)2)−0.001/(0.0012+(x2

1−x2
2)

2)
−500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = −2000, x⃗∗ =

(−0.5,−0.5)
f58 Chichinadze f(x1, x2) = x2

1−12x1+11+10 cos((πx1)/2)+8 sin((5πx1)/2)−
(1/5)0.5 exp(−0.5(x2 − 0.5)2)

−30 ≤ xi ≤ 30, i ∈ [1, 2] f(x⃗∗) =
−42.49717342349103,
x⃗∗ = (6.18987, 0.75477)

f59 Chung
Reynolds

f(x⃗) = (
∑2

i=1 x
2
i)

2 −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f60 Cosine mix-
ture

f(x⃗) = −0.1
∑2

i=1 cos(5πxi)−
∑2

i=1 x
2
i −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) =

−1.7987686839243868,
x⃗∗ = (0.9995, 0.99988)

f61 Csendes f(x⃗) =
∑2

i=1 x
6
i ∗ (2 + sin(xi)) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f62 Cube f(x1, x2) = 100 ∗ (x2 − x3
1)

2 + (1− x1)2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 1)
f63 Damavandi f(x1, x2) = (1 − |(sin(π(x1 − 2)) sin(π(x2 − 2)))/(π2(x1 −

2)(x[2− 2))|5)/(2 + (x1 − 7)2 + 2(x2 − 7)2)
0 ≤ xi ≤ 14, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (2, 2)

f64 Deckkers
Aarts

f(x1, x2) = 105 ∗ x2
1 + x2

2 − (x2
1 + x2

2)
2 + 10−5(x2

1 + x2
2)

4 −20 ≤ xi ≤ 20, i ∈ [1, 2] f(x⃗∗) =
−24771.093749999996,
x⃗∗ = (0,−15)

f65 El Attar
Vidyasagar
Dutta

f(x1, x2) = (x2
1 + x2 − 10)2 + (x1 + x2

2 − 7)2 + (x2
1 + x3

2 − 1)2 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) =
1.7127803597192561,
x⃗∗ = (3.40919,−2.17143)

f66 Egg crate f(x1, x2) = x2
1 + x2

2 + 25(sin(x1)2 + sin(x2)) −5 ≤ xi ≤ 5, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f67 Exponential f(x⃗) = − exp(−0.5 ∗
∑D

i=1 x
2
i) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) = 1, x⃗∗ = (0, 0)

f68 Exp2 f(x1, x2) =
∑9

i=0(exp(−(ix1)/10) − 5 exp(−(ix2)/10) −
exp[−i/10] + 5 exp(−i)2

0 ≤ xi ≤ 20, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 10)

f69 Freudenstein
roth

f(x1, x2) = (x1−13+((5−x2)x2−2)x2)2+(x1−29+((x2+
1)x2 − 14)x2)2

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (5, 4)

28
N

oel
E

.
R

odríguez-M
aya,

Juan
J.

F
lores,

Sébastien
V
erel,

M
ario

G
raff

No. Name Function Lower and Upper
bounds

Global Optima

f70 Giunta f(x⃗) = 0.6 +
∑D

i=1(sin(16/15xi − 1) + sin(16/15xi − 1)2 +
1/50 sin(4(16/15xi − 1)))

−1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) = 0.0644704,
x⃗∗ = (0.46732, 0.46732)

f71 Hansen f(x1, x2) =
∑4

i=0(i+ 1) cos(ix1 + i+ 1)
∑4

j=0(j + 1) cos((j +

2)x2 + j + 1

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = −176.542,
x⃗∗ =
(−7.589893,−7.708314)

f72 Hosaki f(x1, x2) = (1− 8x1 + 7x2
1 − 7/3x3

1 + 1/4x4
1)x

2
2 exp(−x2) 0 ≤ xi ≤ 6, i ∈ [1, 2] f(x⃗∗) = −2.3458,

x⃗∗ = (4, 2)

f73 Jennrich
Sampson

f(x1, x2) =
∑10

i=1(2 + 2i− (exp(ix1) + exp(ix2)))2 −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) =
124.96218236181409,
x⃗∗ = (0.257825, 0.257825)

f74 Keane f(x1, x2) = (sin(x1 − x2)2 sin(x1 + x2)2)/
√

(x2
1 + x2

2) 0 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) =
2.4590189858452324e− 36,
x⃗∗ = (−8.69395e −
9, 8.69394e− 9)

f75 Leon f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2 −1.2 ≤ xi ≤ 1.2, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 1)
f76 Mccormick f(x1, x2) = sin(x1+x2)+(x1+x2)2−(3/2)∗x1+(5/2)∗x2+1 −3 ≤ xi ≤ 4, i ∈ [1, 2] f(x⃗∗) =

−11.06537266363643,
x⃗∗ = (3.26783,−3.0)

f77 Mishra3 f(x1, x2) =

√
| cos(

√
|x2

1 + x2
2|)|+ 0.01(x1 + x2) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) =

0.3748970685702472,
x⃗∗ = (3.26783,−3.0)

f78 Mishra4 f(x1, x2) =
√

(| cos(
√

(|x2
1 + x2

2|))|) + 0.01(x1 + x2) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)
f79 Mishra5 f(x1, x2) = (sin(cos(x1 + cos(x2)))2 + cos(sin(x1 +

sin(x2)))2)2 + 0.01(x1 + x2)2
−1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) =

−0.01864212603865322,
x⃗∗ = (−0.86535,−1.0)

f80 Mishra6 f(x1, x2) = − log(sin(cos(x1) + cos(x2))2 − cos(sin(x1) +
sin(x2))2 + x1)2 + 0.01((x1 − 1)2 + (x2 − 1)2)

1 ≤ xi ≤ 6, i ∈ [1, 2] f(x⃗∗) = −0.809819, x⃗∗ =
(2, 2)

f81 Mishra8 f(x1, x2) = 0.001(|x1
10 − 20x9

1 + 180x8
1 − 960x7

1 + 3360x6
1 −

8064x5
1 + 1334x4

1 − 15360x3
1 + 11520x2

1 − 5120x1 + 2624||x4
2 +

12x3
2 + 54x2

2 + 108x2 + 81|)2

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (2,−3)

M
odels

to
C

lassify
the

D
iffi

culty
of

G
A

to
Solve

C
.
O

ptim
ization

P
roblem

s
29

No. Name Function Lower and Upper
bounds

Global Optima

f82 Pen Holder f(x1, x2) = − exp(−| cos(x1) cos(x2) exp(|1 − (x2
1 +

x2
2)

0.5/π|)|−1)
−11 ≤ xi ≤ 11, i ∈ [1, 2] f(x⃗∗) = −0.963535,

x⃗∗ = (9.646168, 9.646168)

f83 Pathological f(x1, x2) = 0.5+(sin(
√

100x1 + x2
2)

2−0.5)/(1+0.001∗ (x2
1−

2x1x2 + x2
2)

2), i, 1, 1]

−100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f84 Periodic f(x1, x2) = 1 + sin(x1)2 + sin(x2)2 − 0.1 exp[−(x2
1 + x2

2)] −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0.9, x⃗∗ = (0, 0)

f85 Powell sum f(x⃗) =
∑2

i=1 |xi|(i+1) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)
f86 Price1 f(x1, x2) = (|x1| − 5)2 + (|x2| − 5)2 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (−5, 5)
f87 Price2 f(x1, x2) = 1 + sin(x1)2 + sin(x2)2 − 0.1 exp(−x2

1 − x2
2| −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0.9, x⃗∗ = (0, 0)

f88 Price3 f(x1, x2) = 100(x2 − x2
1)

2 + 6(6.4(x2 − 0.5)2 − x1 − 0.6)2 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 1.43791935893e −
11,
x⃗∗ = (0.341308, 0.116491)

f89 Price4 f(x1, x2) = (2x3
1x2 − x3

2)
2 + (6x1 − x2

2 + x2)2 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f90 Qing f(x⃗) =
∑2

i=1(x
2
i − 1)2 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f91 Quadratic f(x1, x2) = −3803.84 − 138.08x1 − 232.92x2 + 128.08x2
1 +

203.64x2
2 + 182.25x1x2

−1 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) =
−3873.7241821830326,
x⃗∗ = (0.19388, 0.48513)

f92 Quartic f(x⃗) =
∑2

i=1 ix
2
i + rand[0, 1) −1.28 ≤ xi ≤ 1.28, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f93 Quintic f(x⃗) =
∑2

i=1 |x5
i − 3x4

i + 4x3
i + 2x2

i − 10xi − 4| −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (2, 2)
f94 Rosenbrock

modified
f(x1, x2) = 74+ 100(x2 − x2

1)
2 + (1− x1)2 − 400 exp(−((x1 +

1)2 + (x2 + 1)2)/0.1)
−2 ≤ xi ≤ 2, i ∈ [1, 2] f(x⃗∗) = 74, x⃗∗ = (1, 1)

f95 Rotated
ellipse

f(x1, x2) = 7x2
1 − 6

√
3x1x2 + 13x2

2 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f96 Rotated
ellipse2

f(x1, x2) = x2
1 − x1x2 + x2

2 −500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f97 Rump f(x1, x2) = (333.75−x2
1)x

6
2+x2

1(11x
2
1x

2
2−121x4

2−2)+5.5x8
2+

x1/(2)
−500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = −2.44021e18,

x⃗∗ = (500, 180)

f98 Salomon f(x1, x2) = 1− cos(2π
√∑2

i=1 x
2
i) + 0.1

√∑D
i=1 x

2
i −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f99 Sargan f(x⃗) =
∑2

i=1 2 ∗ (x2
i + 0.4xix2) −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

30
N

oel
E

.
R

odríguez-M
aya,

Juan
J.

F
lores,

Sébastien
V
erel,

M
ario

G
raff

No. Name Function Lower and Upper
bounds

Global Optima

f100 Schaffer3 f(x1, x2) = 0.5 + (sin(cos(|x2
1 − x2

2|))2 − 0.5)/(1 + 0.001(x2
1 +

x2
2)

2)
−100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) =

0.00123013247589431,
x⃗∗ = (0, 1.253115)

f101 Schumer
Steiglitz

f(x⃗) =
∑2

i=1 x
4
i −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f102 Schwefel24 f(x⃗) =
∑2

i=1(xi − 1)2 + (x1 − x2
i)

2 0 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (1, 1)

f103 Schwefel222 f(x⃗) =
∑2

i=1 |xi]|+
∏2

i=1 |xi| −100 ≤ xi ≤ 100, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)
f104 Schwefel236 f(x1, x2) = −x1x2(72− 2x1 − 2x2) 0 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = −3456,

x⃗∗ = (12, 12)
f105 Streched v

sine wave
f(x1, x2) = (x2

2 + x2
1)

0.25(sin(50(x2
2 + x1)0.1)2 + 0.1) −10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f106 Testtube
holder

f(x1, x2) = −4(sin(x1) cos(x2) exp(|
cos((x2

1 + x2
2)/200)|))

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = −10.872300, x⃗∗ =
(π/2.0, 0)

f107 Trecanni f(x1, x2) = x4
1 − 4x3

1 + 4x1x2
2 −5 ≤ xi ≤ 5, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f108 Trefethen f(x1, x2) = exp(50 sin(x1)) + sin(60 exp(x2)) +
sin(70 sin(x1))+sin(sin(80x2))−sin(10(x1+x2))+1.0/4.0(x2

1+
x2
2)

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(x⃗∗) = −3.30686865,
x⃗∗ =
(−0.024403, 0.210612)

f109 Trigonometric f(x⃗) =
∑2

i=1(2−
∑2

j=1(cos(xj)) + i(1− cos(xi)− sin(xi)))
2 0 ≤ xi ≤ π, i ∈ [1, 2] f(x⃗∗) = 0, x⃗∗ = (0, 0)

f110 Trigonometric
2

f(x⃗) = 1+
∑2

i=1 8(sin(7(xi−0.9)2))2+6(sin(14(x1−0.9)))2+
(xi − 0.9)2

−500 ≤ xi ≤ 500, i ∈ [1, 2] f(x⃗∗) = 1,
x⃗∗ = (0.9, 0.9)

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 31

Conflict of Interest: None of the authors present any conflicts of interest whatsoever.
The material presented in this article is not subject to any copyright of any class or nature.

References

Altenberg, L. (1997). Fitness distance correlation analysis: An instructive
counterexample. In T. Back (Ed.), Icga (p. 57-64). Morgan Kaufmann.

Auger, A., Hansen, N., Heidrich-Meisner, V., Mersmann, O., Posik, P., &
Preuss, M. (2012). Gecco 2012 workshop on black-box optimization
benchmarking (bbob). In Gecco 2012: Genetic and evolutionary com-
putation conference companion. New York, NY, USA: ACM. Retrieved
from http://coco.gforge.inria.fr/doku.php?id=bbob-2012

Breiman, L. (2001). Random forests. Machine Learning , 45 (1), 5-32. Re-
trieved from http://dx.doi.org/10.1023/A%3A1010933404324 doi:
10.1023/A:1010933404324

Caamaño, P., Bellas, F., Becerra, J. A., & Duro, R. J. (2013). Evolu-
tionary algorithm characterization in real parameter optimization prob-
lems. Appl. Soft Comput., 13 (4), 1902-1921. Retrieved from http://
dblp.uni-trier.de/db/journals/asc/asc13.html#CaamanoBBD13

Caamaño, P., Prieto, A., Becerra, J. A., Bellas, F., & Duro, R. J. (2010).
Real-valued multimodal fitness landscape characterization for evolution.
In Proceedings of the 17th international conference on neural infor-
mation processing: Theory and algorithms - volume part i (pp. 567–
574). Berlin, Heidelberg: Springer-Verlag. Retrieved from http://
dl.acm.org/citation.cfm?id=1939659.1939733

Chan, K. Y., Aydin, M. E., & Fogarty, T. C. (2003). An epistasis mea-
sure based on the analysis of variance for the real-coded representa-
tion in genetic algorithms. In Ieee congress on evolutionary computation
(p. 297-304). IEEE. Retrieved from http://dblp.uni-trier.de/db/
conf/cec/cec2003-1.html#ChanAF03

Chen, Y., Hu, J., Hirasawa, K., & Yu, S. (2008). Solving deceptive problems
using a genetic algorithm with reserve selection. In Evolutionary com-
putation, 2008. cec 2008. (ieee world congress on computational intelli-
gence). ieee congress on (p. 884-889). doi: 10.1109/CEC.2008.4630900

Davidor, Y. (1990). Epistasis variance: Suitability of a representation to
genetic algorithms. Complex Systems, 4 , 369-383.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.
(2009, November). The weka data mining software: An update. SIGKDD
Explor. Newsl., 11 (1), 10–18. Retrieved from http://doi.acm.org/
10.1145/1656274.1656278 doi: 10.1145/1656274.1656278

Hansen, N., Auger, A., Finck, S., & Ros, R. (2010, September). Real-parameter
black-box optimization benchmarking 2010: Experimental setup (Tech.
Rep. No. RR-7215). Paris, France: INRIA.

He, J., Reeves, C., Witt, C., & Yao, X. (2007, December). A note on
problem difficulty measures in black-box optimization: Classification,

http://coco.gforge.inria.fr/doku.php?id=bbob-2012
http://dx.doi.org/10.1023/A%3A1010933404324
http://dblp.uni-trier.de/db/journals/asc/asc13.html#CaamanoBBD13
http://dblp.uni-trier.de/db/journals/asc/asc13.html#CaamanoBBD13
http://dl.acm.org/citation.cfm?id=1939659.1939733
http://dl.acm.org/citation.cfm?id=1939659.1939733
http://dblp.uni-trier.de/db/conf/cec/cec2003-1.html#ChanAF03
http://dblp.uni-trier.de/db/conf/cec/cec2003-1.html#ChanAF03
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278

32 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

realizations and predictability. Evol. Comput., 15 (4), 435–443. Re-
trieved from http://dx.doi.org/10.1162/evco.2007.15.4.435 doi:
10.1162/evco.2007.15.4.435

Herrera, F., Lozano, M., & Verdegay, J. L. (1998). Tackling real-coded ge-
netic algorithms: Operators and tools for behavioural analysis. Artificial
Intelligence Review , 12 , 265–319.

Holland, J. H. (1992). Adaptation in natural and artificial systems: An intro-
ductory analysis with applications to biology, control and artificial intel-
ligence. Cambridge, MA, USA: MIT Press.

Horn, J., & Goldberg, D. E. (1995). Genetic algorithm difficulty and the
modality of the fitness landscapes. In L. D. Whitley & M. D. Vose (Eds.),
Foundations of genetic algorithms workshop, 3 (p. 243-269). Morgan
Kaufmann.

Jamil, M., & Yang, X.-S. (2013). A literature survey of benchmark functions
for global optimisation problems. IJMNO , 4 (2), 150-194. Retrieved
from http://dblp.uni-trier.de/db/journals/ijmno/ijmno4.html#
JamilY13

Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search
(Doctoral dissertation, University of New Mexico). Retrieved from
http://jones.tc/research/phd.html

Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure
of problem difficulty for genetic algorithms. In Proceedings of the 6th
international conference on genetic algorithms (pp. 184–192). San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from
http://dl.acm.org/citation.cfm?id=645514.657929

Kauffman, S. A., & Johnsen, S. (1991). Coevolution to the edge of chaos:
Coupled fitness landscapes, poised states, and coevolutionary avalanches.
Journal of Theoretical Biology , 149 (4), 467–505.

Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J., Grimme, C.,
. . . Trautmann, H. (2014). Cell mapping techniques for exploratory
landscape analysis. In A. Tantar et al. (Eds.), Evolve — a bridge be-
tween probability, set oriented numerics, and evolutionary computation
v (Vol. 288, pp. 115–131). Springer International Publishing. Retrieved
from http://dx.doi.org/10.1007/978-3-319-07494-8_9 (Publica-
tion status: Published) doi: 10.1007/978-3-319-07494-8_9

Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge:
Cambridge University Press.

Lobo, J., Miller, J. H., & Fontana, W. (2004). Neutrality in Technological
Landscapes (Tech. Rep.). working paper, Santa Fe Institute, Santa Fe.

López, E. G., & Poli, R. (2006). Some steps towards understanding how
neutrality affects evolutionary search. In T. P. Runarsson, H.-G. Beyer,
E. K. Burke, J. J. M. Guervós, L. D. Whitley, & X. Yao (Eds.), Ppsn
(Vol. 4193, p. 778-787). Springer. Retrieved from http://dblp.uni
-trier.de/db/conf/ppsn/ppsn2006.html#LopezP06

Malan, K., & Engelbrecht, A. P. (2009). Quantifying ruggedness of continuous
landscapes using entropy. In Ieee congress on evolutionary computation

http://dx.doi.org/10.1162/evco.2007.15.4.435
http://dblp.uni-trier.de/db/journals/ijmno/ijmno4.html#JamilY13
http://dblp.uni-trier.de/db/journals/ijmno/ijmno4.html#JamilY13
http://jones.tc/research/phd.html
http://dl.acm.org/citation.cfm?id=645514.657929
http://dx.doi.org/10.1007/978-3-319-07494-8_9
http://dblp.uni-trier.de/db/conf/ppsn/ppsn2006.html#LopezP06
http://dblp.uni-trier.de/db/conf/ppsn/ppsn2006.html#LopezP06

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 33

(p. 1440-1447). IEEE. Retrieved from http://dblp.uni-trier.de/db/
conf/cec/cec2009.html#MalanE09

Malan, K. M., & Engelbrecht, A. P. (2013). A survey of techniques for charac-
terising fitness landscapes and some possible ways forward. Information
Sciences, 241 (0), 148 - 163. Retrieved from http://www.sciencedirect
.com/science/article/pii/S0020025513003125 doi: http://dx.doi
.org/10.1016/j.ins.2013.04.015

Mario Graff and Riccardo Poli. (2010, October). Practical performance
models of algorithms in evolutionary program induction and other do-
mains. Artificial Intelligence, 174 (15), 1254–1276. Retrieved 2011-
07-02, from http://www.sciencedirect.com/science/article/pii/
S000437021000127X doi: 16/j.artint.2010.07.005

Merkuryeva G., B. V. (2011). Benchmark fitness landscape analysis. Interna-
tional Journal of Simulation Systems, , Science and Technology , 12 (2),
38–45.

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph,
G. (2011). Exploratory landscape analysis. In Proceedings of the 13th
annual conference on genetic and evolutionary computation (pp. 829–
836). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/
10.1145/2001576.2001690 doi: 10.1145/2001576.2001690

Muñoz, M. A., Kirley, M., & Halgamuge, S. K. (2015). Exploratory landscape
analysis of continuous space optimization problems using information
content. IEEE Trans. Evolutionary Computation, 19 (1), 74–87. Re-
trieved from http://dx.doi.org/10.1109/TEVC.2014.2302006 doi:
10.1109/TEVC.2014.2302006

Naudts, B., & Kallel, L. (2000a). A comparison of predictive measures of
problem difficulty in evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 4 (1), 1–15.

Naudts, B., & Kallel, L. (2000b, Apr). A comparison of predictive measures
of problem difficulty in evolutionary algorithms. Evolutionary Compu-
tation, IEEE Transactions on, 4 (1), 1-15. doi: 10.1109/4235.843491

Ochoa, G., Tomassini, M., Vérel, S., & Darabos, C. (2008). A study of nk
landscapes’ basins and local optima networks. In C. Ryan & M. Keijzer
(Eds.), Gecco (p. 555-562). ACM. Retrieved from http://dblp.uni
-trier.de/db/conf/gecco/gecco2008.html#OchoaTVD08

Pitzer, E., & Affenzeller, M. (2012). A comprehensive survey on fitness
landscape analysis. In J. C. Fodor, R. Klempous, & C. P. S. Araujo
(Eds.), Recent advances in intelligent engineering systems (Vol. 378,
p. 161-191). Springer. Retrieved from http://dblp.uni-trier.de/
db/series/sci/sci378.html#PitzerA12

Pitzer, E., Affenzeller, M., & Beham, A. (2010, Sept). A closer look down
the basins of attraction. In Computational intelligence (ukci), 2010 uk
workshop on (p. 1-6). doi: 10.1109/UKCI.2010.5625595

Reeves, C. R., & Wright, C. C. (1995). Epistasis in genetic algorithms: An
experimental design perspective. In Proc. of the 6th international confer-
ence on genetic algorithms, (pp 217–224 (pp. 217–224). Morgan Kauf-

http://dblp.uni-trier.de/db/conf/cec/cec2009.html#MalanE09
http://dblp.uni-trier.de/db/conf/cec/cec2009.html#MalanE09
http://www.sciencedirect.com/science/article/pii/S0020025513003125
http://www.sciencedirect.com/science/article/pii/S0020025513003125
http://www.sciencedirect.com/science/article/pii/S000437021000127X
http://www.sciencedirect.com/science/article/pii/S000437021000127X
http://doi.acm.org/10.1145/2001576.2001690
http://doi.acm.org/10.1145/2001576.2001690
http://dx.doi.org/10.1109/TEVC.2014.2302006
http://dblp.uni-trier.de/db/conf/gecco/gecco2008.html#OchoaTVD08
http://dblp.uni-trier.de/db/conf/gecco/gecco2008.html#OchoaTVD08
http://dblp.uni-trier.de/db/series/sci/sci378.html#PitzerA12
http://dblp.uni-trier.de/db/series/sci/sci378.html#PitzerA12

34 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

mann.
Reidys, C. M., & Stadler, P. F. (2002). Combinatorial landscapes. SIAM

Rev., 44 (1), 3–54 (electron.
Rodriguez-Maya, N., Graff, M., & Flores, J. (2014). Performance classifi-

cation of genetic algorithms on continuous optimization problems. In
A. Gelbukh, F. Espinoza, & S. Galicia-Haro (Eds.), Nature-inspired
computation and machine learning (Vol. 8857, p. 1-12). Springer In-
ternational Publishing. Retrieved from http://dx.doi.org/10.1007/
978-3-319-13650-9_1 doi: 10.1007/978-3-319-13650-9_1

Smith, T., Philippides, A., Husbands, P., & O’Shea, M. (2002). Neutrality
and ruggedness in robot landscapes. In Evolutionary computation, 2002.
cec ’02. proceedings of the 2002 congress on (Vol. 2, p. 1348-1353). doi:
10.1109/CEC.2002.1004439

Trujillo, L., Martínez, Y., Galván López, E., & Legrand, P. (2012). A com-
parative study of an evolvability indicator and a predictor of expected
performance for genetic programming. In Proceedings of the fourteenth
international conference on genetic and evolutionary computation con-
ference companion (pp. 1489–1490). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/2330784.2331006 doi:
10.1145/2330784.2331006

Trujillo, L., Martínez, Y., López, E. G., & Legrand, P. (2011). Predicting
problem difficulty for genetic programming applied to data classification.
In Gecco (p. 1355-1362).

Vanneschi, L. (2004). Theory and practice for efficient genetic program-
ming (Doctoral dissertation, Faculty of Sciences, University of Lau-
sanne, Switzerland). Retrieved from http://old.disco.unimib.it/
Vanneschi/thesis_vanneschi.pdf

Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., & Vérel, S. (2004).
Fitness clouds and problem hardness in genetic programming. In K. Deb
(Ed.), Genetic and evolutionary computation - gecco 2004 (Vol. 3103,
p. 690-701). Springer Berlin Heidelberg. Retrieved from http://dx.doi
.org/10.1007/978-3-540-24855-2_76 doi: 10.1007/978-3-540-24855
-2_76

Vanneschi, L., & Tomassini, M. (2002, 8 July). A study on fitness dis-
tance correlation and problem difficulty for genetic programming. In
S. Luke, C. Ryan, & U.-M. O’Reilly (Eds.), Graduate student workshop
(pp. 307–310). New York: AAAI. Retrieved from http://personal
.disco.unimib.it/Vanneschi/GECCO_2002_PHD_WORKSHOP.pdf

Vanneschi, L., Tomassini, M., Collard, P., & Clergue, M. (2005). A survey of
problem difficulty in genetic programming. In S. Bandini & S. Manzoni
(Eds.), Ai*ia 2005: Advances in artificial intelligence (Vol. 3673, p. 66-
77). Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/
10.1007/11558590_7 doi: 10.1007/11558590_7

Vanneschi, L., Tomassini, M., Collard, P., & Vérel, S. (2006). Negative Slope
Coefficient: A Measure to Characterize Genetic Programming Fitness
Landscapes. In Genetic programming, 9th european conference, eurogp

http://dx.doi.org/10.1007/978-3-319-13650-9_1
http://dx.doi.org/10.1007/978-3-319-13650-9_1
http://doi.acm.org/10.1145/2330784.2331006
http://old.disco.unimib.it/Vanneschi/thesis_vanneschi.pdf
http://old.disco.unimib.it/Vanneschi/thesis_vanneschi.pdf
http://dx.doi.org/10.1007/978-3-540-24855-2_76
http://dx.doi.org/10.1007/978-3-540-24855-2_76
http://personal.disco.unimib.it/Vanneschi/GECCO_2002_PHD_WORKSHOP.pdf
http://personal.disco.unimib.it/Vanneschi/GECCO_2002_PHD_WORKSHOP.pdf
http://dx.doi.org/10.1007/11558590_7
http://dx.doi.org/10.1007/11558590_7

Models to Classify the Difficulty of GA to Solve C. Optimization Problems 35

2006, budapest, hungary, april 10-12, 2006, proceedings (pp. 178–189).
Springer. Retrieved from http://dx.doi.org/10.1007/11729976_16
doi: 10.1007/11729976_16

Vanneschi, L., Tomassini, M., Pirola, Y., Verel, S., & Mauri, G. (2006). A
quantitative study of neutrality in gp boolean landscapes. In Proceedings
of the genetic and evolutionary computation conference, gecco’06 (pp.
895–902). ACM Press.

Vanneschi, L., Valsecchi, A., & Poli, R. (2009). Limitations of the fitness-
proportional negative slope coefficient as a difficulty measure. In Pro-
ceedings of the 11th annual conference on genetic and evolutionary com-
putation (pp. 1877–1878). New York, NY, USA: ACM. Retrieved
from http://doi.acm.org/10.1145/1569901.1570212 doi: 10.1145/
1569901.1570212

Vanneschi, L., Verel, S., Tomassini, M., & Collard, P. (2009). Nk land-
scapes difficulty and negative slope coefficient: How sampling influences
the results. In M. Giacobini et al. (Eds.), Applications of evolution-
ary computing (Vol. 5484, p. 645-654). Springer Berlin Heidelberg.
Retrieved from http://dx.doi.org/10.1007/978-3-642-01129-0_74
doi: 10.1007/978-3-642-01129-0_74

Vassilev, V. K., Miller, J. F., & Fogarty, T. C. (1999, 6-9 July). Digital circuit
evolution and fitness landscapes. In P. J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, & A. Zalzala (Eds.), Proceedings of the congress
on evolutionary computation (Vol. 2). Mayflower Hotel, Washington
D.C., USA: IEEE Press. doi: doi:10.1109/CEC.1999.782595

Volke, S., Bin, S., Zeckzer, D., Middendorf, M., & Scheuermann, G. (2014).
Fitness landscapes: From evolutionary biology to evolutionary compu-
tation. In Recent advances in the theory and application of fitness land-
scapes (Hendrik Richter and Andries Engelbrecht ed., Vol. 6, p. 487 -
507). Berlin, Heidelberg: Springer. Retrieved from http://dx.doi.org/
10.1007/978-3-642-41888-4_17 doi: 10.1007/978-3-642-41888-4_17

Vérel, S., Collard, P., & Clergue, M. (2007). Where are bottlenecks in nk fitness
landscapes? CoRR, abs/0707.0641 . Retrieved from http://dblp.uni
-trier.de/db/journals/corr/corr0707.html#abs-0707-0641

Weise, T. (2009). Global Optimization Algorithms – Theory and Application.
it-weise.de (self-published): Germany. Retrieved from http://www.it
-weise.de/projects/book.pdf

Wolpert, D. H., & Macready, W. (1995). No free lunch theorems for search
(Tech. Rep. No. SFI-TR-95-01-010). Santa Fe, NM: The Santa Fe Insti-
tute.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1 (1),
67–82.

Wright, A. H. (1991). Genetic algorithms for real parameter optimization. In
Foundations of genetic algorithms (pp. 205–218). Morgan Kaufmann.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and se-
lection in evolution. Proceedings of the Sixth International Congress of

http://dx.doi.org/10.1007/11729976_16
http://doi.acm.org/10.1145/1569901.1570212
http://dx.doi.org/10.1007/978-3-642-01129-0_74
http://dx.doi.org/10.1007/978-3-642-41888-4_17
http://dx.doi.org/10.1007/978-3-642-41888-4_17
http://dblp.uni-trier.de/db/journals/corr/corr0707.html#abs-0707-0641
http://dblp.uni-trier.de/db/journals/corr/corr0707.html#abs-0707-0641
http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/projects/book.pdf

36 Noel E. Rodríguez-Maya, Juan J. Flores, Sébastien Verel, Mario Graff

Genetics, 1 , 356-66.
Xin, B., Chen, J., & Pan, F. (2009). Problem difficulty analysis for particle

swarm optimization: Deception and modality. In Proceedings of the first
acm/sigevo summit on genetic and evolutionary computation (pp. 623–
630). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/
10.1145/1543834.1543919 doi: 10.1145/1543834.1543919

http://doi.acm.org/10.1145/1543834.1543919
http://doi.acm.org/10.1145/1543834.1543919

	Introduction
	Related Work
	Fitness Landscape Analysis
	Real-Coded Genetic Algorithms
	Performance Classification Models
	Experimental Results
	Discussion and Conclusions
	Appendices
	References

