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An application of Nekhoroshev theory

to the study of the perturbed hydrogen atom

Francesco Fassò∗, Daniele Fontanari† and Dmitrií A. Sadovskií‡

(June 23, 2015)

Abstract

We return to the Keplerian or n-shell approximation to the hydrogen atom in the presence
of weak static electric and magnetic fields. At the classical level, this is a Hamiltonian system
with the phase space S

2
×S

2. Its principal order Hamiltonian H0 was known already to Pauli
in 1926. H0 defines an isochronous system with a linear flow on S

2
× S

2 and with frequencies
depending on the external fields. Small perturbations H0 + P due to higher order terms can
be studied by further normalization, either resonant or nonresonant. We study the question,
raised previously, of how to decide for given parameters of the fields what normalization should
be used and with regard to which resonances. We base this analysis on the Nekhoroshev
theory—a branch of the Hamiltonian perturbation theory that complements the Kolmogorov-
Arnold-Moser theorem. Our answer depends on the a priori choice of the maximal order N

of resonances that are going to be taken into account (a cutoff). For any given N , there is a
decomposition of the parameter space into resonant and nonresonant zones, and a normal form
with a remainder of order exp(−N) may be consistently constructed in each of such zones.

Keywords: Perturbed hydrogen atom; n-shell; Resonances, Normal form; Nekhoroshev theory.
MSC: 37J40, 70H08, 70F05, 81V45 , 37J40.

1 Introduction

A. Aim of the paper. In the ninety years since Pauli’s work [26], perturbation theory has been
widely applied to the study of the hydrogen atom in weak static electric and magnetic fields; we refer
to the recent review [10]. The disclosure of resonances [9, 31] has brought new interest to this field.
While they represent a very interesting new subject of theoretical and experimental research, only a
few of them have been investigated. It is not even understood if, and to which high order, resonances
can be reached. Experimentalists would like to know the tolerances on the parameters of the system
in order to be sure that the system is within a particular resonance. Since resonances depend on
the parameters of the external fields, the idea has emerged that the parameter space should be
decomposed into ‘zones’ of approximate resonance, and any system within a given zone should
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be approximated by the corresponding resonant normal form [9]. However, neither a criterion for
the choice of the resonances which should be taken into consideration in the decomposition of
the parameter space, nor general indications on the size of these regions were given. It was only
suggested that “At the level of common physical intuition, it seems that the size and the stability
of a zone decrease with the order of the resonance” ([10], section I.C). The purpose of the present
article is that of providing some insight into these questions by approaching the problem in the
realm of Nekhoroshev theory, which in our opinion is the right setting for its study.

B. The perturbed hydrogen atom. The study of the hydrogen atom in weak electric and
magnetic fields goes back to Pauli [26] (see also [14, 1, 5, 35] and the recent review [10]). In this
approach, the starting point is the specific Kepler Hamiltonian with a small perturbation, which
represents the external fields. Due to the separation of time scales between the Kepler motion
and the perturbation, the system is first averaged over the Kepler flow a suitably large number
of times. Neglecting the remainder produces a truncated normal form which is in involution with
the Keplerian integral (or action) n, that corresponds to the principal quantum number of the
hydrogen atom. For each n > 0, reduction over the Keplerian symmetry of this truncated normal
form produces an n-dependent Hamiltonian system with two degrees of freedom and phase space
S2 × S2, that we will call the n-shell normal form.

The n-shell normal form is nonintegrable, but its principal order, that may be called Pauli
Hamiltonian, is a completely integrable Hamiltonian on S2 × S2. Its flow consists of a uniform
rotation on each of the two spheres, about an axis whose orientation depends on the external fields
and with a frequency which is constant on the sphere and depends on n and on the external fields
as well. Thus, the flow of the integrable part is isochronous and, depending on the ratio of the
frequencies of the two rotations, it is either nonresonant, hence quasi-periodic, or resonant, hence
periodic.

So far, the analysis of the n-shell normal form has been carried over for only a few resonances
of the lowest orders, specifically, the exact 1 : 1 resonance (exactly orthogonal fields), a widely
researched system, see [30, 6] and references therein as well as the review [10], the near 1:1 resonance
(nearly orthogonal fields) [9, 31, 7, 10] and the near 2 : 1 resonance [10, 8]. For the collinear fields,
many resonances, including the 1 : 0, have been uncovered in [29] without detailed analysis [10].

In each of these cases, the analysis was based on averaging over the integrable isochronous flow
of the Pauli Hamiltonian, carried over a sufficiently high number of times so as to produce, after
truncation of the remainder, a structurally stable normal form Hamiltonian. This ‘second’ trun-
cated normal form is integrable and generates a foliation by invariant tori, of (generic) dimension
two, whose topological properties were studied.

More precisely, for each of these few low order resonances, the normalization and truncation
procedure was applied to approximately resonant cases, corresponding to external fields whose
parameters fall in a certain ‘zone’ around the fields parameters that produce the exact resonance.
In the approximately resonant case, the n-shell normal form was regarded not as a perturbation of
its own integrable isochronous part, but as a perturbation of the integrable isochronous Hamiltonian
that has the frequencies of the exact resonance nearby. The difference between the two frequencies
was regarded as a small ‘parametric detuning’. The question raised in [9, 10] is how much can the
detuning be increased before the resonant zone is left.

C. Nekhoroshev theory. The celebrated Nekhoroshev theorem on the stability over exponen-
tially long times of nearly integrable Hamiltonian systems [23, 24, 2, 27] is to a large extent a theory
of resonant motions of such systems. Its key ingredient is the decomposition of the frequency and
action spaces into resonant and nonresonant zones.

The starting point of Nekhoroshev construction is the choice of a cutoff N—only resonances of
order up to N are taken into consideration. This reflects the idea that, on a time scale T , only
resonances of order up to a certain threshold N , that depends on T , produce effects which can
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be detected on that time scale, while higher order resonant motions are indistinguishable, on that
time scale, from nonresonant motions. For real analytic systems, due to the exponential decay of
Fourier harmonics, the link between the cutoff and the time scale is

TN ∼ eN . (1)

For any value of N , frequencies suitably close to each exact resonance of order up to N form
zones of approximate resonance and are treated as resonant, while all other frequencies form
the nonresonant zone and are treated as nonresonant. Nekhoroshev theory produces a detailed,
quantitative description of this decomposition, and proves the existence, in each (non)resonant
zone, of a normal form adapted to the (non)resonance properties of the zone and with a remainder
of the order of e−N .

This construction is then used, under additional (‘convexity’ or ‘steepness’) hypotheses on the
unperturbed Hamiltonian, to bound all motions on the time scale (1).

Finally, the last ingredient in Nekhoroshev theory is to choose the cutoff so as to maximize
the stability time (1). This leads to N(ǫ) ∼ ǫ−const and the resulting ‘Nekhoroshev time scale’ is
therefore the celebrated ‘exponentially long’ time scale

TN(ǫ) ∼ eN(ǫ) ∼ e1/ǫ
const

. (2)

This construction has some implications which may at first sight appear somewhat counterintuitive.
Since decreasing ǫ increases N(ǫ), more and more resonant zones appear in the decomposition as
ǫ → 0; frequencies which were treated as nonresonant for a given ǫ might be treated as resonant for
a smaller ǫ, or vice versa. The reason behind this is that decreasing ǫ increases the time scale and
higher-order resonances become important. Of course, any given exact resonance will eventually
end inside a resonant zone as ǫ → 0.

It should be noted that, while Nekhoroshev approach is relevant to classical systems, not all
of it might be relevant to the semiclassical limit. This applies, particularly, to the appearing of
time scales which go to infinity as ǫ → 0, that might be a dubious element in the description of
quantum systems.

D. Content of the paper. In this paper we study the n-shell normal form Hamiltonian via
Nekhoroshev theory. Given that our interest is not the dynamics of the system, and in view of the
unclear role of long time scales in quantum mechanics, especially on a given compact n-shell phase
space, we will not try to maximize the time scales on which the results apply and to reach the
Nekhoroshev time scale (2). Instead, we will consider the cutoff N as a free parameter, independent
of the size of the perturbation. Its role will only be that of determining the set of resonances that
are taken into consideration.1

A difference between our approach and the standard Nekhoroshev theory is that the latter is
mainly addressed to anisochronous systems. In Nekhoroshev theory, it is the action space that
needs to be decomposed into resonant and nonresonant zones, and the effort is to control motions
through the resulting network of zones—e.g. by proving that motions that start inside one of these
zones do not leave it on the considered time scale. Here, instead, we will consider perturbations
of an isochronous system, whose frequencies depend on the parameters of the external fields.
Accordingly, it will be the parameter space that will be decomposed into resonant and nonresonant
zones. From this point of view, our treatment resembles the formulation of Nekhoroshev theory
for elliptic equilibria of Hamiltonian systems [13, 25, 28], with the simplification that there will be
no need to prove the confinement of motions.

Our approach introduces some novelties to the previous studies of the perturbed hydrogen atom.
We will study the n-shell normal form not for fixed values of the resonances, and hence of the fields

1Of course, in the problem at hand, if the order of the n-shell normal form is fixed, it is meaningless to increase
the cutoff N beyond a certain threshold.
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parameters, but—as is typical of Nekhoroshev approach—for all values of the parameters. In doing
so we will also consider nonresonant normal forms, which have not been regarded as particularly
interesting in the mentioned references, presumably because of the triviality of the topology of
the fibration by the two-dimensional invariant tori they produce.2 In this way we will obtain an
N–dependent decomposition of the parameter space in resonant and nonresonant zones: around
each exact resonance ν = (ν1, ν2) ∈ Z2 of order |ν| = |ν1| + |ν2| ≤ N there is a resonant zone of
size of the order of

1

N |ν| . (3)

We will prove that, with this decomposition of the parameter space, a (non)resonant normal form
can be consistently constructed for all systems in each (non)resonant zone, with a remainder of
the order of e−N .

Thus, in our approach, the question of which normal form to construct for a given system
does not have a unique answer: the answer depends on the choice of the cutoff, that is, of the set
of resonances that are going to be taken into consideration. Increasing N , more resonant zones
appear in the decomposition and frequencies which were treated as nonresonant for a smaller N
might now be treated as resonant, or vice versa.

From the point of view of Hamiltonian perturbation theory, the problem we study here has two
related peculiarities. One is that the phase space is not the standard action-angle space, but a
compact manifold, S2 × S2. The other is that the foliation by the invariant tori of the integrable
part, that have dimension two in case of nonresonance and dimension one in case of resonance, has
singularities corresponding to equilibrium points on each sphere. Therefore, we cannot resort to the
standard formulation of Hamiltonian perturbation theory, that employs action-angle coordinates,
but we need to mix it with a Birkhoff-like normal form construction that employs Cartesian-like
coordinates. Moreover, since we aim at giving a global result on the phase space, we cannot simply
exclude from our consideration the singularities of the foliation by the invariant tori, but we need
to construct the normal forms globally on S2 × S2. We will achieve this goal by resorting to an
atlas formed by a number of charts and using ideas and techniques from [12, 4, 13]. There are
other problems of quantum-mechanical interest where the phase space is a product of spheres (see
[15, 16]), and our treatment here may also serve as a reference for them.

We review the properties of the n-shell normal form in Section 2. In Section 3 we present the
results of applying Nekhoroshev theory to the n-shell normal form (Proposition 2). The proof of
Proposition 2, which is rather technical but is not strictly necessary for the comprehension of the
entire argument, is relegated to Section 4.

2 The n-shell normal form

We describe here, very shortly, the n-shell normal form Hamiltonian, which is the starting point
of our work. As already mentioned, this goes back to Pauli. For details, see e.g. [26, 35, 10, 31].
The first n-shell normal forms (the next term after the linear part) were, probably, obtained by
Soloviev [32, 33] for the quadratic Zeeman effect (i.e., for purely magnetic field) and crossed fields
[34], and in a number of studies that followed, such as [19, 20, 17], see more in [10].

The hydrogen atom is modelled as a classical Keplerian system formed by an electron in the
Coulomb field created by an infinitely massive proton. In atomic units, the Hamiltonian can be
written as

1

2
‖p‖2 − 1

‖q‖ − E · q − 1

2
B · q × p+

1

8
‖B× q‖2 , q ∈ R3 \ {0} , p ∈ R3 . (4)

2A Nekhoroshev approach which employs only resonant normal forms, and hence leads to a decomposition of the
parameter space into resonant zones alone, might be based on Lochak’s version of Nekhoroshev theory [21].
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Here and in the following we denote by ‖ ‖ the Euclidean norm and by a dot the Euclidean scalar
product in Rp, p ≥ 2, and by a cross the vector product in R3. Let E < 0 be the energy of
the Kepler system, and denote by n the Keplerian action and the corresponding principal atomic
quantum number

n = (−2E)−1/2 .

Assuming that the ratios between the electric and magnetic fields and (certain powers of) −E are
small it is possible to average Hamiltonian (4) any number of times over the Keplerian flow. After
truncation of the remainder, this gives a two-degrees of freedom Hamiltonian system with phase
space diffeomorphic to S2 × S2 and Hamiltonian

H0 + ǫP , (5)

that we call the n-shell normal form and now describe.
The parameter ǫ in (5) is

ǫ = (‖Bn‖2 + ‖En‖2)1/2

with Bn = n3B and En = 3n4E.
The phase space of system (5) is S2

n/2 × S2
n/2, where S2

r is the two-sphere of radius r > 0 in

R3, with the symplectic structure given by the sum of (the pullbacks under the projections onto
the two factors of) the normalized area element on each sphere. The normalized area element σr

on the sphere S2
r ⊂ R3 ∋ x is

σr(x)(u, v) = r−2 x · u× v ∀x ∈ S2
r , u, v ∈ TxS

2
r

and, correspondingly, the Hamiltonian vector field of a function H : S2 → R is −x × gradH(x);
in particular, the Hamiltonian vector field of the linear Hamiltonian H(x) = x3 is (−x2, x1, 0)
and its flow is a uniform rotation around the axis (0, 0, 1) with unit angular velocity. We will
denote by s = (s11, s12, s13, s21, s22, s23) the points of S2

n/2 × S2
n/2, that we embed in R3 ×R3, and

write indifferently either s ∈ R6 or (s1, s2) ∈ R3 × R3 with si = (si1, si2, si3). With the 2-form
σn/2 + σn/2, the Hamiltonian vector field H♯ of a function H : S2

n/2 × S2
n/2 → R is thus

H♯(s1, s2) = −
(
s1 × grads1H(s1, s2)
s2 × grads2H(s1, s2)

)
. (6)

The integrable part H0 of the n-shell normal form (5), that we call the Pauli Hamiltonian, is

H0(s) = ω1(β)s13 + ω2(β)s23

where
ω1(β) =

√
1 + β , ω2(β) =

√
1− β

with

β =
2Bn · En

‖Bn‖2 + ‖En‖2
.

The parameter β takes values in the closed interval [−1, 1] and depends on n, on the strengths of
the fields and on the angle γ between them. The fields are necessarily parallel (γ = 0) for β = 1
and antiparallel (γ = π) for β = −1; the value β = 0 corresponds to orthogonal fields (γ = π/2),
including the Stark (B = 0) and Zeeman (E = 0) limits; for each other value of β, the angle satisfies
0 ≤ γ < π/2 if β > 0 and π/2 < γ ≤ π if β < 0.

For each β, the flow of H0 consists of uniform rotations along the parallels of the two spheres,
with angular frequencies ω1(β) and ω2(β). This flow, which is sometimes called ‘Pauli precession’,
is periodic if ω1(β)/ω2(β) ∈ Q, quasi–periodic otherwise.

Finally, written in Cartesian coordinates in the embedding space R3 × R3, the function P in
(5) is a polynomial in ǫ, of an order that depends on the order of the normalization.



Fassò, Fontanari and Sadovskií : Nekhoroshev theory for the perturbed hydrogen atom 6

3 Nekhoroshev theory for the n-shell normal form

We now describe our application of Nekhoroshev theory to the n-shell normal form H0 + ǫP . In
order to do this we need to introduce some objects and notation.

A. Transformation to unit spheres. Even though it is not strictly necessary, we prefer
working on unit spheres, rather than on spheres of radius n/2.

With the conformal symplectomorphism s 7→ 2
ns and a corresponding reparameterization of

time, the n-shell normal form can be regarded as defined by the Hamiltonian (5) on the phase
space S2 × S2, where now S2 is the unit sphere in R3, equipped with the symplectic structure
σ := σ1 + σ1. The Hamiltonian vector field H♯ of a function H : S2 × S2 → R, relative to the
symplectic structure σ, is still given by (6). Thus, after the time-reparameterization, the flow of
H0 consists of uniform rotations on the parallels of the two spheres, with frequencies ω1(β) and
ω2(β).

From now on, we consider the Hamiltonian (5) on S2 × S2.
We denote by I1 and I2 the restrictions to S2 × S2 of the two functions s13 and s23 and, using

a standard terminology in Hamiltonian mechanics, we call them actions because their flows are
periodic with period 2π. Furthermore, we write I = (I1, I2) : S

2×S2 → R and we use the frequency
vector map

ω : [−1, 1] → R2 , ω(β) = (ω1(β), ω2(β)) . (7)

Correspondingly, we write the Pauli Hamiltonian H0 as

H0 = ω(β) · I .

B. Geography of resonances. Since the parameter β takes values in the closed interval [−1, 1],
the set of all possible values of the frequency vector ω(β) = (ω1(β), ω2(β)) is the closed arc Ω of
the circle ω2

1 + ω2
2 = 2 which lies in the first quadrant ω1 ≥ 0, ω2 ≥ 0, see Figure 1, left. We call

frequency space the set Ω.
A frequency vector ω(β) ∈ Ω is resonant with an integer vector ν = (ν1, ν2) ∈ Z2 if ω(β) ·ν = 0;

we also say that ν is a resonance for the considered value of β (sometimes in the literature it is
ω(β) that is called the resonance). The norm |ν| := |ν1|+ |ν2| is the order of the resonance. Since
the frequency space Ω spans the entire first quadrant, any integer vector ν such that ν1ν2 ≤ 0
is a resonance for some β ∈ [−1, 1]. We may clearly consider only resonances of minimal order,
such that gcd(ν1, ν2) = 1, and need not distinguish between ν and −ν. Thus, the set of possible
resonances consists of all vectors in

Z2
⋆ = {(ν1, ν2) ∈ Z2 \ {(0, 0)} : gcd(ν1, ν2) = 1, ν1 ≤ 0 , ν2 ≥ 0} .

Nekhoroshev approach depends on a parameter, the cutoff N . For each N > 1, this approach
considers only resonances of order up to N and decomposes the action space of the system into
regions of approximate resonance with these resonances. In the present case, we decompose instead
the frequency space. Let

Z2
N :=

{
ν ∈ Z2

⋆ : 0 < |ν| ≤ N
}
.

We define the N–resonant region of ν ∈ Z2
N as the subset

ΩN,ν :=
{
ω ∈ Ω : |ω · ν| ≤ 1√

2N

}

of the frequency space Ω, see Figure 1, right. Thus, ΩN,ν is the intersection of Ω with the angle
centered on the line orthogonal to ν and of semi–amplitude θν such that

sin θν =
1

2N‖ν‖
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Figure 1: The frequency space Ω (left) and a schematic representation of its decomposition into resonant
and nonresonant regions (right).

(recall that ‖ω‖ =
√
2). This choice of the N–resonant regions guarantees that any two different

of them have empty intersection (the angle ν̂ν′ ∈ [0, π/2) between two nonzero nonparallel vectors

ν and ν′ of R2 satisfies sin(ν̂ν′) = | det(ν,ν′)|
‖ν‖‖ν′‖ ≥ 1

‖ν‖ |ν′| ). Therefore, the complement

ΩN,nr := Ω \
⋃

ν∈Z2
N

ΩN,ν

in Ω of all the resonant regions of order ≤ N , which is called the N–nonresonant region, is a union
of arcs. Between any two resonant regions of order ≤ N there is an arc of the N–nonresonant
region. From these definitions it follows that it is possible to control the ‘small denominators’ in
the resonant and nonresonant regions as follows:

ω ∈ Ων̄ , ν̄ ∈ Z2
N =⇒ |ω · ν| ≥ 1√

2N
∀ν ∈ Z2 such that 0 < |ν| ≤ N , ν 6 ‖ ν̄ (8)

ω ∈ ΩN,nr =⇒ |ω · ν| ≥ 1√
2N

∀ν ∈ Z2 such that 0 < |ν| ≤ N . (9)

Remarks: (i) The size ∼ N−1‖ν‖−1 of the resonant regions is typical of Nekhoroshev’s theory
for perturbations of convex Hamiltonians with 2 degrees of freedom, see e.g. [27, 3].

(ii) Reference [10] uses a three-dimensional parameter space C ⊂ R3 ∋ (s, a2, d), with s = ǫ/n,
a2 = ‖Bn‖2/ǫ2 and d = β/2. Since (a2, d) belong to the disk of radius 1/2 centered at (1/2, 0)
in R2, the set C is an infinite solid cylinder, cf. Figure 3 of [10]. Our frequency space Ω can be
thought of as the image of C under the map (s, a2, d) 7→ ω(2d) where ω is the frequency vector
map (7). Therefore, the level sets of the frequency vector in the space R3 ∋ (s, a2, d) are the planes
d = const. The pullback to C of our (non)resonant regions in Ω consist of slices of C parallel to the
planes d = const. Their intersection with the disks s = const should be compared to the resonant
zones in Figure 3 of [10].

(iii) Many field orientations and relative strengths can result in the same resonance. This
applies particularly to collinear fields, which can be tuned to any resonance. On the other hand,
the 1 : 1 and 1 : 0 (or 0 : 1) resonances occur only for the orthogonal and parallel (or antiparallel)
field configurations, respectively. So our parameterization in this article, while sufficient for the
Nekhoroshev theory, does not reflect on the mutual orientation of the fields, which requires an
additional parameter (such as a2 in [10]).
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C. A symplectic atlas and Fourier series on the sphere. In Nekhoroshev theory, normal
forms need not be actually computed, but it is necessary to prove that they exist up to a sufficiently
high order, and to provide (recurrent) estimates on them. The way of doing this which is most
used is through the introduction of action-angle coordinates, that makes possible to resort to
standard techniques from Fourier analysis and analytic functions. In our case, however, for the
reasons mentioned in the Introduction, we need to do this construction globally on the phase
space S2 × S2, and this requires special considerations. In order to do this, we will make use of a
symplectic atlas for S2 × S2 made of several charts. We first discuss this topic for a single sphere
S2.

Let σ1 be the area form on S2. We consider a symplectic atlas for (S2, σ1) made of the following
three charts. The first chart covers the sphere minus the North and South poles (0, 0,±1) and is
formed by a pair of cylindric–like action–angle coordinates (j, ϕ) ∈ (−1, 1)× S1 such that

x1 =
√
1− j2 cosϕ , x2 =

√
1− j2 sinϕ , x3 = j . (10)

Clearly σ1 = dϕ ∧ dj. The coordinate j coincides with the (restriction to this chart domain of
the) ‘action’ x3 and the local representative of Xx3

is ∂
∂ϕ . The second chart has for domain the

sphere minus the South Pole and Cartesian–like coordinates (p+, q+) which take values in the disk
p2+ + q2+ < 4 of R2, such that

x1 = −p+

√
1− p2+ + q2+

4
, x2 = q+

√
1− p2+ + q2+

4
, x3 = 1− p2+ + q2+

2
. (11)

Now σ1 = dq+∧dp+ and the local representative of Xx3
is p+

∂
∂q+

− q+
∂

∂p+
. The third chart, which

excludes the North Pole, is constructed similarly to the second one, just with some signs reversed:

x1 = p−

√
1− p2− + q2−

4
, x2 = q−

√
1− p2− + q2−

4
, x3 = −1 +

p2− + q2−
2

. (12)

The second and third charts (that, in cartography are known as Lambert azimuthal projections,
centered on the North and South Poles respectively) provide an atlas for S2. However, later on we
will restrict the domain of each of these charts to a neighbourhood of the Pole, in which the Taylor
series of the local representative of the Hamiltonian (5) is convergent. This is why we consider the
action-angle chart as well.

Since the transition functions between the three considered charts are real analytic, this atlas
gives S2 the structure of a real analytic manifold.

We say that a function F : S2 → R is a real analytic function on S2 if the transition functions
between its local representatives in these three charts are real analytic.3 From expressions (10),
(11) and (12) it is clear that if a function F̃ : V → R from a neigbourhood V of S2 in R3 is real
analytic, then its restriction to S2 is a real analytic function on S2.

At the heart of perturbation theory is the possibility of solving the so called ‘homological equa-
tion’, that in our case—and adapted to the case of a single sphere—involves the linear differential
operator

F 7→ {x3, F}
on the algebra of (real analytic) functions on S2. Solving this equation requires a Fourier series for
functions on S2. Written in coordinates, this should of course coincide with the standard Fourier

3Even though this is not strictly necessary for the sequel, we note that the class of real analytic functions defined
in this way is independent of the chosen atlas. In fact, by the Grauert-Morrey theorem [18, 22], any smooth manifold
has a unique real analytic structure compatible with its differentiable structure. Therefore, the transition functions
between any pair of charts that belong to any pair of real analytic atlases of S2 is real analytic. It follows that a
function which is real analytic according to our definition has real analytic representatives in any chart of any real
analytic atlas of S2.
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series in the action-angle chart; the appropriate extension to neighbourhoods of the poles is similar
to the Fourier expansion used in the neighbourhood of an elliptic point in Rn, introduced in [4, 13].

Proposition 1. Any real analytic function F : S2 → R can be expanded into the absolutely
convergent series

F =
∑

ν∈Z

Fν (13)

where, for each ν ∈ Z, Fν : S2 → R is a real analytic function that satisfies

{x3, Fν} = iνFν . (14)

The local representatives of Fν in the three coordinate systems are given in the proof.

Proof. We first define the local representatives of the functions Fν in the three charts of the
considered atlas and then verify that they match in the intersections of the domains.

The local representative f(j, ϕ) of F in the action-angle chart can be expanded in the standard
Fourier series

f(j, ϕ) =
∑

ν∈Z

f̂ν(j)e
iνϕ (15)

which is absolutely convergent in the entire coordinate domain.
Introduce now the symplectic complex coordinates

z =
p+ + iq+√

2
, w =

p+ − iq+√
2i

in the domain of the northern polar chart (11); they take value in the open set Q2 := {(z, w) ∈ C2 :
w̄ = iz , |z|2 < 2}. The local representative f+(z, w) of F in these coordinates can be expanded
in Taylor series centered at (0, 0),

f+(z, w) =
∑∞

m,n=0 f
+
m,nz

mwn

which is absolutely convergent in an open subset Qr+ of Q2, with Qr+ = {(z, w) ∈ Q2 : |z|2 < r+}
for some r+ > 0 that depends on the analyticity properties of f+. The radius r+ is not unique, so
we make a choice for it. The Taylor series of f+ can be rewritten as

∑−1
ν=−∞ f̃+

ν (izw)w|ν| +
∑∞

ν=0 f̃
+
ν (izw)zν

where, for each y ≥ 0,
f̃+
ν (y) =

∑∞
m=0 f

+
m+|ν|,m(−iy)m if ν < 0 (16)

while
f̃+
ν (y) =

∑∞
m=0 f

+
m,m+ν(−iy)m if ν ≥ 0 , (17)

and all these series are absolutely convergent in Qr+ . Thus, if for each ν ∈ Z we define

Eν(z, w) = wν if ν ≥ 0 , Eν(z, w) = z|ν| if ν < 0 ,

we have
f+(z, w) =

∑

ν∈Z

f̃+
ν (izw)Eν(z, w) ∀(z, w) ∈ Qr+ , (18)

with an absolutely convergent series.
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We introduce in a similar way complex coordinates in the domain of the southern polar chart.
The Taylor series of f− centered at (0, 0) converges in a nonempty domain Qr− , with some r− > 0,
and we arrive at the series representation

f−(z, w) =
∑

ν∈Z

f̃−
ν (izw)Eν(z, w) ∀(z, w) ∈ Qr− (19)

which is absolutely convergent in Qr− .
The preimage in S2 of the restricted domains Qr± of the two complex polar charts are the two

spherical caps ±x3 > 1 − r±. Therefore, together with the action-angle chart, the restrictions of
the two complex polar charts to the domains Qr+ and Qr− still form an atlas for S2. It is now easy

to verify that, for each ν ∈ Z, the functions fνe
iνϕ, f̃+

ν Eν and f̃−
ν Eν match in the intersections of

the chart domains of this atlas, and are thus the local representatives of a function Fν : S2 → R.
In fact, in the intersection of the domain of the action-angle chart and of the northern polar chart
it is p+ = −

√
2
√
1− j cosϕ, q+ =

√
2
√
1− j sinϕ and hence

w = i
√
1− j eiϕ , z = −

√
1− j e−iϕ , j = 1− izw .

Thus, equating the series expansions (15) and (18) of the local representatives of F in these two
charts gives

f̂νe
iνϕ = f̃+

ν Eν ∀ ν ∈ Z

in the spherical segment x3 > 1− r+ of S2. Similarly

f̂νe
iνϕ = f̃−

ν Eν ∀ ν ∈ Z

in the spherical segment x3 < −(1 − r−) of S2. Since the intersection of the preimages in S2 of
the restricted domains Qr± of the polar charts is contained within the preimage of the domain of

the action-angle chart, it follows from here that the two functions f̃±
ν match.4 Furthermore, this

fact implies that the function Fν is independent of the choice of r±, as long as they are positive.
This proves, for each ν, the existence of a function Fν on S2 whose local representatives in the

three charts are fνe
iνϕ, f̃+

ν Eν and f̃−
ν Eν . Fν is real analytic because its local representatives are

real analytic, being given by absolutely convergent power series. The absolute convergence of the
series (13) follows from that of the local representatives.

The function Fν will be called the ν–th harmonic of F and (13) will be called the Fourier series
of F .

Remarks (i) The local representative in the complex northern polar chart of the function Fν is
defined in the entire domain Q2 of these coordinates even if the maximum convergence radius r+
of the Taylor series of f+ is < 2. In this case the local representative of Fν may still be written
as f̃+

ν Eν , given that Eν is nonzero outside Qr+ , but the function f̃+
ν has the series representation

(16), (17) only in Qr+ .

(ii) The function f̂ν(j)e
iνϕ is the local representative of a function defined on the entire sphere;

the two functions f̂ν(j) and eiνϕ, separately, are not.

All this extends in an obvious way to the phase space S2×S2, that can be covered with a symplectic
atlas made of nine charts, given by all possible combinations of the three charts on each sphere.
Any smooth function F : S2 × S2 → R can be expanded in the Fourier series

∑
ν∈Z2 Fν of its

harmonics Fν , now with ν = (ν1, ν2) ∈ Z2. For instance, the local representatives f of F and fν

4In practice, the convergence radii r± of f± may quite easily be smaller than 1. In that case, after the restrictions
to Qr±

, the two complex polar charts do not intersect at all. In Section 4 we will de facto assume that r± < 1.
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of Fν in a chart with action-angle coordinates (j1, ϕ1) on the first sphere and complex coordinates
(z2, w2) on the second satisfy

f(j1, ϕ1, z2, w2) =
∑

ν1∈Z

∑

m,n∈N

f̃ν1,m,n(j1)e
iν1ϕ1zm2 wn

2

=
∑

ν∈Z2

f̂ν(j1, iz2w2) e
iν1ϕ1Eν2(z2, w2) (20)

=
∑

ν∈Z2

fν(j1, ϕ1, z2, w2) .

For any given ω = (ω1, ω2) ∈ R2, the harmonics of F : S2 × S2 → R satisfy

{ω · I, Fν} = iω · νFν

where as above I = (I1, I2). A resonant harmonics of F : S2 × S2 → R is a harmonic Fν such
that ν is a resonance for ω(β). For either ν̄ ∈ Z2

⋆ a vector of minimal order or ν̄ = (0, 0) define the
projector Πν̄ on the space of functions on S2 × S2 as

Πν̄F =
∑

ν∈Zν̄

Fν

where the sum is restricted to all ν ∈ Z2 parallel to ν̄, that is, ν = kν̄ for some k ∈ Z. Clearly,
Π0F = F0 is a function of the actions s13, s23 alone and equals the average of F over the orbits
of the S1 × S1–action given by uniform rotations along the parallels of the two spheres. For any
ν̄ 6= 0, Πν̄F is the average of F over the orbits of the S1–action given by uniform rotations along
the parallels of the two spheres with any frequency ω = (ω1, ω2) 6= 0 which is resonant with ν̄.

D. Nekhoroshev theorem for the n-shell normal form. We may now state a version of
Nekhoroshev theorem for the n-shell normal form Hamiltonian H0 + ǫP :

Proposition 2. There exist positive constants ǫ∗ and c, independent of ǫ, such that the following
is true for any 0 < ǫ < ǫ∗ and any

N ≤ c
√
ǫ∗/ǫ .

For each β ∈ [−1, 1] there exists a real analytic symplectic diffeomorphism Ψ of S2×S2 onto itself
which satisfies

Ψ = id + O
(√

ǫ/ǫ∗
)

and conjugates H0 + ǫP to
H0 + ǫG+ ǫ e−N/cF

with functions G,F : S2 × S2 → R which are bounded uniformly in ǫ together with their first
derivatives, and

i. if ω(β) ∈ ΩN,nr then G = Π0G = Π0P + O(
√
ǫ/ǫ∗)

ii. if ω(β) ∈ ΩN,ν for some (minimal order) resonance ν of order ≤ N , then G = ΠνG =

ΠνP + O(
√
ǫ/ǫ∗).

The proof is deferred to the next section.
Within the standard formulation of Nekhoroshev theorem, the cutoff N is chosen in such a

way to minimize the remainder for each value of ǫ, that is, N = c
√
ǫ∗/ǫ, because this leads to the

longest stability times. Time, however, does not enter our problem. Therefore, we prefer leaving
the cutoff unevaluated.
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Proposition 2 answers the question raised at the beginning: if resonances up to order N are
taken into consideration, then the size of the ν-resonant zones decays with N and with the order
of the resonance as in (3), that is, as

1

N‖ν‖ .

In the adopted construction, the size of each arc of the resonant region depends on the orders of
the two nearby resonances of order up to N , and is not less than a quantity of the order of N−2.
If the cutoff is linked to the perturbation parameter as in Nekhoroshev theory, then the size of the
resonant regions is ∼ √

ǫ/‖ν‖ while that of the nonresonant arcs is bounded from below by ∼ ǫ.
From a dynamical point of view, Proposition 2 implies that, on a time scale of the order of

eN/c, the first integrals of the truncated normal form H0+ ǫG are approximate first integrals of the
n-shell normal form Hamiltonian H0 + ǫP . Specifically, if J : S2 × S2 → R is a function such that
{H0 + ǫG, J} = 0, then along the flow of H0 + ǫP the function J ◦ Ψ varies at most of quantities
of order

√
ǫ/ǫ∗ on times up to ∼ eN/c. In the nonresonant case, G does not contain nonzero

harmonics and the two actions I1 and I2 are integrals of motion of H0 + ǫG. In the resonant case,
instead, the linear combination ν · I = ν1I1 + ν2I2 is a first integral of H0 + ǫG. In all cases, the
truncated normal form Hamiltonian H0+ ǫG has two first integrals in involution, and is integrable.

4 Proof of Proposition 2

The proof of Proposition 2 is rather standard, except for the fact that the phase space S2 × S2

cannot be covered with a single coordinate system. The normal forms can be constructed globally
on S2 × S2 using the Fourier series of Proposition 1, but in order to produce estimates on these
normal forms we need to resort to an atlas made of different charts.

Basically, all the estimates we need can be found elsewhere: for instance, those using action-
angle coordinates in [3], those using complex coordinates in [13], and those using both systems of
coordinates in [4]. Thus, we will not reprove all of them here. For clarity, however, we will express
these estimates as estimates on functions on S2×S2, rather than on their local representatives. This
will require some preliminary work, but has the advantage of making the perturbation construction
more transparent.

A. Complex domains, function classes and norms. We will use an atlas for S2×S2 made of
the nine products of a system of action-angle coordinates (j, ϕ) and two complex coordinate systems
(z, w) on each sphere; the complex coordinates have been introduced in the proof of Proposition 1
and we will refer to them as to the ‘North’ and ‘South’ coordinates. As is typical of perturbation
theory we need complex extensions of these nine chart domains.

The construction of the complex domains depends on two positive numbers Rz and Rϕ, that
will be chosen later based on the analyticity properties of the perturbation P ; for now, they may
be considered as parameters. We assume that

Rz ≤ 1 , Rϕ ≤ 1 ;

this condition will be tacitly used at several points in the sequel.
We start from an atlas on each sphere formed by the restrictions of the North and South

coordinate domains to
{(z, w) ∈ C : w̄ = iz , |z| < Rz}

and by the restriction of the action-angle coordinates to

{(j, ϕ) ∈ (−1, 1)× S1 : |j| < 1−R2
z/4}

(since izw = 1− j, with these choices the intersection of any pair of adjacent coordinate domains
is a nonempty spherical segment).
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For any r > 0, denote by Br(x) ⊂ C the complex disk of radius r and center x ∈ R and consider
the complex neighbourhood of the torus

S1
r = {ϕ ∈ C/(2πZ) : Im(ϕ) < r} .

Write R = (Rz , Rϕ). For any ρ = (ρz, ρϕ) such that 0 < ρ ≤ R (inequalities among vectors are
interpreted componentwise) consider the complex two-disk

∆ρ = Bρz
(0)×Bρz

(0) ∋ (z, w) ,

that extends (a subset of) the domain of the North and South coordinates to the complex, and the
complex set

Kρ = Jρz
× S1

ρϕ
∋ (j, ϕ) with Jρz

=
⋃

j∈R , |j|<1−R2
z/4

Bρ2
z/4

(j) ,

that extends (a subset of) the domain of the action-angle coordinates. If R/2 ≤ ρ ≤ R then the
preimages of the real parts of the three complex domains ∆ρ (North), Kρ and ∆ρ (South) cover
the entire sphere.

Thus, taking all possible nine products of the sets ∆ρ and Kρ on each sphere gives complex
domains

Dα
ρ , α = 1, . . . , 9 ,

and the preimages under the coordinate maps of their real parts cover entirely S2 × S2 if R/2 ≤
ρ ≤ R. We will denote by fα, α = 1, . . . , 9, the local representatives in these charts of a function
F : S2 × S2 → R.

We say that a real function on S2 ×S2 is of class Aρ if it is real analytic and its local represen-
tatives in all nine charts have complex analytic extensions to the sets Dα

ρ , bounded together with
their first derivatives.

Any function F ∈ Aρ can be expanded in its Fourier series
∑

ν∈Z2 Fν , and its harmonics
Fν ∈ Aρ. We may thus define a norm in Aρ out of the usual Fourier-like norms of its local
representatives; the use of such a norm in action-angle coordinates is completely standard in
perturbation theory, while for the case of complex coordinates see [4, 13]. Specifically, for any
F ∈ Aρ we define

|F |ρ :=
∑

ν∈Z2

|Fν |∞ρ

where, for each ν ∈ Z2,
|Fν |∞ρ := max

α=1,...,9
sup
y∈Dα

ρ

|fα
ν (y)| .

Lemma 1. Assume F ∈ Aρ for R/2 < ρ ≤ R. Then for any ν ∈ Z2 and any x > 0 such that
xR < ρ/2,

|Fν |∞ρ−xR ≤ e−x|ν|Rϕ|Fν |∞ρ .

Proof. Let us for instance verify this inequality for the representatives in the chart with coordinates
(j1, ϕ1, z2, w2), see (20). Since the maximum of the modulus of an analytic function is reached at
the boundary of its domain,

sup
Kδ×∆δ

∣∣fν(j1, ϕ1, z2, w2)
∣∣ = e|ν1|δϕδ|ν2|z sup

Kδ×∆δ

∣∣f̂ν(j1, iz2w2)
∣∣
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for any δ = (δz, δϕ). Therefore, writing for shortness |f̂ν |∞δ for supKδ×∆δ
|f̂ν(j1, iz2w2)|,

|fν |∞ρ−xR = e|ν1|(ρϕ−xRϕ)(ρz − xρz)
|ν2||f̂ν |∞ρ−xR

≤ e−x|ν1|Rϕ(1− x)|ν2||f̂ν |∞ρ
≤ e−x|ν1|Rϕe−x|ν2||f̂ν |∞ρ
≤ e−x(|ν1|+|ν2|)Rϕ |f̂ν |∞ρ

where we have used ρz < 1 and 1−x < e−x and, in the last inequality, Rϕ < 1. The computations
in the other charts are analogous.

Lemma 1 has the following consequence. Given a ‘cutoff’ N > 0, define the ‘ultraviolet’ part of
a function F : S2 × S2 → R as F>N =

∑
|ν|>N Fν , and write F = F≤N + F>N . Then, if F ∈ Aρ

and xR < ρ/2, ∣∣F>N
∣∣
ρ−xR

≤ e−NxRϕ |F>N |ρ . (21)

We need also a norm for the Hamiltonian vector fields of functions. The Hamiltonian vector
field F ♯ of a function F ∈ Aρ is defined by σ(F ♯, ·) = dF . By linearity,

F ♯ =
∑

ν∈Z2

F ♯
ν

where, for each ν, F ♯
ν is the Hamiltonian vector field of the ν-th harmonic Fν of F . We thus define

‖F ♯‖ρ :=
∑

ν∈Z2

‖F ♯
ν‖∞ρ

where, for each ν,

‖F ♯
ν‖∞ρ := max

α=1,...,9
max

ξ
sup
y∈Dα

ρ

1

Rξ

∣∣(fα
ν )

♯
ξ(y)

∣∣

where ξ runs over all the coordinates in the chart α, (fα
ν )

♯
ξ is the ξ-component of the Hamiltonian

vector field of ν-th harmonic fα
ν of the local representative fα of F in the chart α, and, in charts

with action-angle coordinates, Rj = R2
z. Similarly to (21),

∥∥(F>N )♯
∥∥
ρ−xR

≤ e−NxRϕ‖(F>N)♯‖ρ . (22)

B. The Lie method. The next tool we need is the so called ‘Lie method’ to construct near
the identity symplectic diffeomorphisms (we use the version of this method for vector fields de-
scribed in [11]). This method is particularly convenient in the present case because it constructs
the diffeomorphisms as time-one maps of Hamiltonian flows and therefore works seamlessly on
manifolds.

Given a function X ∈ Aρ, denote by LX the Poisson bracket operator {X, ·} and by ΦX
1 the

time-one map of the flow of its Hamiltonian vector field X♯. For any function Y ∈ Aρ, write

Y ◦ ΦX
1 = Y +RX

1 (Y ) = Y + LXY +RX
2 (Y ) .

Since t 7→ Y ◦ΦX
t is analytic and d

dt (Y ◦ΦX
t ) = (LXY ) ◦ΦX

t , the remainders Rj , j = 1, 2, in these
expressions have the Taylor series representation RX

j (Y ) =
∑∞

k=j
1
k!L

k
XY .

Estimates on the method can be obtained from here, using the following basic estimates: if
X,Y ∈ Aρ and x > 0 is such that ρ− xR > R/2, then LXY ∈ Aρ−xR and

|LXY |ρ−xR ≤ 1

x
‖X♯‖ρ−xR|Y |ρ , ‖(LXY )♯‖ρ−xR ≤ 4

x
‖X♯‖ρ‖Y ♯‖ρ .
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The proof is obtained by estimating the local representatives in each chart separately, what is more
or less routine (see e.g. [3]; however, some care has to be taken when using complex coordinates,
see [4]).

From this it follows in a relatively easy way that, if X ∈ Aρ and x > 0 is such that ρ−xR > R/2
and

‖X♯‖ρ ≤ x

8
, (23)

then the local representatives of ΦX
1 map the extended chart domains Dα

ρ−xR into Dα
ρ , each one

diffeomorphically onto its image, and ΦX
1 is a diffeomorphism of S2 × S2 onto itself that satisfies

ΦX
1 = id+O

(
‖X♯‖ρ

)
. Moreover, if Y ∈ Aρ then Y ◦ΦX

1 ∈ Aρ−xR and estimates on the remainders
RX

j (Y ) are easily obtained; for instance, in the sequel we will use the following estimates:

|RX
1 (Y )|ρ−xR ≤ 2|LXY |ρ− x

2
R , |RX

2 (Y )|ρ−xR ≤ |LX(LXY )|ρ− x
2
R , (24)

‖RX
1 (Y )♯‖ρ−xR ≤ 4

x
‖X♯‖ρ‖Y ♯‖ρ , ‖RX

2 (Y )♯‖ρ−xR ≤ 2

x
‖X♯‖ρ‖(LXY )♯‖ρ . (25)

C. The single perturbation step. We construct the diffeomorphism Ψ of Proposition 2 as the
composition of a number of diffeomorphisms, each putting the Hamiltonian in a normal form one
order higher than the previous one. Here we describe the single step.

The construction depends on various parameters, whose values will be chosen later; among
them, N > 0 and 0 < R = (Rz, Rϕ) ≤ (1, 1). In order to treat the two cases i. and ii. at once we
formally denote by ν̄ = 0 the nonresonant case and write Ω0 for ΩN,nr. For ν̄ 6= 0, we write Ων̄ for
ΩN,ν.

Assume that ω(β) ∈ Ων̄ for some 0 ≤ ‖ν̄‖ ≤ N (as just said, ν̄ = 0 means nonresonance). Fix
a ρ such that R/2 < ρ < R. Consider a function

H = H0 + U + V ∈ Aρ (26)

with Πν̄U = U . By (14) of Proposition 1, the ‘homological equation’

LXH0 = Πν̄V
≤N − V ≤N

has the solution X =
∑ Vν

iν·ω(β) , where the (finite) sum is restricted to those ν ∈ Z2 which have

norm 0 < |ν| ≤ N and are not parallel to ν̄ (that is, ν 6= kν̄ with k ∈ Z). By (8) and (9) and the
definitions of the norms

|X |ρ ≤ 2N |V ≤N |ρ , ‖X♯‖ρ ≤ 2N‖V ♯‖ρ (27)

and X ∈ Aρ (in these estimates we have for simplicity worsened a factor
√
2 to 2). Therefore,

(H0 + U + V ) ◦ ΦX
1 = H0 + LXH0 +RX

2 (H0) + U +RX
1 (U) + V ≤N + V >N +RX

1 (V )

= H0 + U ′ + V ′

with
U ′ = U +Πν̄V

≤N , V ′ = V >N +RX
1 (U + V ) +RX

2 (H0) . (28)

Clearly U ′ ∈ Aρ and Πν̄U
′ = U ′.

In order to satisfy condition (23) we need to make the hypothesis that

‖V ♯‖ρ ≤ x

16N
. (29)

This ensures that ΦX
1 is a diffeomorphism of S2 × S2 onto itself, that O(x/N) is near the identity,

and that V ′ ∈ Aρ−xR. Therefore, ΦX
1 conjugates Hamiltonian (26) to

H0 + U ′ + V ′ ∈ Aρ−xR
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with U ′ and V ′ as in (28).
In view of the iteration of this procedure we need estimates on the Hamiltonian vector field

of V ′. Observing that ‖(LXH0)
♯‖ρ ≤ ‖(Πν̄V

≤N −V ≤N )♯‖ρ ≤ ‖(V ≤N )♯‖ρ ≤ ‖V ♯‖ρ and using (27),
the estimates (25) give

‖RX
1 (U + V )♯|ρ−xR ≤ 4

x
‖X♯‖ρ‖U ♯ + V ♯|ρ ≤ 8N

x

(
‖U ♯‖ρ + ‖V ♯‖ρ

)
‖V ≤N‖ρ

‖RX
2 (H0)

♯‖ρ−xR ≤ 2

x
‖X♯‖ρ‖(LXH0)

♯‖ρ ≤ 8N

x
‖V ♯‖ρ‖(V ≤N)♯‖ρ

so that, using also (22) to bound ‖(V >N )♯‖ρ−xR,

‖(V ′)♯‖ρ−xR ≤ β‖V ♯‖ρ , β = max
(
e−NxRϕ,

8N

x

(
‖U ♯‖ρ + 2‖V ♯‖ρ

))
. (30)

Similar computations give
|V ′|ρ−xR ≤ β|V |ρ . (31)

Moreover, up to constants,

ΦX
1 − id = O(‖X♯‖ρ) = O(N‖V ♯‖ρ) . (32)

D. The iteration. Since the Hamiltonian H0 + ǫP is a polynomial in R3 ×R3, its restriction to
S2 × S2 is of class AR for some R = (Rz , Rϕ) > (0, 0). We assume Rz < 1 and Rϕ < 1.

Define ǫ∗ =
Rϕ

28e‖P ♯‖R
and choose N ≤ c

√
ǫ∗/ǫ, with c = 4

Rϕ
. Iterate the normal form construc-

tion described in subsection 4.C. a number r =
⌊NRϕ

2

⌋
of times, each time with x = 1

2r , starting

with the Hamiltonian H(0) = H0+U0+V0 with U0 = 0 and V0 = ǫP . The first time this is possible
because, with the above choices of ǫ∗, N and x, ‖V ♯

0 ‖ρ0
= ǫ‖P ♯‖R =

Rϕ

28e
ǫ
ǫ∗

= 1
16eRϕN2 ≤ x

16eN and

(29) is satisfied.
Assume now by induction that the procedure can be performed s times, for some s ≤ r,

producing the Hamiltonians H(1), . . . , H(s), with

H(j) = H0 + Uj + Vj ∈ Aρj

with Uj =
∑j−1

h=0 Πν̄V
≤N
h and ‖V ♯

j ‖ρj
≤ e−jǫ‖P‖R for all j = 1, . . . , s, where ρj = R − jxR =

R− j
2rR.

Under this hypothesis, ‖V ♯
s ‖ρs

≤ e−s‖V ♯
0 ‖ρ0

and H(s) satisfies (29). Therefore, there exists a
symplectic diffeomorphism that conjugates H(s) to H(s+1) = H0 + Us+1 + Vs+1 with

Us+1 = Us +Πν̄V
≤N
s =

s∑

j=0

Πν̄V
≤N
j

and ‖V ♯
s+1‖ρs+1

≤ βs‖Vs‖ρs
, with

βs = max
(
e−NxRϕ,

8N

x

(
‖U ♯

s‖ρs
+ 2‖V ♯

s ‖ρs

))
,

see (30). Since NxRϕ ≥ 1, 8N
x ≤ 27

Rϕ

ǫ
ǫ∗

and ‖U ♯
s‖ρs

+2‖V ♯
s ‖ρs

≤ ∑s
j=0 e

−j + e−s ≤ 2, we conclude

that βs ≤ e−1 and Hs+1 satisfies the induction hypothesis as well.
This proves that (H0 + ǫP ) ◦ Ψ = H0 + Ur + Vr. Since r ≥ N/c, the remainder Vr can be

written as e−N/cǫF with F bounded as in the statement. Estimates on the resulting Hamiltonian
Hr, rather than on its Hamiltonian vector field, are obtained on the basis of (31).

Finally, iterating (32) gives Ψ − id =
∑r−1

s=0 O(N‖V ♯
s ‖ρs

) =
∑r−1

s=0 O(Ne−s‖V ♯
0 ‖ρs

) =

O(N‖V ♯
0 ‖ρ0

) = O(Nǫ‖P‖R) = O(
√

ǫ/ǫ∗ ).
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