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One of the most influential results of the modern dynamical theory was, arguably, the Kolmogorov-Arnold-Moser (KAM) theorem of the 1960's on the nonresonant tori of perturbed integrable systems. This theorem provided a firm basis to all studies that relied on integrable approximations to concrete important physical non-integrable systems, such as the Keplerian systems and three-body systems in celestial mechanics and their quantum analogs. One particular KAM result, the persistence in the perturbed system of a dense set of invariant tori, allows, through extrapolation and integrable approximations, extending the torus quantization (known as Einstein-Brillouin-Keller or EBK) to these systems.

In his celebrated study [START_REF] Nekhoroshev | Proceedings of the International 295 Congress of Mathematicians[END_REF][START_REF] Nekhoroshev | [END_REF], Nekhoroshev developed a complementary approach which allows to characterize both the "regular" or "non-resonant" perturbed dynamics on the persisting KAM tori and-more importantly-the one occurring outside, in the complement of these tori. Following Nekhoroshev, we consider the action space of the original (unperturbed) integrable system and divide it into sector-like zones. Within the nonresonant zones, a nonresonant normal form can be used to approximate the dynamics using a full set of actions whose values are conserved over exponentially long times τ ∝ e N , where N is the highest order of resonance taken into account. This resembles KAM theories. However, with growing perturbation, resonant zones increase in size. Within these zones, KAM tori disappear. Nevertheless, we can still state that during the time τ , the values of the "fast" actions F remain conserved, while on the same time scale, the values of the "slow" actions S evolve slowly (or "drift") within a small domain.

The theory of exponentially long stability was widely apprised for explaining the motion of small celestial bodies, such as asteroids, whose motion is strongly affected by low order resonant perturbations due to heavy planets. Furthermore, it gives the best explanation of the stability of the Moon-Earth-Sun system which is perturbed strongly by Jupiter, and more generally, of the stability of the solar system as a whole. In this context, we like to cite classical demonstrations by Laskar and coauthors [START_REF] Laskar | Hamiltonian Systems with Three or More Degrees 301 of Freedom[END_REF]4] who sampled their system on a regular grid of initial conditions and detected the non-resonant (or KAM) tori through the respective characteristic frequencies. This lead to a representation of the set of these tori in the frequency space domain, or the frequency map, which is, under certain conditions, equivalent to an action space map. tonian depends linearly on momenta (S 1 actions). These sys-62 tems are isochronous and their frequency map is degenerate.
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One way to overcome these difficulties was to consider 64 non-autonomous periodically driven Hamiltonian systems [5] 65 whose resonances with the driving force can be described by 66 a pendulum approximation [6] similarly to the Nekhoroshev of (ω 1 , ω 2 ) is rational, i.e., when

86 ν 1 ω 1 + ν 2 ω 2 = 0, with ν = (ν 1 , ν 2 ) ∈ Z 2 .
The sets of resonant tori Λ ν map to curves λ ν in the action 87 space A. In our case, the latter will be straight lines passing 88 through the origin (0, 0) ∈ A.
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As a concrete system, we use two identical symmetric Euler tops coupled through a small perturbation. Its Hamiltonian

H = H 0 + V = 1 2 (L 2 1z + L 2 2z ) + V (L 1 , L 2 ) (1)
depends only on the body-fixed components of the angular momenta L 1 and L 2 whose respective magnitudes L 1 and L 2 are conserved and equal j = L 1 = L 2 . The small parameter here is j. The nonrigidity and coupling of the rotors is described by the cubic perturbation

V = V (0,0) + V (1,0) + V (0,1) , (2) 
of the principal order . We have chosen

V (0,0) = L 3 1z , (3a) V (1,0) = 2L 2z (L 2z -L 1z ) L 12 , (3b) V (0,1) = 4L 1z (L 2z -L 1z ) L 22 . ( 3c 
)
The two last terms cause resonances ν = (1, 0) and (0, 1).

We have limited the number of resonances in order to have an example which is both simple and sufficient to explore all essential aspects of the Nekhoroshev theory. These terms are also chosen so that in the next order 2 , after averaging with respect to the flow of H 0 , they produce only one resonant term with ν = (1, 1). Note that we have removed all possible symmetries from the Hamiltonian H in Eq. ( 1). It is also helpful to assume that the symmetry of

H 0 is only SO(2) × SO(2),
and that all its other symmetries, such as the invariance with respect to the change in the direction of rotation, are removed.

This can be easily achieved explicitly by adding small high degree terms, but the perturbation in Eq. ( 2) introduces them anyway. The advantage is that in the limit → 0, quantum eigenfunctions will unambiguously become eigenfunctions of L1z and L2z representing traveling waves exp(imϕ) on S 2

and the quantities represented by L1z and L2z are thus directly observable.

The phase space of our system is the product of two spheres S 2 ×S 2 . Its compactness facilitates quantum mechanical calculations because the required basis is finite. Specifically, the system of two rotors with Hamiltonian H in Eq. ( 1) is quantized in the standard way using the so(3) × so(3) algebra of angular momentum operators L1 and L2 , and its eigenstates are found by diagonalizing H( L1 , L2 ) in the basis of (2j+1) 2 spherical harmonics |j, m 1 |j, m 2 . Many physical interpretations of this system can be suggested. In addition to interacting spins and rotating particles, we like to mention specific perturbations of the hydrogen atom in the n-shell approximation, and interacting resonant double degenerate vibrations of nuclei or molecules, notably bending vibrations of acetylene or, even better, of its homologue N-C-N.

Notice that classical actions

I 1 = L 1z and I 2 = L 2z (4) 
are not defined globally as the respective conjugate angles are undefined at the poles of S 2 ×S 2 . However, the set of all regular tori Λ of the simple unperturbed integrable system with Hamiltonian H 0 can be represented faithfully using the val-133 ues of (I 1 , I 2 ) as a square A ⊂ R 2 (cf Fig. 1) and this is 

ν S0 F S bν (1, 0) I1 I2 I1 2 (0, 1) I2 -I1 I2 4 (1, 1) I1 I2 -I1 (I1 + I2)/2 6 2
In the quantum case, basic information on the behavior of , where it may also be seen that the joint expectation values collapse on the lines λ ν after "sliding" in the perpendicular direction towards λ ν . To understand why this happens, recall that by the same theorem [START_REF] Nekhoroshev | [END_REF], the value of S "drifts" slowly across the zone, i.e., transversely to λ ν , and is bounded by the zone. So for a reversible drift, the expectation value S on any resonant eigenstate with given F should be close to 0, and the corresponding point ( S , F ) lies on the line λ ν .

Further understanding of the joint expectation value spectrum within the resonant zones can be obtained from the resonant normal forms H ν of the Hamiltonian H in Eq. ( 1). These forms are obtained by averaging with regard to the Hamiltonian flow of

ν • I = ν 1 I 1 + ν 2 I 2 .
Since H is written as a Taylor-Fourier series in action-angle variables, which is customary in this analysis [START_REF] Nekhoroshev | [END_REF], our computations are simplified. Thus the first average simply gives

H (1) ν = H 0 + V (0,0) + V ν for ν = (1, 0) and (0, 1). (5) 
Using slow-fast variables in Table I, going to the limit of small S near the resonance, and dropping trivial terms that do not contain slow variables (S, σ), we come to the pendulum approximation to the ν-resonant normal form

H ν ≈ H ν = 1 2 S 2 + H crit ( , F ) cos σ (6) 
which is commonly encountered in the Nekhoroshev theory.

In our case, in this one-dimensional system parameterized by F , the critical energy and the maximum value of |S| attained (when σ = π) on the respective critical orbit (separatrix) are

H crit = b ν ( )F 2 and S crit = 2b ν ( ) |F | . (7) 
They mark the transition between vibrations and rotations and define the boundaries of the resonance zone. For our system, the boundaries are straight lines forming a wedge and the width of the (1, 0) and (0, 1) zones is √ -small. We draw these wedges in Fig. 1 using Eq. ( 7) and we can see that Eq. ( 7)

gives a fair estimate of the quantum zones. in Eq. ( 5) and classical ν-resonance zones (wedges) for j = 25 and j = 0.005.

We can verify the precision and the scope of the normal (1,1) in Eq. ( 8) and the respective classical resonance zone for j = 25 and j = 0.005.

To compute the normal form for the (1, 1) resonance in our (1,1) = H 0 + V (0,0) + 2 V

(2) (1,1) [START_REF] Nekhoroshev | [END_REF] where on the assumption L 2z + L 1z ≈ 0 (the resonance con- 

(1,1) ≈ 5(L 2z -L 1z ) 4 +12(L 2z -L 1z ) 2 (L 1x L 2x -L 1y L 2y ).

Introducing slow-fast variables (Table I), fixing F , using S 222 centered on the resonance, and further simplifying for small 223

67theory.

  In our work, we decided to consider a model au-68 tonomous system suitable for the quantum manifestations of 69 the Nekhoroshev results in their most traditional and simple 70 form. It seems that this idea [7] has been overlooked and yet 71 it produces interesting and enlightening results, important for 72 other studies and applications in concrete systems. 73 We consider an anisochronous integrable system with, for 74 simplicity, two degrees of freedom, and Hamiltonian H 0 . Its 75 regular dynamics occurs on two-tori labeled by the values of 76 actions I 1 and I 2 . For simplicity, let (I 1 , I 2 ) be global, i.e., 77 let the set of all regular tori Λ be the total space of a trivial 78 fibration over an open domain A ⊂ R 2 , an action space, on 79 which H 0 can be written as a function A → R : (I 1 , I 2 ) → 80 H 0 (I 1 , I 2 ). Recall that for an anisochronous system, both fre-81 quencies ω k = ∂H 0 /∂I k with k = 1, 2 vary from torus to 82 torus. If we also require convexity, for such systems the fre-83 quency map (I 1 , I 2 ) → (ω 1 , ω 2 ) is bijective and gives another 84 faithful representation of Λ. Resonances occur when the ratio 85
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 1 FIG. 1. Joint expectation value spectrum of L1z and L2z on the eigenstates of the quantum analog of the Hamiltonian in Eq. (1) (dots) and classical resonance zones (wedges) for j = 25.
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 11 Fig. 1, particularly for ν = (0, 1) and (1, 0), where it may

  Resonant quantum states have energies below H crit and are rotational (traveling waves) in the F component and vibrational (standing waves) in the S component. Transitional states with energies closely above H crit can be seen entering the (1, 0) and (0, 1) zones in Fig. 1. While non-resonant states are nearly degenerate in energy because the dependence on the direction of rotation is relegated to higher orders, the resonant states have this degeneracy removed.

FIG. 2 .

 2 FIG. 2. Joint expectation value spectrum (dots) of L1z and L2z on the eigenstates of the resonant normal forms H (1) ν
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 3 FIG. 3. Joint expectation value spectrum (dots) of L1z and L2z on the eigenstates of the resonant normal form H (2)

TABLE I

 I 

. Canonical slow-fast actions S0 and F , recentered action S, and the threshold parameter bν for the resonances ν of our system.

S, we bring H

(2) [START_REF] Nekhoroshev | Proceedings of the International 295 Congress of Mathematicians[END_REF][START_REF] Nekhoroshev | Proceedings of the International 295 Congress of Mathematicians[END_REF] to the form in Eq. ( 6), and a similar analysis follows. Note that the width of the (1, 1)-zone of our system is -small. As before, the quantum computation with the normal form in Eq. [START_REF] Nekhoroshev | [END_REF] shows that this form reproduces perfectly the spectrum within its zone. It is instructive to explain the particular regular pattern we observe.

A deeper understanding of the joint expectation value spectrum in Fig. 1 Note that |f, s can be easily selected from all states |j, m 1 |j, m 2 using definitions in Table I. For any fixed f , both H and H have a tridiagonal matrix in this basis, and a few basis functions with small |s| may suffice to describe the patterns in Fig. 1.

Thus for the 1:1 resonance, we should consider two possibilities with half-integer and integer values of s for odd |f | < 2j and even |f | ≤ 2j, respectively. In the half-integer case, the two most resonant states can be approximated by a

where α and π are smooth functions of (f, j). Its eigenfunctions have two nonzero S values on the opposite sides of the resonance line λ (1,1) , see Fig. 1. On the other hand, a similar computation for the integer case using a 3×3 matrix in the basis with s = 0, ±1 gives additionally a zero S value straight on λ [START_REF] Nekhoroshev | Proceedings of the International 295 Congress of Mathematicians[END_REF][START_REF] Nekhoroshev | Proceedings of the International 295 Congress of Mathematicians[END_REF] . This describes the joint spectrum near λ (1,1) . In simple terms, the particular pattern is due to the alternation between the integer base which includes the |f, 0 function and the half-integer base without it.

The situation becomes more interesting when the zone is sufficiently large to capture many states. In our system this happens for the 1:0 and 0:1 resonances. We find a number of resonant states with S ≈ 0 which are oscillator states composed of |f, s with |s| -1 S crit . The S → -S symmetry of H can be seen as a dominating factor for them.

The challenge is in reproducing the states with essentially nonzero S near S crit , the "wandering states" of the hindered 1-dimensional rotor. As illustrated in Fig. 4, this can be achieved by taking a sufficiently large number of basis functions with small |s| ≈ -1 S crit . and the province of Trentino during his PhD thesis [START_REF] Fontanari | Quantum manifestations of the adiabatic chaos 309 in perturbed superintgrable Hamiltonian systems[END_REF].
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