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Quantum manifestations of Nekhoroshev stability1
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We uncover quantum manifestations of classical Nekhoroshev theory of resonant dynamics using a simple
quantum system of two coupled angular momenta with conserved magnitudes which corresponds to a perturbed
classical integrable anisochronous model Hamiltonian system.

PACS numbers: 05.45.-a, 45.20.-d, 03.65.-w, 45.20.dc6

One of the most influential results of the modern dynam-7

ical theory was, arguably, the Kolmogorov–Arnold–Moser8

(KAM) theorem of the 1960’s on the nonresonant tori of per-9

turbed integrable systems. This theorem provided a firm ba-10

sis to all studies that relied on integrable approximations to11

concrete important physical non-integrable systems, such as12

the Keplerian systems and three-body systems in celestial me-13

chanics and their quantum analogs. One particular KAM re-14

sult, the persistence in the perturbed system of a dense set15

of invariant tori, allows, through extrapolation and integrable16

approximations, extending the torus quantization (known as17

Einstein-Brillouin-Keller or EBK) to these systems.18

In his celebrated study [1, 2], Nekhoroshev developed a19

complementary approach which allows to characterize both20

the “regular” or “non-resonant” perturbed dynamics on the21

persisting KAM tori and—more importantly—the one occur-22

ring outside, in the complement of these tori. Following23

Nekhoroshev, we consider the action space of the original24

(unperturbed) integrable system and divide it into sector-like25

zones. Within the nonresonant zones, a nonresonant normal26

form can be used to approximate the dynamics using a full27

set of actions whose values are conserved over exponentially28

long times τ ∝ eN , whereN is the highest order of resonance29

taken into account. This resembles KAM theories. However,30

with growing perturbation, resonant zones increase in size.31

Within these zones, KAM tori disappear. Nevertheless, we32

can still state that during the time τ , the values of the “fast”33

actions F remain conserved, while on the same time scale,34

the values of the “slow” actions S evolve slowly (or “drift”)35

within a small domain.36

The theory of exponentially long stability was widely ap-37

prised for explaining the motion of small celestial bodies, such38

as asteroids, whose motion is strongly affected by low order39

resonant perturbations due to heavy planets. Furthermore, it40

gives the best explanation of the stability of the Moon-Earth-41

Sun system which is perturbed strongly by Jupiter, and more42

generally, of the stability of the solar system as a whole. In43

this context, we like to cite classical demonstrations by Laskar44

and coauthors [3, 4] who sampled their system on a regular45

grid of initial conditions and detected the non-resonant (or46

KAM) tori through the respective characteristic frequencies.47

This lead to a representation of the set of these tori in the fre-48

quency space domain, or the frequency map, which is, under49

certain conditions, equivalent to an action space map.50

Even though resonances of different kinds also play an51

important—if not a central role in many quantum theories,52

manifestation of similar dynamics in quantum systems is more53

difficult. One obvious reason may be that working with long54

times requires high density of states, especially within the55

resonance zones. This imposes constraints on the possible56

quantum systems and requires large computational facilities.57

Another point, however, seems to deserve attention. With a58

notable exception of quantum rotors, many popular quantum59

systems have an integrable approximation, such as a multi-60

dimensional harmonic oscillator or equivalents, whose Hamil-61

tonian depends linearly on momenta (S1 actions). These sys-62

tems are isochronous and their frequency map is degenerate.63

One way to overcome these difficulties was to consider64

non-autonomous periodically driven Hamiltonian systems [5]65

whose resonances with the driving force can be described by66

a pendulum approximation [6] similarly to the Nekhoroshev67

theory. In our work, we decided to consider a model au-68

tonomous system suitable for the quantum manifestations of69

the Nekhoroshev results in their most traditional and simple70

form. It seems that this idea [7] has been overlooked and yet71

it produces interesting and enlightening results, important for72

other studies and applications in concrete systems.73

We consider an anisochronous integrable system with, for74

simplicity, two degrees of freedom, and Hamiltonian H0. Its75

regular dynamics occurs on two-tori labeled by the values of76

actions I1 and I2. For simplicity, let (I1, I2) be global, i.e.,77

let the set of all regular tori Λ be the total space of a trivial78

fibration over an open domain A ⊂ R2, an action space, on79

which H0 can be written as a function A → R : (I1, I2) 7→80

H0(I1, I2). Recall that for an anisochronous system, both fre-81

quencies ωk = ∂H0/∂Ik with k = 1, 2 vary from torus to82

torus. If we also require convexity, for such systems the fre-83

quency map (I1, I2) 7→ (ω1, ω2) is bijective and gives another84

faithful representation of Λ. Resonances occur when the ratio85

of (ω1, ω2) is rational, i.e., when86

ν1 ω1 + ν2 ω2 = 0, with ν = (ν1, ν2) ∈ Z2.

The sets of resonant tori Λν map to curves λν in the action87

space A. In our case, the latter will be straight lines passing88

through the origin (0, 0) ∈ A.89

As a concrete system, we use two identical symmetric Euler90
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tops coupled through a small perturbation. Its Hamiltonian91

H = H0 + εV = 1
2 (L2

1z + L2
2z) + εV (L1,L2) (1)

depends only on the body-fixed components of the angular92

momenta L1 and L2 whose respective magnitudes L1 and L293

are conserved and equal ~j = L1 = L2. The small parame-94

ter here is ~εj. The nonrigidity and coupling of the rotors is95

described by the cubic perturbation96

V = V(0,0) + V(1,0) + V(0,1), (2)

of the principal order ε. We have chosen

V(0,0) = L3
1z, (3a)

V(1,0) = 2L2z(L2z − L1z)L12, (3b)
V(0,1) = 4L1z(L2z − L1z)L22. (3c)

The two last terms cause resonances ν = (1, 0) and (0, 1).97

We have limited the number of resonances in order to have98

an example which is both simple and sufficient to explore all99

essential aspects of the Nekhoroshev theory. These terms are100

also chosen so that in the next order ε2, after averaging with101

respect to the flow ofH0, they produce only one resonant term102

with ν = (1, 1). Note that we have removed all possible sym-103

metries from the Hamiltonian H in Eq. (1). It is also helpful104

to assume that the symmetry of H0 is only SO(2) × SO(2),105

and that all its other symmetries, such as the invariance with106

respect to the change in the direction of rotation, are removed.107

This can be easily achieved explicitly by adding small high108

degree terms, but the perturbation in Eq. (2) introduces them109

anyway. The advantage is that in the limit ε → 0, quantum110

eigenfunctions will unambiguously become eigenfunctions of111

L̂1z and L̂2z representing traveling waves exp(imϕ) on S2112

and the quantities represented by L̂1z and L̂2z are thus di-113

rectly observable.114

The phase space of our system is the product of two spheres115

S2×S2. Its compactness facilitates quantum mechanical cal-116

culations because the required basis is finite. Specifically, the117

system of two rotors with Hamiltonian H in Eq. (1) is quan-118

tized in the standard way using the so(3) × so(3) algebra of119

angular momentum operators L̂1 and L̂2, and its eigenstates120

are found by diagonalizingH(L̂1, L̂2) in the basis of (2j+1)2121

spherical harmonics |j,m1〉|j,m2〉. Many physical interpre-122

tations of this system can be suggested. In addition to inter-123

acting spins and rotating particles, we like to mention specific124

perturbations of the hydrogen atom in the n-shell approxima-125

tion, and interacting resonant double degenerate vibrations of126

nuclei or molecules, notably bending vibrations of acetylene127

or, even better, of its homologue N−C−N.128

Notice that classical actions129

I1 = L1z and I2 = L2z (4)

are not defined globally as the respective conjugate angles are130

undefined at the poles of S2×S2. However, the set of all reg-131

ular tori Λ of the simple unperturbed integrable system with132

Hamiltonian H0 can be represented faithfully using the val-133

ues of (I1, I2) as a square A ⊂ R2 (cf Fig. 1) and this is134

sufficient for our purpose. [We are not interested in what may135

happen near and at ∂A where (I1, I2) cannot serve as action136

variables.]137

~εj = 0.001

〈L1z〉/(~j)

〈L
2
z
〉/
(~
j)

~εj = 0.005

FIG. 1. Joint expectation value spectrum of L̂1z and L̂2z on the
eigenstates of the quantum analog of the Hamiltonian in Eq. (1)
(dots) and classical resonance zones (wedges) for j = 25.

TABLE I. Canonical slow–fast actions S0 and F , recentered action
S, and the threshold parameter bν for the resonances ν of our system.

ν S0 F S bν

(1, 0) I1 I2 I1 2ε
(0, 1) I2 −I1 I2 4ε
(1, 1) I1 I2 − I1 (I1 + I2)/2 6ε2

In the quantum case, basic information on the behavior of138

I1 and I2 is given by the expectation values 〈L̂1z〉 and 〈L̂2z〉.139

For the SO(2) × SO(2) symmetric unperturbed system these140

values form a regular lattice inA. In the full system, as we can141

see in Fig. 1, this lattice is destroyed along the lines of classi-142

cal resonances ν. The two order-ε resonances are clearly seen143

near axes I1 = 0 and I2 = 0, while the order-ε2 resonance is144

visible for large values of ε along the diagonal I1 + I2 = 0.145

It can be conjectured that the wedge-like domains without the146

lattice are quantum resonance zones. The picture is strikingly147

similar to the classical frequency maps [3, 4] of which, as we148

explain below, it is indeed a direct quantum analog.149

Containment of the variation of deformed actions (I1, I2)150

over the exponentially long time τ to the ε-neighborhood of151

their original value, as predicted by the Nekhoroshev theo-152

rem, means that (L1z, L2z) remain good quantum numbers153

for those quantum states that correlate with nonresonant tori.154

Such states continue to be represented by the regular lattice155

in the joint expectation value spectrum (Fig. 1). Note that by156

a standard discrete Fourier transform argument for S2×S2, it157

may even follow, that τ remains beyond our time horizon for158

our value of j and the argument becomes stronger.159

To understand what happens to the resonant states, i.e.,160

those for which
(
〈L1z〉, 〈L2z〉

)
collapse to/near the lines of161

resonances λν in A, we introduce slow–fast actions (called so162

after the values of the respective frequencies) for each reso-163
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nance ν of our system, see Table I. Note that |F | increases as164

we move along the resonances λν away from 0, while S varies165

in the orthogonal direction to λν . Since the value of the fast166

action F should remain conserved over τ , F is a good quan-167

tum number and, since F varies along λν , we should have168

a regular periodic pattern in the zone around λν labeled ap-169

proximately by 〈F 〉. That is precisely what we observe in170

Fig. 1, particularly for ν = (0, 1) and (1, 0), where it may171

also be seen that the joint expectation values collapse on the172

lines λν after “sliding” in the perpendicular direction towards173

λν . To understand why this happens, recall that by the same174

theorem [2], the value of S “drifts” slowly across the zone,175

i.e., transversely to λν , and is bounded by the zone. So for176

a reversible drift, the expectation value 〈S〉 on any resonant177

eigenstate with given 〈F 〉 should be close to 0, and the corre-178

sponding point (〈S〉, 〈F 〉) lies on the line λν .179

Further understanding of the joint expectation value spec-180

trum within the resonant zones can be obtained from the reso-181

nant normal formsHν of the HamiltonianH in Eq. (1). These182

forms are obtained by averaging with regard to the Hamilto-183

nian flow of184

ν · I = ν1I1 + ν2I2.

Since H is written as a Taylor-Fourier series in action-angle185

variables, which is customary in this analysis [2], our compu-186

tations are simplified. Thus the first average simply gives187

H(1)
ν = H0 + εV(0,0) + εVν for ν = (1, 0) and (0, 1). (5)

Using slow–fast variables in Table I, going to the limit of small188

S near the resonance, and dropping trivial terms that do not189

contain slow variables (S, σ), we come to the pendulum ap-190

proximation to the ν-resonant normal form191

Hν ≈ H̃ν = 1
2S

2 +Hcrit(ε, F ) cosσ (6)

which is commonly encountered in the Nekhoroshev theory.192

In our case, in this one-dimensional system parameterized by193

F , the critical energy and the maximum value of |S| attained194

(when σ = π) on the respective critical orbit (separatrix) are195

Hcrit = bν(ε)F 2 and Scrit =
√

2bν(ε) |F | . (7)

They mark the transition between vibrations and rotations and196

define the boundaries of the resonance zone. For our sys-197

tem, the boundaries are straight lines forming a wedge and198

the width of the (1, 0) and (0, 1) zones is
√
ε-small. We draw199

these wedges in Fig. 1 using Eq. (7) and we can see that Eq. (7)200

gives a fair estimate of the quantum zones. Resonant quantum201

states have energies below Hcrit and are rotational (traveling202

waves) in the F component and vibrational (standing waves)203

in the S component. Transitional states with energies closely204

above Hcrit can be seen entering the (1, 0) and (0, 1) zones205

in Fig. 1. While non-resonant states are nearly degenerate in206

energy because the dependence on the direction of rotation is207

relegated to higher orders, the resonant states have this degen-208

eracy removed.209

ν = (1, 0)

〈L1z〉/(~j)

〈L
2
z
〉/
(~
j)

ν = (0, 1)

FIG. 2. Joint expectation value spectrum (dots) of L̂1z and L̂2z on
the eigenstates of the resonant normal forms H(1)

ν in Eq. (5) and
classical ν-resonance zones (wedges) for j = 25 and ~εj = 0.005.

We can verify the precision and the scope of the normal210

forms in Eq. (5) by using them as quantum Hamiltonians in-211

stead of the complete Hamiltonian in Eq. (1). The resulting212

spectra are shown in Fig. 2. Comparing to Fig. 1, right, we213

can see that the respective resonant zones are reproduced per-214

fectly, as is the lattice of the nonresonant states. Not surpris-215

ingly, the normal forms fail for resonances other than the ones216

they are designed to describe.217

ν = (1, 1)

〈L1z〉/(~j)

〈L
2
z
〉/
(~
j)

FIG. 3. Joint expectation value spectrum (dots) of L̂1z and L̂2z on
the eigenstates of the resonant normal formH(2)

(1,1) in Eq. (8) and the
respective classical resonance zone for j = 25 and ~εj = 0.005.

To compute the normal form for the (1, 1) resonance in our218

system, we have to go to the second order average219

H(2)
(1,1) = H0 + εV(0,0) + ε2V

(2)
(1,1) (8)

where on the assumption L2z + L1z ≈ 0 (the resonance con-220

dition) and to order O(
√
ε) we have221

V
(2)
(1,1) ≈ 5(L2z−L1z)

4+12(L2z−L1z)
2(L1xL2x−L1yL2y).

Introducing slow–fast variables (Table I), fixing F , using S222

centered on the resonance, and further simplifying for small223
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S, we bringH(2)
(1,1) to the form in Eq. (6), and a similar analy-224

sis follows. Note that the width of the (1, 1)-zone of our sys-225

tem is ε-small. As before, the quantum computation with the226

normal form in Eq. (8) shows that this form reproduces per-227

fectly the spectrum within its zone. It is instructive to explain228

the particular regular pattern we observe.229

A deeper understanding of the joint expectation value spec-230

trum in Fig. 1 calls for a more detailed analysis of the nor-231

mal form H and its pendulum approximation H̃. While H̃232

does describe the two most important aspects, specifically, the233

distinction between the resonant and the non-resonant states234

and the boundary of the zone, considering H as a perturba-235

tion of H̃ becomes essential at medium-to-large |S|. Most no-236

tably, the perturbation by the V(0,0) term breaks the S 7→ −S237

invariance of H̃ and allows nonzero expectation values 〈S〉238

for large-|S| quasidegenerate doublet states of the pendulum.239

There are many ways to treat the perturbation of H̃ byH. We240

consider briefly a variational study in the basis formed by the241

eigenstates |f, s〉 of Ŝ and F̂ such that242

Ŝ |f, s〉 = ~ s |f, s〉 and F̂ |f, s〉 = ~ f |f, s〉 .

Note that |f, s〉 can be easily selected from all states243

|j,m1〉|j,m2〉 using definitions in Table I. For any fixed f ,244

both H and H̃ have a tridiagonal matrix in this basis, and a245

few basis functions with small |s| may suffice to describe the246

patterns in Fig. 1.247

Thus for the 1:1 resonance, we should consider two pos-248

sibilities with half-integer and integer values of s for odd249

|f | < 2j and even |f | ≤ 2j, respectively. In the half-integer250

case, the two most resonant states can be approximated by a251

2×2 matrix ofH(1,1) in the basis {|f,− 1
2 〉, |f,+

1
2 〉}252

~2α(f) + ε~3
2f2 + 1

4

(
−1/2 ε~π(f)
ε~π(f) +1/2

)
,

where α and π are smooth functions of (f, j). Its eigenfunc-253

tions have two nonzero 〈S〉 values on the opposite sides of the254

resonance line λ(1,1), see Fig. 1. On the other hand, a similar255

computation for the integer case using a 3×3 matrix in the ba-256

sis with s = 0,±1 gives additionally a zero 〈S〉 value straight257

on λ(1,1). This describes the joint spectrum near λ(1,1). In258

simple terms, the particular pattern is due to the alternation259

between the integer base which includes the |f, 0〉 function260

and the half-integer base without it.261

The situation becomes more interesting when the zone is262

sufficiently large to capture many states. In our system this263

happens for the 1:0 and 0:1 resonances. We find a number264

of resonant states with 〈S〉 ≈ 0 which are oscillator states265

composed of |f, s〉 with |s| � ~−1Scrit. The S 7→ −S266

symmetry of H̃ can be seen as a dominating factor for them.267

The challenge is in reproducing the states with essentially268

nonzero 〈S〉 near Scrit, the “wandering states” of the hin-269

dered 1-dimensional rotor. As illustrated in Fig. 4, this can be270

achieved by taking a sufficiently large number of basis func-271

tions with small |s| ≈ ~−1Scrit.272

~εj = 0.005

6 -

〈F
〉/
(~
j)

�
���

���
���

H
HHH

HHH
HHH

(0, 0) 〈S〉/(~j)

FIG. 4. Joint expectation value spectrum near the 1:0 resonance,
cf Fig. 1. Blue dots mark exact (〈L̂1z〉, 〈L̂2z〉); larger red circles
represent the same values computed for the normal form H(1,0) in
Eq. (5) in the basis of first nine functions |f, s〉 with |s| ≤ 4.

TO DO: rework this plot (axes, true zone boundaries),
make a postscript

273

In this letter, we uncovered basic quantum manifestations274

of the classical Nekhoroshev theory and thus provided the275

basis to the study of quantum analogs of the resonant and276

nonresonant motions in nearly integrable systems, and most277

interestingly—of the resonant chaotic dynamics inaccessible278

to other frameworks, such as KAM. We can envisage similar279

work on perturbations of anisochronous superintegrable sys-280

tems with three degrees of freedom, one of the most known281

domains of the Nekhoroshev theory. More daringly, for the282

resonance zones, we can think of the “Nekhoroshev quanti-283

zation” as of a third possibility, a complement to the KAM-284

inspired Einstein–Brillouin–Keller (EBK) torus quantization285

and the periodic orbit (PO) quantization (Van Vleck, Gutzwil-286

ler, Feynman), where fast actions F can be quantized within287

the EBK approach, while the dynamics in the slow actions S288

is treated using the semiclassical PO methods.289
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(Springer Verlag, Netherlands, 1999) pp. 134–150.303

[4] H. S. Dumas and J. Laskar, Phys. Rev. Lett. 70, 2975 (1993).304

[5] S. B. Kuksin and A. I. Neishtadt, Russ. Math. Surv. 68, 335305

(2013).306

[6] C. Chandre, J. Laskar, G. Benfatto, and H. Jauslin, Physica D307

154, 159 (2001).308

[7] D. Fontanari, Quantum manifestations of the adiabatic chaos309

in perturbed superintgrable Hamiltonian systems, Ph.D. thesis,310
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