Quantum manifestations of Nekhoroshev stability

Daniele Fontanari, Francesco Fassò, Dmitrii A. Sadovskii

To cite this version:

Daniele Fontanari, Francesco Fassò, Dmitrii A. Sadovskii. Quantum manifestations of Nekhoroshev stability. Physics Letters A, 2016, 380 (39), pp.3167-3172. 10.1016/j.physleta.2016.07.047. hal04218391

HAL Id: hal-04218391

https://ulco.hal.science/hal-04218391
Submitted on 3 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quantum manifestations of Nekhoroshev stability

Daniele Fontanari, ${ }^{1, *}$ Francesco Fassò, ${ }^{2, \dagger}$ and Dmitrií A. Sadovskií ${ }^{1, \ddagger}$
${ }^{1}$ Département de physique, Université du Littoral - Côte d'Opale, 59140 Dunkerque, France
${ }^{2}$ Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, Padova 35121, Italy

(Dated: imprimé 2015-6-18 at 16:44)

Abstract

We uncover quantum manifestations of classical Nekhoroshev theory of resonant dynamics using a simple quantum system of two coupled angular momenta with conserved magnitudes which corresponds to a perturbed classical integrable anisochronous model Hamiltonian system.

PACS numbers: 05.45.-a, 45.20.-d, 03.65.-w, 45.20.dc

One of the most influential results of the modern dynamical theory was, arguably, the Kolmogorov-Arnold-Moser (KAM) theorem of the 1960's on the nonresonant tori of perturbed integrable systems. This theorem provided a firm basis to all studies that relied on integrable approximations to concrete important physical non-integrable systems, such as the Keplerian systems and three-body systems in celestial mechanics and their quantum analogs. One particular KAM result, the persistence in the perturbed system of a dense set of invariant tori, allows, through extrapolation and integrable approximations, extending the torus quantization (known as Einstein-Brillouin-Keller or EBK) to these systems.

In his celebrated study [1, 2], Nekhoroshev developed a complementary approach which allows to characterize both the "regular" or "non-resonant" perturbed dynamics on the persisting KAM tori and-more importantly-the one occurring outside, in the complement of these tori. Following Nekhoroshev, we consider the action space of the original (unperturbed) integrable system and divide it into sector-like zones. Within the nonresonant zones, a nonresonant normal form can be used to approximate the dynamics using a full set of actions whose values are conserved over exponentially long times $\tau \propto \mathrm{e}^{N}$, where N is the highest order of resonance taken into account. This resembles KAM theories. However, with growing perturbation, resonant zones increase in size. Within these zones, KAM tori disappear. Nevertheless, we can still state that during the time τ, the values of the "fast" actions F remain conserved, while on the same time scale, the values of the "slow" actions S evolve slowly (or "drift") within a small domain.

The theory of exponentially long stability was widely apprised for explaining the motion of small celestial bodies, such as asteroids, whose motion is strongly affected by low order resonant perturbations due to heavy planets. Furthermore, it gives the best explanation of the stability of the Moon-EarthSun system which is perturbed strongly by Jupiter, and more generally, of the stability of the solar system as a whole. In this context, we like to cite classical demonstrations by Laskar and coauthors [3, 4] who sampled their system on a regular grid of initial conditions and detected the non-resonant (or KAM) tori through the respective characteristic frequencies. This lead to a representation of the set of these tori in the frequency space domain, or the frequency map, which is, under

$$
\nu_{1} \omega_{1}+\nu_{2} \omega_{2}=0, \quad \text { with } \nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{Z}^{2} .
$$

${ }_{37}$ The sets of resonant tori Λ_{ν} map to curves λ_{ν} in the action space A. In our case, the latter will be straight lines passing through the origin $(0,0) \in A$.

As a concrete system, we use two identical symmetric Euler

91 tops coupled through a small perturbation. Its Hamiltonian

$$
\begin{equation*}
H=H_{0}+\epsilon V=\frac{1}{2}\left(L_{1 z}^{2}+L_{2 z}^{2}\right)+\epsilon V\left(\boldsymbol{L}_{1}, \boldsymbol{L}_{2}\right) \tag{1}
\end{equation*}
$$

2 depends only on the body-fixed components of the angular ${ }_{3}$ momenta \boldsymbol{L}_{1} and \boldsymbol{L}_{2} whose respective magnitudes L_{1} and L_{2} 4 are conserved and equal $\hbar j=L_{1}=L_{2}$. The small parame5 ter here is $\hbar \epsilon j$. The nonrigidity and coupling of the rotors is ${ }_{96}$ described by the cubic perturbation

$$
\begin{equation*}
V=V_{(0,0)}+V_{(1,0)}+V_{(0,1)} \tag{2}
\end{equation*}
$$

of the principal order ϵ. We have chosen

$$
\begin{align*}
& V_{(0,0)}=L_{1 z}^{3} \tag{3a}\\
& V_{(1,0)}=2 L_{2 z}\left(L_{2 z}-L_{1 z}\right) L_{12} \tag{3b}\\
& V_{(0,1)}=4 L_{1 z}\left(L_{2 z}-L_{1 z}\right) L_{22} \tag{3c}
\end{align*}
$$

The two last terms cause resonances $\nu=(1,0)$ and $(0,1)$. We have limited the number of resonances in order to have an example which is both simple and sufficient to explore all essential aspects of the Nekhoroshev theory. These terms are also chosen so that in the next order ϵ^{2}, after averaging with respect to the flow of H_{0}, they produce only one resonant term with $\nu=(1,1)$. Note that we have removed all possible symmetries from the Hamiltonian H in Eq. (1). It is also helpful to assume that the symmetry of H_{0} is only $\mathrm{SO}(2) \times \mathrm{SO}(2)$, and that all its other symmetries, such as the invariance with respect to the change in the direction of rotation, are removed. This can be easily achieved explicitly by adding small high degree terms, but the perturbation in Eq. (2) introduces them anyway. The advantage is that in the limit $\epsilon \rightarrow 0$, quantum eigenfunctions will unambiguously become eigenfunctions of $\hat{L}_{1 z}$ and $\hat{L}_{2 z}$ representing traveling waves $\exp (\mathrm{i} m \varphi)$ on \mathbb{S}^{2} and the quantities represented by $\hat{L}_{1 z}$ and $\hat{L}_{2 z}$ are thus directly observable.

The phase space of our system is the product of two spheres $\mathbb{S}^{2} \times \mathbb{S}^{2}$. Its compactness facilitates quantum mechanical calculations because the required basis is finite. Specifically, the system of two rotors with Hamiltonian H in Eq. (1) is quantized in the standard way using the so $(3) \times \mathrm{so}(3)$ algebra of angular momentum operators $\hat{\boldsymbol{L}}_{1}$ and $\hat{\boldsymbol{L}}_{2}$, and its eigenstates are found by diagonalizing $H\left(\hat{\boldsymbol{L}}_{1}, \hat{\boldsymbol{L}}_{2}\right)$ in the basis of $(2 j+1)^{2}$ spherical harmonics $\left|j, m_{1}\right\rangle\left|j, m_{2}\right\rangle$. Many physical interpretations of this system can be suggested. In addition to interacting spins and rotating particles, we like to mention specific perturbations of the hydrogen atom in the n-shell approximation, and interacting resonant double degenerate vibrations of nuclei or molecules, notably bending vibrations of acetylene or, even better, of its homologue $\mathrm{N}-\mathrm{C}-\mathrm{N}$.

Notice that classical actions

$$
\begin{equation*}
I_{1}=L_{1 z} \quad \text { and } \quad I_{2}=L_{2 z} \tag{4}
\end{equation*}
$$

are not defined globally as the respective conjugate angles are undefined at the poles of $\mathbb{S}^{2} \times \mathbb{S}^{2}$. However, the set of all reg- 162 ular tori Λ of the simple unperturbed integrable system with

FIG. 1. Joint expectation value spectrum of $\hat{L}_{1 z}$ and $\hat{L}_{2 z}$ on the eigenstates of the quantum analog of the Hamiltonian in Eq. (1) (dots) and classical resonance zones (wedges) for $j=25$.

TABLE I. Canonical slow-fast actions S_{0} and F, recentered action S, and the threshold parameter b_{ν} for the resonances ν of our system.

ν	S_{0}	F	S	b_{ν}
$(1,0)$	I_{1}	I_{2}	I_{1}	2ϵ
$(0,1)$	I_{2}	$-I_{1}$	I_{2}	4ϵ
$(1,1)$	I_{1}	$I_{2}-I_{1}$	$\left(I_{1}+I_{2}\right) / 2$	$6 \epsilon^{2}$

In the quantum case, basic information on the behavior of I_{1} and I_{2} is given by the expectation values $\left\langle\hat{L}_{1 z}\right\rangle$ and $\left\langle\hat{L}_{2 z}\right\rangle$. For the $\mathrm{SO}(2) \times \mathrm{SO}(2)$ symmetric unperturbed system these values form a regular lattice in A. In the full system, as we can 12 see in Fig. 1, this lattice is destroyed along the lines of classi${ }_{1}$ cal resonances ν. The two order- ϵ resonances are clearly seen 14 near axes $I_{1}=0$ and $I_{2}=0$, while the order- ϵ^{2} resonance is 45 visible for large values of ϵ along the diagonal $I_{1}+I_{2}=0$. ${ }^{6} 6$ It can be conjectured that the wedge-like domains without the 7 lattice are quantum resonance zones. The picture is strikingly 8 similar to the classical frequency maps [3, 4] of which, as we 9 explain below, it is indeed a direct quantum analog.

Containment of the variation of deformed actions $\left(I_{1}, I_{2}\right)$ 51 over the exponentially long time τ to the ϵ-neighborhood of 52 their original value, as predicted by the Nekhoroshev theo${ }_{53}$ rem, means that $\left(L_{1 z}, L_{2 z}\right)$ remain good quantum numbers 54 for those quantum states that correlate with nonresonant tori. 55 Such states continue to be represented by the regular lattice 56 in the joint expectation value spectrum (Fig. 1). Note that by 57 a standard discrete Fourier transform argument for $\mathbb{S}^{2} \times \mathbb{S}^{2}$, it ${ }_{58}$ may even follow, that τ remains beyond our time horizon for 9 our value of j and the argument becomes stronger.

To understand what happens to the resonant states, i.e., those for which $\left(\left\langle L_{1 z}\right\rangle,\left\langle L_{2 z}\right\rangle\right)$ collapse to/near the lines of resonances λ_{ν} in A, we introduce slow-fast actions (called so after the values of the respective frequencies) for each reso-
nance ν of our system, see Table I. Note that $|F|$ increases as we move along the resonances λ_{ν} away from 0 , while S varies in the orthogonal direction to λ_{ν}. Since the value of the fast action F should remain conserved over τ, F is a good quantum number and, since F varies along λ_{ν}, we should have a regular periodic pattern in the zone around λ_{ν} labeled approximately by $\langle F\rangle$. That is precisely what we observe in Fig. 1, particularly for $\nu=(0,1)$ and $(1,0)$, where it may also be seen that the joint expectation values collapse on the lines λ_{ν} after "sliding" in the perpendicular direction towards λ_{ν}. To understand why this happens, recall that by the same theorem [2], the value of S "drifts" slowly across the zone, i.e., transversely to λ_{ν}, and is bounded by the zone. So for a reversible drift, the expectation value $\langle S\rangle$ on any resonant eigenstate with given $\langle F\rangle$ should be close to 0 , and the corresponding point $(\langle S\rangle,\langle F\rangle)$ lies on the line λ_{ν}.

Further understanding of the joint expectation value spectrum within the resonant zones can be obtained from the resonant normal forms \mathcal{H}_{ν} of the Hamiltonian H in Eq. (1). These forms are obtained by averaging with regard to the Hamiltonian flow of

$$
\nu \cdot I=\nu_{1} I_{1}+\nu_{2} I_{2}
$$

Since H is written as a Taylor-Fourier series in action-angle variables, which is customary in this analysis [2], our computations are simplified. Thus the first average simply gives

$$
\begin{equation*}
\mathcal{H}_{\nu}^{(1)}=H_{0}+\epsilon V_{(0,0)}+\epsilon V_{\nu} \quad \text { for } \nu=(1,0) \text { and }(0,1) . \tag{5}
\end{equation*}
$$

Using slow-fast variables in Table I, going to the limit of small S near the resonance, and dropping trivial terms that do not contain slow variables (S, σ), we come to the pendulum approximation to the ν-resonant normal form

$$
\begin{equation*}
\mathcal{H}_{\nu} \approx \widetilde{\mathcal{H}}_{\nu}=\frac{1}{2} S^{2}+\mathcal{H}_{\mathrm{crit}}(\epsilon, F) \cos \sigma \tag{6}
\end{equation*}
$$

which is commonly encountered in the Nekhoroshev theory. In our case, in this one-dimensional system parameterized by F, the critical energy and the maximum value of $|S|$ attained (when $\sigma=\pi$) on the respective critical orbit (separatrix) are

$$
\begin{equation*}
\mathcal{H}_{\text {crit }}=b_{\nu}(\epsilon) F^{2} \quad \text { and } \quad S_{\text {crit }}=\sqrt{2 b_{\nu}(\epsilon)}|F| \tag{7}
\end{equation*}
$$

They mark the transition between vibrations and rotations and define the boundaries of the resonance zone. For our system, the boundaries are straight lines forming a wedge and the width of the $(1,0)$ and $(0,1)$ zones is $\sqrt{\epsilon}$-small. We draw these wedges in Fig. 1 using Eq. (7) and we can see that Eq. (7) gives a fair estimate of the quantum zones. Resonant quantum states have energies below $\mathcal{H}_{\text {crit }}$ and are rotational (traveling waves) in the F component and vibrational (standing waves) in the S component. Transitional states with energies closely above $\mathcal{H}_{\text {crit }}$ can be seen entering the $(1,0)$ and $(0,1)$ zones in Fig. 1. While non-resonant states are nearly degenerate in energy because the dependence on the direction of rotation is relegated to higher orders, the resonant states have this degeneracy removed.

FIG. 2. Joint expectation value spectrum (dots) of $\hat{L}_{1 z}$ and $\hat{L}_{2 z}$ on the eigenstates of the resonant normal forms $\mathcal{H}_{\nu}^{(1)}$ in Eq. (5) and classical ν-resonance zones (wedges) for $j=25$ and $\hbar \epsilon j=0.005$.

We can verify the precision and the scope of the normal 1 forms in Eq. (5) by using them as quantum Hamiltonians in2 stead of the complete Hamiltonian in Eq. (1). The resulting з spectra are shown in Fig. 2. Comparing to Fig. 1, right, we 4 can see that the respective resonant zones are reproduced per5 fectly, as is the lattice of the nonresonant states. Not surprisingly, the normal forms fail for resonances other than the ones they are designed to describe.

FIG. 3. Joint expectation value spectrum (dots) of $\hat{L}_{1 z}$ and $\hat{L}_{2 z}$ on the eigenstates of the resonant normal form $\mathcal{H}_{(1,1)}^{(2)}$ in Eq. (8) and the respective classical resonance zone for $j=25$ and $\hbar \epsilon j=0.005$.

To compute the normal form for the $(1,1)$ resonance in our system, we have to go to the second order average

$$
\begin{equation*}
\mathcal{H}_{(1,1)}^{(2)}=H_{0}+\epsilon V_{(0,0)}+\epsilon^{2} V_{(1,1)}^{(2)} \tag{8}
\end{equation*}
$$

where on the assumption $L_{2 z}+L_{1 z} \approx 0$ (the resonance condition) and to order $O(\sqrt{\epsilon})$ we have
$V_{(1,1)}^{(2)} \approx 5\left(L_{2 z}-L_{1 z}\right)^{4}+12\left(L_{2 z}-L_{1 z}\right)^{2}\left(L_{1 x} L_{2 x}-L_{1 y} L_{2 y}\right)$. Introducing slow-fast variables (Table I), fixing F, using S centered on the resonance, and further simplifying for small
S, we bring $\mathcal{H}_{(1,1)}^{(2)}$ to the form in Eq. (6), and a similar analysis follows. Note that the width of the $(1,1)$-zone of our system is ϵ-small. As before, the quantum computation with the normal form in Eq. (8) shows that this form reproduces perfectly the spectrum within its zone. It is instructive to explain the particular regular pattern we observe.

A deeper understanding of the joint expectation value spectrum in Fig. 1 calls for a more detailed analysis of the normal form \mathcal{H} and its pendulum approximation $\widetilde{\mathcal{H}}$. While $\widetilde{\mathcal{H}}$ does describe the two most important aspects, specifically, the distinction between the resonant and the non-resonant states and the boundary of the zone, considering \mathcal{H} as a perturbation of $\widetilde{\mathcal{H}}$ becomes essential at medium-to-large $|S|$. Most notably, the perturbation by the $V_{(0,0)}$ term breaks the $S \mapsto-S$ invariance of $\widetilde{\mathcal{H}}$ and allows nonzero expectation values $\langle S\rangle$ for large- $|S|$ quasidegenerate doublet states of the pendulum. There are many ways to treat the perturbation of $\widetilde{\mathcal{H}}$ by \mathcal{H}. We consider briefly a variational study in the basis formed by the eigenstates $|f, s\rangle$ of \hat{S} and \hat{F} such that

$$
\hat{S}|f, s\rangle=\hbar s|f, s\rangle \text { and } \hat{F}|f, s\rangle=\hbar f|f, s\rangle
$$

Note that $|f, s\rangle$ can be easily selected from all states $\left|j, m_{1}\right\rangle\left|j, m_{2}\right\rangle$ using definitions in Table I. For any fixed f, both \mathcal{H} and $\widetilde{\mathcal{H}}$ have a tridiagonal matrix in this basis, and a few basis functions with small $|s|$ may suffice to describe the patterns in Fig. 1.

Thus for the $1: 1$ resonance, we should consider two possibilities with half-integer and integer values of s for odd $|f|<2 j$ and even $|f| \leq 2 j$, respectively. In the half-integer case, the two most resonant states can be approximated by a 2×2 matrix of $\mathcal{H}_{(1,1)}$ in the basis $\left\{\left|f,-\frac{1}{2}\right\rangle,\left|f,+\frac{1}{2}\right\rangle\right\}$

$$
\hbar^{2} \alpha(f)+\epsilon \hbar^{3} \frac{2 f^{2}+1}{4}\left(\begin{array}{cc}
-1 / 2 & \epsilon \hbar \pi(f) \\
\epsilon \hbar \pi(f) & +1 / 2
\end{array}\right)
$$

where α and π are smooth functions of (f, j). Its eigenfunctions have two nonzero $\langle S\rangle$ values on the opposite sides of the resonance line $\lambda_{(1,1)}$, see Fig. 1. On the other hand, a similar computation for the integer case using a 3×3 matrix in the basis with $s=0, \pm 1$ gives additionally a zero $\langle S\rangle$ value straight on $\lambda_{(1,1)}$. This describes the joint spectrum near $\lambda_{(1,1)}$. In simple terms, the particular pattern is due to the alternation between the integer base which includes the $|f, 0\rangle$ function and the half-integer base without it.

The situation becomes more interesting when the zone is sufficiently large to capture many states. In our system this happens for the 1:0 and 0:1 resonances. We find a number of resonant states with $\langle S\rangle \approx 0$ which are oscillator states composed of $|f, s\rangle$ with $|s| \ll \hbar^{-1} S_{\text {crit }}$. The $S \mapsto-S$ symmetry of $\widetilde{\mathcal{H}}$ can be seen as a dominating factor for them. The challenge is in reproducing the states with essentially nonzero $\langle S\rangle$ near $S_{\text {crit }}$, the "wandering states" of the hindered 1-dimensional rotor. As illustrated in Fig. 4, this can be achieved by taking a sufficiently large number of basis functions with small $|s| \approx \hbar^{-1} S_{\text {crit }}$.

FIG. 4. Joint expectation value spectrum near the 1:0 resonance, cf Fig. 1. Blue dots mark exact $\left(\left\langle\hat{L}_{1 z}\right\rangle,\left\langle\hat{L}_{2 z}\right\rangle\right)$; larger red circles represent the same values computed for the normal form $\mathcal{H}_{(1,0)}$ in Eq. (5) in the basis of first nine functions $|f, s\rangle$ with $|s| \leq 4$.

TO DO: rework this plot (axes, true zone boundaries), make a postscript

In this letter, we uncovered basic quantum manifestations 5 of the classical Nekhoroshev theory and thus provided the 6 basis to the study of quantum analogs of the resonant and ${ }_{77}$ nonresonant motions in nearly integrable systems, and most 28 interestingly-of the resonant chaotic dynamics inaccessible 9 to other frameworks, such as KAM. We can envisage similar work on perturbations of anisochronous superintegrable sys1 tems with three degrees of freedom, one of the most known 2 domains of the Nekhoroshev theory. More daringly, for the resonance zones, we can think of the "Nekhoroshev quanti4 zation" as of a third possibility, a complement to the KAM5 inspired Einstein-Brillouin-Keller (EBK) torus quantization 6 and the periodic orbit (PO) quantization (Van Vleck, Gutzwiller, Feynman), where fast actions F can be quantized within the EBK approach, while the dynamics in the slow actions S is treated using the semiclassical PO methods.
D. Fontanari is grateful for the support by the two universities 291 and the province of Trentino during his PhD thesis [7].

* Electronic mail: fontanari @purple.univ-littoral.fr
${ }^{\dagger}$ Electronic mail: fasso@math.unipd.it
₹ Corresponding author: sadovski@univ-littoral.fr
[1] N. N. Nekhoroshev, in Proceedings of the International Congress of Mathematicians: Vancouver, B.C., Aug. 21-29, 1974, edited by R. D. James (Canadian Mathematical Congress, Montreal, Quebec, Canada, 1975) pp. 309-314, (spelled Nehorosev).
[2] N. N. Nekhoroshev, Russ. Math. Surv. 32, 1 (1977).
[3] J. Laskar, in Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Series, Vol. 533, edited by C. Simó (Springer Verlag, Netherlands, 1999) pp. 134-150.
[4] H. S. Dumas and J. Laskar, Phys. Rev. Lett. 70, 2975 (1993).
[5] S. B. Kuksin and A. I. Neishtadt, Russ. Math. Surv. 68, 335 (2013).
[6] C. Chandre, J. Laskar, G. Benfatto, and H. Jauslin, Physica D 154, 159 (2001).
[7] D. Fontanari, Quantum manifestations of the adiabatic chaos in perturbed superintgrable Hamiltonian systems, Ph.D. thesis, Università di Padova / Université du Littoral, Padova (2013).

312 [8] N. N. Nekhoroshev, Functional Anal. Appl. 5, 338 (1971). 316 [11] F. Fassò and G. Benettin, ZAMP 40, 307 (1989).
313 [9] N. N. Nekhoroshev, Trudy Sem. I. G. Petrovskogo 5 (1979), in 317 [12] P. Lochak, Russ. Math. Surveys 47, 57 (1992). Russian, 46p.
[10] G. Benettin and G. Gallavotti, J. Stat. Phys. 44, 293 (1986).

