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59140 Dunkerque, France

February 21, 2018

Abstract

Motivated by the possibility to describe orientations of quantum triaxial rigid ro-
tors, such as molecules, with respect to both internal (body-fixed) and external
(laboratory) frames, we go through the theory of coherent states and design the
appropriate family of coherent states on T∗SO(3), the classical phase space of the
freely rotating rigid body (the Euler top). We pay particular attention to the res-
olution of identity property in order to establish the explicit relation between the
parameters of the coherent states and classical phase-space variables, actions and
angles.

1 Introduction
The concept of coherent state has been introduced in 1963 in quantum optics to de-
scribe the electromagnetic field [1, 2, 3], and since then it plays an important role in
mathematical physics [4, 5, 6]. It is possible to interpret coherent states of a quantum
system as the ones that are the most localized, as much as it is permitted by the Heisen-
berg uncertainty principle, in the corresponding classical phase space. This conceptual
importance has driven several attempts to extend the definition to more general con-
texts [6, 7], i.e. different phase spaces. This would, in principle, allow a description of
the system, and of its evolution, in terms of quantities that have classical interpretation,
henceforth providing a toolbox of methods of analysis borrowed from the classical
framework.

Despite many efforts, there is not, at the moment, a standard definition for a gen-
eral case. Attempts to construct coherent states for a given system usually fall into
few categories. It may be possible, for instance, to represent the system as a family
of non-interacting harmonic oscillators, for which the definition of coherent states is
straightforward, going back to the original definition in [1, 2]. In the context of ge-
ometric quantization (in the presence of a Kähler polarization), coherent states over
a symplectic manifold can be also naturally defined [8, 9, 10]. A third way, see for
instance [11, 12, 7], is to apply a unitary group action (on the Hilbert space of the
quantum system) to a reference coherent state, and to define, following the orbits of
this action, a family of coherent states. The latter are labeled as the coset space which
represents naturally the classical phase space.
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1.1 Purpose and motivation of the paper
An universal property characterizing any family of coherent states is the presence of
an associated measure, see, for instance, [6]. In all the cases cited above, this measure
is in direct relation to the symplectic volume of the corresponding classical system, as
shown by [10] in the context of geometric quantization. The aim of the present paper
is to construct, using this relation as a guideline, a family of coherent states for the
complete non-linear rigid body (also known as the Euler top). Such body has three
non-zero principal moments of inertia and is considered both in the laboratory and in
the body fixed frame. Its center of mass is fixed at the origin and the body rotates freely
about it. Orientations of the body are given by the elements of SO(3) ∼ RP3 and the
phase space T∗SO(3) has dimension six. This choice of system is motivated by its
importance and prevalence in molecular and nuclear physics. In particular, coherent
states for this system allow quantum-classical description of the orientations of quan-
tum rotors in the laboratory fixed frame, a topic that draws increasing attention [13, 14]
in view of continuing major development of experimental techniques, see, for example,
[15, 16, 17].

We like to point out that coherent states for the reduced rigid body with the phase
space S2, the so-called spin or Bloch coherent states [18, 11], are widely known and
used. Such states can describe the semi-classical evolution of the orientation of the
angular momentum in the body fixed (internal) frame of the quantum rotor. he linear
rigid body also has the phase space T∗S2 and it has been recently studied in [19], see
sec. 2.3. On the other hand, to our knowledge, only a few attempts [20, 21, 22] of
constructing coherent states for the complete system exist, and none of the families
of the coherent states proposed for this system relied on the associated measure in
order to recover fully the parametrization of T∗SO(3). The procedure required to
build such states is far from being trivial. It employs extensively the techniques from
the theory of coherent states in other contexts as well as methods developed specifically
for our particular system. We obtain a new family of coherent states which is linked
through its measure most directly to the underlying classical system. We investigate
this connection further and validate it numerically on simple physical examples.

1.2 Outline of the construction
In order to construct a family of coherent states that parametrizes T∗SO(3), we modify
the standard Schwinger procedure [23, 24] for the construction of the algebra of observ-
ables using products of boson creation/annihilation operators. The original well known
procedure applies to the case of the linear rigid body with classical phase space T∗S2

and yields Bloch (or spin) coherent states [24, 18, 11]. By contrast, for T∗SO(3), it is,
to our knowledge, not possible to find a straightforward construction of the algebra. To
overcome this difficulty, we resort to what can be seen as a quantum analogue of the
Cayley-Klein parametrization of the configuration space SO(3) (an over-abundant set
of parameters subjected to a constraint). A similar approach was suggested in [21, 20],
and a clear analogy to the parameterization of Keplerian systems after Kustaanheimo-
Stiefel regularization (see [25] and the references therein) should be equally acknowl-
edged.

The main idea of the construction is to consider a direct product of two indepen-
dent Schwinger representations. In this way, we obtain a family of coherent states
parameterizing an extended phase space of dimension 8, where the notion of the body
and the laboratory frames is already present, but where the norms of the angular mo-
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mentum vector in the two frames can differ. The extra non-physical degree of free-
dom is represented by the difference of the two norms and the corresponding con-
jugated angle, and by the corresponding additional quantum number. The states are
defined on an extended Hilbert space H. The wanted family of coherent states is re-
covered by projecting orthogonally each of these states on the physical Hilbert sub-
spaceH0 ⊂ H. The procedure removes automatically the extra degree of freedom and
provides a parametrization of T∗SO(3).

As can be expected, each coherent state obtained in this way is a superposition of
products of two Bloch coherent states. The states in the product have the same angular
momentum quantum number j and define the orientation of the angular momentum
vector J in the laboratory and in the body frame. The superposition is taken over
different j. A general survey of such families of coherent states can be found in [22].

In order to justify, from a concrete standpoint, our construction, we compute the
expectation values of several quantum observables and compare them to their classi-
cal analogues. The agreement is very good in the semi-classical limit ~ � ‖J‖. To
provide further illustration, we analyze the dynamics of our coherent states under the
spherical top Hamiltonian. Again, the comparison to the corresponding classical dy-
namics is very clear and satisfactory.

We like to remark once more that the basis of our construction was given in [21, 20],
from where we borrow some of our techniques, and in [22], where a broad class of
families of “molecular” coherent states, including the ones in [21, 20], is discussed.
However, our particular family of coherent states is new. What strongly motivates our
definition, other than the clean procedure under which it is obtained, is the natural
connection between the resolution of the identity property of the family of coherent
states, the associated measure, and the geometrical (symplectic) structure of the classi-
cal phase space. This connection is not often highlighted in the literature, and we make
it explicit in the present work. Our approach allows associating each our coherent
state to a unique point in the phase space near which the state is localized. This corre-
spondence is (independently) validated by the expectation values of physical quantum
observables in the coherent states.

1.3 Structure of the paper
We begin with a brief review in sec. 2 of the three major families of coherent states,
namely the Euclidean or oscillator coherent states (sec. 2.1), the Bloch or spin coherent
states (sec. 2.2) and the Schwinger coherent states (sec. 2.3). Our purpose in sec. 2
is to recall concisely the techniques that we will use later in the construction of our
family of coherent states. In each of these three cases, we show how the resolution
of identity property can be linked to the classical symplectic volume of the underlying
phase space. We demonstrate how the particular coherent states can be labeled using
the coordinates on the classical phase space with which they are associated. We con-
sider also how this labeling agrees with the expectation values of the observables of the
system computed for these coherent states.

In sec. 3, we detail the construction of coherent states on T∗SO(3). Following
the outline in sec. 2, we explain in sec. 3.1 how our coherent states are labeled by
the action-angle coordinates on T∗SO(3). Subsequently, we demonstrate how such
parameterization agrees with the expectation values of the observables of the system
computed for such coherent states. We conclude in sec. 3.2 by relabeling our states with
the coordinates which are obtained formally by the natural left or right trivialization of
T∗SO(3), and which physicists use commonly instead of the action-angle coordinates.
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In sec. 4, we study the dynamics of the most simple quantum rotor system, the
rigid spherical top. In the classical analog of this system, all evolution takes place in
the laboratory frame. The advantage of our coherent states, by contrast to the usual
Bloch states, is that they can exhibit this dynamics. We begin in sec. 4.1 by introduc-
ing Bargmann and Husimi representations of our coherent states and then turn to the
concrete system. Following the evolution of the family of our states, we visualize their
close relation to the classical dynamics.

2 Coherent states
In this section, we consider several existing definitions of coherent states, notably Eu-
clidean (or oscillator), Bloch (or spin), and Schwinger states which we denote by |p〉oc,
|p〉bc, and |p〉sc, respectively. We review the essential concepts required for the devel-
opment of the theory of the coherent states on T∗SO(3) in sec. 3. This is not intended
to be a complete reference on coherent states; for a more in-depth analysis see, for in-
stance, [4, 6]. We focus in particular on the relationship, given by the resolution of the
identity property, between the family of coherent states |p〉∗ and the symplectic volume
of the underlying classical phase space.

2.1 Euclidean coherent states
The original setting for the definition of coherent states by Klauder, Glauber and Su-
darshan [3, 1, 2] was Euclidean. The underlying phase space is T∗R with canonical
coordinates (q, p) representing the position and momentum of a 1-dimensional particle.
This space can be identified with the Euclidean 2-plane R2

q,p or with its complexifica-
tion C.

Let q̂ and p̂ denote the position and momentum operators satisfying the usual
Heisenberg algebra commutation relations

[q̂, p̂] = i~1 , (1)

where 1 denotes the identity operator. Define the (non self-adjoint) annihilation opera-
tor

â =
q̂ + ip̂√

2~
(2a)

along with its adjoint, the creation operator

â† =
q̂ − ip̂√

2~
(2b)

for which relation (1) becomes
[â, â†] = 1. (3)

The entire Hilbert space is spanned by the eigenstates of the particle number operator
n̂ = â†â. The spectrum of n̂ is non-degenerate and equals N0 (the set of non-negative
integers). For any eigenvalue n ∈ N0, we will denote by |n〉 the respective eigenstate
of n̂, that is the state satisfying the relation

n̂|n〉= n|n〉.
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It follows from (3) that

â†|n〉=
√
n+ 1 |n+ 1〉

â|n〉=
√
n |n− 1〉 for n > 0, and â|0〉= 0.

For any z ∈ C we define the oscillator coherent state associated to z as the eigenstate
of â relative to the complex eigenvalue z, that is

â|z〉oc = z|z〉oc. (4)

Explicitly, we obtain the equivalent definition

|z〉oc = ezâ
†−z̄â |0〉= e−|z|

2/2
∞∑
n=0

zn√
n!
|n〉= e−|z|

2/2
∞∑
n=0

zn

n!
(â†)n|0〉.

A fundamental characteristics of this family of coherent states is given by the resolution
of the identity property ∫

C
|z〉oc oc〈z|

1

π
d2z = 1 , (5)

where d2z = d Re z × d Im z is the standard area element (measure) on C in the
identification with R2 (in literature the notation 1

2idzdz̄ or 1
2idz∧dz̄ is also sometimes

employed, it is important not to confuse the integral (5) with a contour integral in the
complex plane).

Using (4) we can verify that

oc〈z|â|z〉oc = z,

and that, consequently,

oc〈z|â†|z〉oc = oc〈z|â|z〉oc = z̄.

Expressing p̂ and q̂ in terms of operators (2), it immediately follows that

oc〈z|q̂|z〉oc =
√

2~
z + z̄

2
=
√

2~Re z

oc〈z|p̂|z〉oc =
√

2~
z − z̄

2i
=
√

2~ Im z.

This shows that it is natural to identify the complex space C of parameters z with the
real plane R2

q,p with coordinates

q =
√

2~Re z and p =
√

2~ Im z,

such that
z =

q + ip√
2~

. (6)

Equation (6) gives real parameterization of the coherent states |z〉oc = |q, p〉oc for which
identity (5) becomes ∫

R2

|q, p〉oc oc〈q, p|
dq dp

2π~
= 1.
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2.1.1 Multi-dimensional oscillator coherent states

The above construction can be trivially extended (via tensor product) to the case with
several degrees of freedom. Let q̂i and p̂i with i = 1, . . . ,M be now the posi-
tion/momentum components operators and consider the respective canonical variables
q, p ∈ RM (or, equivalently, z = q+ip√

2~ ∈ CM ) of an M degrees of freedom Hamilto-
nian dynamical system. A coherent state |q, p〉oc (defined, as before, as an eigenstate
of the M commuting annihilation operators) satisfies now

oc〈q, p|q̂i|q, p〉oc = qi and oc〈q, p|p̂i|q, p〉oc = pi,

while the resolution of the identity property becomes∫
R2M

|q, p〉oc oc〈q, p|
dMq dMp

(2π~)M
= 1. (7)

Note that it is possible to express (7) in a nice coordinate-free way. The classical phase
space T∗RM ' R2M

q,p (parameterized here by q and p) is equipped with a canonical
symplectic 2-form ω = dq ∧ dp. Denoting the M -th exterior power of ω, which is
identified in a natural way with a density on R2M , as ωM we come to∫

R2M

|q, p〉oc oc〈q, p|
(
ω(q, p)

2π~

)M
= 1.

2.2 Bloch coherent states
Bloch (or spin) coherent states [18, 26], are generally employed when the classical
phase space is a 2 dimensional sphere S2 equipped with the Poisson algebra su(2) of
the angular momentum. In particular, we can think of a point particle which has non-
zero spin and is placed at the origin in R3. Spin is an internal angular momentum
J = (J1, J2, J3) of fixed length |J | whose orientations in R3 are given by points
p of S2 (the Bloch sphere). In quantum optics, points of S2 define polarizations of
the photon. In our context, the natural example is provided by the reduced Euler top
system, where we study orientations of the angular momentum J of the freely rotating
rigid body only with regards to the body-fixed frame.

The basic idea of the construction of Bloch coherent states dates back to Gilmore
[11] and Perelomov [12], see also [6, 7]. This family can also be naturally recovered in
the framework of geometric quantization, see [10]. The symmetry group of the system
is SU(2). We choose an unitary irreducible representation, of highest (integer or half-
integer) weight j, of SU(2) hosted on the complex 2j + 1 dimensional Hilbert space
Hj 3 |p〉 and consider the natural action of SU(2) on the space S2 3 p. Specifically,
the action of any element R ∈ SU(2) is represented by an unitary matrix UR acting
on Hj . Let Gp ⊂ SU(2) be the stabilizer of the point p, i.e., p remains invariant
under the action of Gp. The coherent state |p〉, corresponding to p, is chosen to be
invariant, up to a phase factor, under the action (in the representation) of any element
in Gp. Furthermore, |Rp〉 = UR|p〉 defines the coherent state localized around the
point Rp for any R ∈ SU(2). Since the action of SU(2) is transitive, the family of
coherent states defined in this way covers the whole sphere and if R1p = R2p then
|R1p〉 and |R2p〉 differ only by a phase factor. In this way the problem of defining the
family of coherent states is well posed and depends only on the choice of |p〉 for a given
reference point p. It is straightforward to see that |p〉 must be an eigenstate of p · Ĵ
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( Ĵ being the vector whose components are the angular canonical angular momentum
projections operators, see below for further details). In order to fix the choice (among
the 2j + 1 possible candidates) it is customary to require for |p〉 to minimize a specific
uncertainty relation: if q ∈ S2 is orthogonal to p, then |p〉 should be chosen in a
way that minimize the variance of q ·Ĵ . A straightforward calculation shows that the
choice of |p〉 as the eigenstate p ·Ĵ relative to the highest eigenvalue, guarantees this
condition (independently from q, and always with the same variance ~2j/2). This can
be interpreted as |p〉 being, classically, localized around the point p.

Let Ĵi, with i = 1, 2, 3, denote the canonical generators (represented by self-adjoint
operators acting onHj) of the Lie algebra su(2) satisfying

[Ĵi, Ĵj ] = i~εijkĴk i, j = 1, 2, 3,

and let |j,m〉, m = −j, . . . , j, be the elements of the canonical base ofHj , such that

Ĵ3 |j,m〉= ~m |j,m〉.

The Bloch coherent state (of spin j) relative to the parameter z ∈ C is defined as

|j, z〉bc =
1

(1 + |z|2)
j

j∑
m=−j

√(
2j

j +m

)
z̄j+m |j,m〉. (8)

While the elements of this family are not eigenstates of any annihilation operator (this
would be a priori impossible due to the finite-dimensionality of Hj), they satisfy the
resolution of identity property∫

C
|j, z〉bc bc〈j, z|

1 + 2j

π(1 + |z|2)2
d2z = 1. (9)

To interpret the situation from the classical point of view, consider the sphere S2
ρ of

radius ρ = ~(j + 1/2) embedded in R3 through the identification

S2
ρ =

{
p = (J1, J2, J3) ∈ R3 | ‖p‖2 = J2

1 + J2
2 + J2

3 = ρ2
}
.

The space S2
ρ is equipped with a natural symplectic 2-form ω which equals the canon-

ical (oriented) area form rescaled by a factor of ρ−1 (in this way (arg(J1 + iJ2), J3),
the cylindrical coordinates with respect to the third axis on the sphere, are canonical).
Introducing complex stereographical coordinates on S2

ρ \ (0, 0, ρ) (excluding the North
pole), also known as Riemann projection,

z =
J1 + iJ2

ρ− J3
, (10)

we can rewrite the resolution of identity in the familiar form∫
C
|j, z〉bc bc〈j, z|

ω(z)

2π~
= 1.

Moreover, if p and z are related by (10) we have that

bc〈j, z|Ĵi|j, z〉bc =
~j
ρ
Ji = Ji +O(~).

These two formulas allow us to conclude that |j, z〉bc can be associated, in the semi-
classical limit, to the point p on the sphere of radius ρ where p and z are related
through (10). We can also observe that the choice of ρ agrees up to first order in ~ to
the quantum value of ‖Ĵ‖ = ~

√
j(j + 1) and it is the value which is often encountered

in semi-classical analysis.
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2.3 Schwinger coherent states
Schwinger coherent states [24] generalize in some sense the construction of Bloch co-
herent states as seen in sec. 2.2 while taking advantage of the creation/annihilation
scheme seen in sec. 2.1. This is made possible thanks to the well known explicit
correspondence between the 1:1 resonant oscillator system with dynamical symme-
try SU(2) and the reduced Euler top system described by the Bloch coherent states
[23, 27], see also [28, 29]. Specifically, as detailed by Schwinger in [23], we can
rewrite the elements generating the so(3) algebra of quantum observables Ĵi, the com-
ponents of the angular momentum, as quadratic functions of two commuting pairs of
creation/annihilation operators representing the two modes of the quantum 1:1 resonant
oscillator (note that this boson representation generalizes to any finite dimensional Lie
algebra). Subsequently, oscillator coherent states are introduced as in the Euclidean
case in sec. 2.1. When classified in terms of angular momentum (or spin) quantum
number j, these states turn out to be a weighted superposition of Bloch states |j,p〉bc

with different j but with the same orientation of p = (J1, J2, J3). All values of j are
present and the weights are themselves controlled by a parameter which allows to peak
on the desired magnitude of the angular momentum (instead of having states of fixed
j like the Bloch coherent states). The corresponding classical two-degree-of-freedom
system can be described as rotation of a linear top, i.e., of a rigid body with one zero
principal moment of inertia. Our construction may differ from the ones implemented
elsewhere, notably in nuclear physics. Our interest here is to prepare for a similar pro-
jective procedure in the higher-dimensional case of T∗SO(3) in sec. 3. For a complete
discussion of other constructions the reader may refer to [6], see also [19].

2.3.1 Two-oscillator (boson) coherent states

We detail the construction. Continuing sec. 2.1.1, consider a two-mode (M = 2)
oscillator system and let â1 and â2 be its two commuting annihilation operators,

[â1, â2] = [â1, â
†
2] = 0, [âi, â

†
i ] = 1, i = 1, 2.

The number of quanta in each mode is given by

n̂i = â†i âi, i = 1, 2.

The Hilbert space is constructed naturally as a direct product H1 × H2 with basis
functions |n1, n2〉 := |n1〉|n2〉 such that

n̂i|n1, n2〉= ni|n1, n2〉, i = 1, 2

where n1, n2 ∈ N0, and

â1|n1, n2〉=
√
n1 |n1 − 1, n2〉

â†1|n1, n2〉=
√
n1 + 1 |n1 + 1, n2〉

â2|n1, n2〉=
√
n2 |n1, n2 − 1〉

â†2|n1, n2〉=
√
n2 + 1 |n1, n2 + 1〉.

We can now introduce standard (oscillator) coherent states |z1, z2〉oc with z1,2 ∈ C as

âi|z1, z2〉oc = zi|z1, z2〉oc, i = 1, 2
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and obtain their explicit form (cf sec. 2.1)

|z1, z2〉oc = e−
1
2 (|z1|2+|z2|2)

∞∑
n1,2=0

zn1
1 zn2

2√
n1!n2!

|n1, n2〉. (11)

By construction, functions |z1, z2〉oc are normalized, and resolve identity∫
C2

|z1, z2〉oc oc〈z1, z2|
d2z1d2z2

π2
= 1.

2.3.2 Schwinger coherent states

The SU(2) invariance of the system implies that the energy commutes with the (rescaled)
total number of quanta operator

Î =
~
2

(â†1â1 + â†2â2) =
~
2

(n̂1 + n̂2). (12)

(In classical mechanics, the corresponding momentum is the first integral which is in
involution with the Hamiltonian and which induces an S1 action on the classical phase
space T∗R2 ∼ C2). The algebra of operators that commute with Î is spanned by Î
itself and three other quadratic operators

Ĵ1 =
~
2

(â†1â2 + â†2â1),

Ĵ2 =
~
2i

(â†1â2 − â†2â1),

Ĵ3 =
~
2

(â†1â1 − â†2â2) =
~
2

(n̂1 − n̂2),

which generate the su(2) ∼ so(3) Lie algebra

[Ĵi, Ĵj ] = i~εijkĴk, [Ĵi, Î] = 0, for i, j = 1, 2, 3,

with Casimir Î . We can show, by direct calculation, that

Ĵ2 := Ĵ · Ĵ = Ĵ2
1 + Ĵ2

2 + Ĵ2
3 = Î(Î + ~1).

We can consider joint eigenstates of Ĵ3 and Î (or equivalently Ĵ2) as an alternative
basis for the Hilbert space. Specifically, let us define the states |j,m〉s with 2j ∈ N0,
j +m ∈ Z, and |m| ≤ j, such that

Î |j,m〉s = ~j|j,m〉s or Ĵ2|j,m〉s = ~2j(j + 1)|j,m〉s, and

Ĵ3|j,m〉s = ~m|j,m〉s .

It follows from definitions of Î and Ĵ3 that |j,m〉s = |n1, n2〉 provided that

n1 = j +m and n2 = j −m.

We can rewrite oscillator coherent state |z1, z2〉oc in (11) in the basis given by |j,m〉s.
This can be most conveniently accomplished after introducing two complex parameters

α =
(
1 + |z1z

−1
2 |2

)
z̄2

2 and β = z̄1z̄
−1
2 ,
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whose physical meaning will become clear in sec. 2.3.4. Using new parameters (α, β)
and relabeling |z1, z2〉oc as |α, β〉sc, we introduce Schwinger coherent states

|α, β〉sc = e−
1
2 |α|

∑
2j∈N0

ᾱj√
(2j)!

(
1 + |β|2

)−j j∑
m=−j

√(
2j

j +m

)
β̄j+m |j,m〉s.

In terms of Bloch coherent states (8) in sec. 2.2, the above expression for |z1, z2〉oc =
|α, β〉sc takes a particularly simple compact form

|α, β〉sc = e−
1
2 |α|

∑
2j∈N0

ᾱj√
(2j)!

|j, β〉bc. (13)

In the (α, β) parametrization, the resolution of the identity becomes∫
C2

|α, β〉sc sc〈α, β|
d2α d2β

2π2(1 + |β|2)2
= 1. (14)

2.3.3 Coherent states on subspaces of integer j

We modify our construction further. The Hilbert spaceH of Schwinger coherent states
(13) is a direct sum H = H′ ⊕ H′′ of subspaces spanned by functions |j,m〉s with
integer and half-integer j, respectively. Often the interest lies in the subspace H′ ⊂ H
alone hosting true (non-projective) representations of SO(3) rather than those of its
double cover SU(2).

While it is not possible to construct coherent states on H′ in the standard way, we
can consider such states as eigenstates of “modified” commuting annihilation operators

Â1 = â1â1 and Â2 = â1â2

which are well defined onH′. Specifically, their action on |j,m〉s ∈ H′ is

Â1|j,m〉s =
√

(j +m)(j +m− 1) |j − 1,m− 1〉s
Â2|j,m〉s =

√
(j +m)(j −m) |j − 1,m〉s.

Each joint eigenspace of these operators is doubly degenerate and contains exactly one
state |α, β〉sc2 which belongs toH′. It is immediate to see that |α, β〉sc2 is the orthogonal
projection of |α, β〉sc in (13) on H′. Taking normalization into account and using the
same notation as before in (13), we obtain

|α, β〉sc2 = (cosh |α|)− 1
2

∑
j∈N0

ᾱj√
(2j)!

|j, β〉bc ∈ H′ (15)

which is the equivalent of equation (14) in [19].
Observing that on the integer j subspaces

|α, β〉sc sc〈α, β|
∣∣
H′

=
1 + e−2|α|

2
|α, β〉sc2 sc2〈α, β| ,

and that the measure defining the resolution of the identity should be rescaled accord-
ingly, the resolution of identity, understood now as acting only onH′ ⊂ H, is∫

C2

|α, β〉sc2 sc2〈α, β|
1 + e−2|α|

4π2(1 + |β|2)2
d2α d2β = 1. (16)

10



2.3.4 The classical choice of coherent state parameters

We uncover the physical meaning of our parameters α and β and, subsequently, we
rely on the resolution of identity (16) to establish the relationship between the family
of coherent states |α, β〉sc2 defined in (15) and the geometry of the classical phase
space. The expression of |α, β〉sc2 in terms of Bloch coherent states suggests that the
classical degree of freedom, corresponding to the parameter β, should be represented
by a sphere. As seen in sec. 2.2, the radius of the Bloch sphere is related to the value of
quantum number j. In the case of |α, β〉sc2 we have a family of Bloch states centered
on what we call the target norm of classical angular momentum J . Since the weights
of the Bloch coherent states in (15) are controlled by α it is reasonable to impose the
ansatz α = a(J) eiφJ where a(J) > 0 is an increasing function of J representing the
classical radius of the sphere parametrized by β. Requiring furthermore that J and φJ
are canonically conjugated variables with respect to the classical symplectic structure,
and comparing to (9), we obtain that the measure defining the resolution of identity
(16) becomes

1 + e−2|α|

4π2(1 + |β|2)2
d2α d2β = ~2 1 + e−2a(J)

4J
a(J)

da(J)

dJ

( ω

2π~

)2

, (17)

where we used the fact that ω2 = ω1 ω2, being (with some abuse of notation, identi-
fying 2-form on 2-dimensional manifolds as densities) ω1 = dJdφJ is the symplectic
volume in the canonical (φJ , J) coordinates, and

ω2 =
4Jd2β

(1 + |β|2)2

the symplectic volume on the sphere of radius J parametrized, in complex stereograph-
ical coordinates, by β. We like to comment here that the introduction of a(J) is a rather
general idea that can be applied in most cases. On the other hand, the requirement about
the canonical conjugation between φJ and J is quite specific. It is rather natural in our
opinion and it leads to a consistent theory, and to most straightforward relation between
of the coherent states and the underlying classical phase space.

In analogy with the previous examples we now require the resolution of the identity
measure, (17), to be equal to

(
ω

2π~
)2

, which gives:

~2 1 + e−2a(J)

4J
a(J)

da(J)

dJ
= 1.

This is solved if we express the inverse of a(J) as

J(a) =
~
2

√
1 + 2a2 − (1 + 2a) e−2a

2
.

We have, in this way, that J(a) is invertible, positive, increasing and such that J(0) =
0, and the same holds for a(J).

We can better motivate now our choice of J as the radius of the Bloch sphere
parametrized by β. We consider the expectation value of the angular momentum com-
ponents on the coherent states. We have, as illustrated in figure 1,

sc2〈α, β|Î|α, β〉sc2 =
~
2
|α| tanh |α| ≈ J(|α|)

11



Figure 1: Comparison between the expectation value of Î compared to J(|α|) for co-
herent states in the Schwinger representation.

and consequently
sc2〈α, β|Ĵi|α, β〉sc2 ≈ Ji

where, following again (10), we introduced the classical parameters (J1, J2, J3) ∈ R3

satisfying

β =
J1 + iJ2

J(|α|)− J3
and

√
J2

1 + J2
2 + J2

3 = J(|α|). (18)

In order to better understand the underlying classical structure and interpret J1,
J2 and J3, we recall the basic aspects of the linear rigid body system (with one fixed
point). This system is completely defined once the angular momentum vector J and
the orientation of the body are fixed. The orientation of the body can be represented
by an unit vector r, directed as the symmetry axis of the body (a preferential direction
should be chosen). It should be observed that J · r = 0, i.e., the angular momentum
is perpendicular to the axis of symmetry of the body. Let us fix an inertial orthonormal
reference frame (ex, ey, ez) such that ez is not aligned with J . Let Σz be the plane
orthogonal to ez . We can introduce the angle φz between the projection of J on Σz
and the ey axis. If J = ‖J‖ denotes the length of the angular momentum vector and
Jz = J ·ez the projection of the angular momentum on axis ez , we have that the triple
(J, Jz, φz) determines J completely through the formula

J = −
√
J2 − J2

z sinφzex +
√
J2 − J2

z cosφzey + Jzez.

12



We can finally define the angle φJ between r and Σz . This angle is measured in the
plane orthogonal to J and allows to completely recover r through the expression

r =

(
J − Jz

2J
cos(φz − φJ) +

J + Jz
2J

cos(φz + φJ)

)
ex+

+

(
J − Jz

2J
sin(φz − φJ) +

J + Jz
2J

sin(φz + φJ)

)
ey+

−

√
1−

(
Jz
J

)2

sin(φJ)ez.

In order to draw the parallel to the quantum case, we observe that J and φJ , as well
as Jz and φz , are conjugate variables, and that (Jz, φz) parametrize a sphere of radius
J , which can be identified with the Bloch sphere. In this way we can identify the
parameters J1, J2 and J3, encountered in (18), with the components of the angular
momentum J · ex, J · ey and J · ez respectively. This allows us to conclude that the
Schwinger coherent states |α, β〉sc2 can be seen as parameterizing the phase space of
the linear rigid body.

3 Coherent states on T∗SO(3)

The phase space of the non-linear rigid body T∗SO(3) is a 6-dimensional symplectic
manifold. Consequently, following the general outline in sec. 2, we may expect the
family of coherent states for the corresponding quantum system to be parameterized
by three complex parameters. The situation is, however, more complicated because
defining quantum observables as quadratic expressions of three commuting pairs of
eventually modified creation/annihilation operators is not possible on T∗SO(3).

We modify our approach. We note that components of the angular momentum J in
the body frame and in the laboratory frame satisfy separately the standard commutation
relations of so(3). So we may consider so(3)× so(3) with one obvious constraint: the
norm ‖J‖ of the angular momentum is the same in both of the frames. This gives
the idea [20, 21] to define coherent states using the Schwinger boson construction in
sec. 2.3.2 for the unconstrained system on a larger Hilbert space, and then recover
physical states by means of orthogonal projection (cf sec. 2.3.3). So the procedure
is similar to the lower dimensional case. However now the 4-dimensional oscillator
coherent state is first projected on the true Hilbert space corresponding to T∗SO(3) and
then rewritten as a superposition of functions transforming according to the irreducible
representations of SO(3), specifically Wigner D-functions |j, k,m〉with all values of
j, k and m present. The weights in this superposition are specific to T∗SO(3) and are
of primary interest to concrete applications in the dynamical study of the rigid body.
The construction is unambiguous and the resulting expression (22) depends only on the
parameterization. We justify our choice of parameters in sec. 3.2, where we show how
they relate to the orientation of the rigid body.

Consider four independent boson annihilation operators âi satisfying relations

[âi, âj ] = 0 and [âi, â
†
j ] = δij1 with i, j = 1, . . . , 4

along with the corresponding self-adjoint number operators

n̂i = â†i âi with i = 1, . . . , 4 .

13



whose joint eigenstates span the Hilbert space H of quantum states (see sec. 2.1.1).
Specifically, for each n = (n1, n2, n3, n4) ∈ N4

0 we define |n〉 ∈ H such that

n̂i|n〉= ni|n〉 for i = 1, . . . , 4,

and denoting the i-th canonical base element of N4
0 as 1i we can write that

âi|n〉=
√
ni |n− 1i〉

â†i |n〉=
√
ni + 1 |n+ 1i〉 for i = 1, . . . , 4 .

We can introduce quadratic operators

Î =
~
4

(â†1â1 + â†2â2 + â†3â3 + â†4â4) =
~
4

(n̂1 + n̂2 + n̂3 + n̂4),

Λ̂ =
~
4

(â†1â1 + â†2â2 − â†3â3 − â†4â4) =
~
4

(n̂1 + n̂2 − n̂3 − n̂4),

(19a)

and
M̂1 =

~
2

(â†1â2 + â†2â1), K̂1 =
~
2

(â†4â3 + â†3â4),

M̂2 =
~
2i

(â†1â2 − â†2â1), K̂2 =
~
2i

(â†4â3 − â†3â4),

M̂3 =
~
2

(â†1â1 − â†2â2), K̂3 =
~
2

(â†3â3 − â†4â4),

(19b)

which satisfy the following commutation relations for i, j = 1, . . . , 4

[Î , Λ̂] = 0,

[M̂i, K̂j ] = 0,

[M̂i, Î] = [M̂i, Λ̂] = 0, [K̂i, Î] = [K̂i, Λ̂] = 0,

[M̂i, M̂j ] = i~
3∑
k=1

εijkM̂k, [K̂i, K̂j ] = −i~
3∑
k=1

εijkK̂k

(20)

and algebraic identities

M̂2 = M̂2
1 + M̂2

2 + M̂2
3 = (Î + Λ̂)(Î + Λ̂ + ~1),

K̂2 = K̂2
1 + K̂2

2 + K̂2
3 = (Î − Λ̂)(Î − Λ̂ + ~1).

This results in constructing an so(3) × so(3) algebra as a product of two Schwinger
representations. Note that (20) are relations which we expect from the components
of the angular momentum in the body frame (K) and in the laboratory frame (M ).
The equivalence to the rigid body system will be complete provided that we project on
the states in H0 ⊂ H for which Λ̂ = 0. We can re-parameterize the basis elements
of H using the eigenvalues of the complete set of observables Î , Λ̂, M̂3, K̂3, and we
introduce the family of states |j, λ, k,m〉s2 such that

Î |j, λ, k,m〉s2 = ~j |j, λ, k,m〉s2 ,
Λ̂ |j, λ, k,m〉s2 = ~λ |j, λ, k,m〉s2 ,

M̂3 |j, λ, k,m〉s2 = ~m |j, λ, k,m〉s2 ,
K̂3 |j, λ, k,m〉s2 = ~k |j, λ, k,m〉s2 ,

14



where numbers (j, λ,m, k) satisfy

2λ, 2j, j + λ+m, j − λ+ k ∈ Z,
j, j − λ, j + λ− |m|, j − λ− |k| ≥ 0.

To make sure that |j, λ, k,m〉s2 = |n〉we should further require that

j =
1

4
(n1 + n2 + n3 + n4)

λ =
1

4
(n1 + n2 − n3 − n4)

m =
1

2
(n1 − n2)

k =
1

2
(n3 − n4)

or, equivalently,

n1 = j + λ+m

n2 = j + λ−m
n3 = j − λ+ k

n4 = j − λ− k.

Applying the standard procedure (sec. 2.1.1), we define oscillator coherent states
|z〉oc relative to z ∈ C4 as joint eigenstates of the annihilation operators

âi|z〉oc = zi |z〉oc for i = 1, . . . , 4.

Using short-hand notation

|z|2 =

4∑
i=1

|zi|2, zn =

4∏
i=1

zni
i , and n! =

4∏
i=1

ni! ,

the explicit expression for |z〉oc can be written as

|z〉oc = e−
1
2 |z|

2 ∑
n∈N4

0

zn√
n!
|n〉.

The novelty of the present work begins here. The expression above can be rewritten in
terms of rotator basis functions |j, λ, k,m〉s2

|z〉oc = N (α)
∑

j,λ,m,k

αj1α
j+m
2 αj+k3 αλ4√
P (j, λ, k,m)

|j, λ, k,m〉s2 ,

with

P (j, λ, k,m) = (j + λ+m)!(j + λ−m)!(j − λ+ k)!(j − λ− k)! = n!,

α = (α1, α2, α3, α4) =
(
z2

2z
2
4 , z1z

−1
2 , z3z

−1
4 , z1z2z

−1
3 z−1

4

)
,

and where N (α) is an appropriate normalization factor.
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In order to recover the classical phase space of the rigid body, similarly to the
Schwinger construction in sec. 2.3.3, we project |z〉oc orthogonally onto the subspace
H0 spanned by functions with λ = 0 and j ∈ N0. The parameters α are chosen so that
the resulting projected state no longer depends on α4 and we come to the expression

|α〉cc = N (α)
∑
j,m,k

αj1
(2j)!

√(
2j

j +m

)
αj+m2

√(
2j

j + k

)
αj+k3 |j, 0,m, k〉s2

parameterized now by α ∈ C3, and whereN (α) is again an appropriate normalization
factor (the same as before provided that we set α4 = 0).

For given j we recognize in the expression of |α〉cc the product of two Bloch coher-
ent states of spin j (in the complex parameterization of the sphere that we have seen
before in sec. 2.3.2). Specifically, with an appropriate re-parametrization that intro-
duces β ∈ C3 as function of α,

β = (β1, β2, β3) = ((1 + |α2|2)(1 + |α3|2)ᾱ1, ᾱ2, ᾱ3) (21)

and assuming that the normalization factor is readjusted to fit the new parametrization,
we have

|β〉cc = N (β)
∑
j,m,k

β̄j1
(2j)!

F (j,m, β2)F (j, k, β3) |j, 0,m, k〉s2

with

F (j, n, β) =
1

(1 + |β|2)j

√(
2j

j + n

)
β̄j+n

where we can identify |j, 0,m, k〉s2 with |j,m〉s |j, k〉s and therefore obtain

|β〉cc = N (β)

∞∑
j=0

β̄j1
(2j)!

|j, β2〉bc |j, β̄3〉bc. (22)

Comparing to (8) we see that one of the two Bloch states in each product is centered
in β2 while the other in β̄3. This happens because the first state represents angular
momentum in the laboratory frame, while the other represents the same angular mo-
mentum in the body frame where the commutation relations have anomalous sign.

We want now to determine explicitly the normalization factorN (β). Using the fact
that Bloch states are already normalized, we have

N (β)−2 =

∞∑
j=0

|β1|2j

(2j)!2
=

1

2
(J0(2|β1|1/2) + I0(2|β1|1/2))

where

J0(x) =

+∞∑
m=0

(−1)m

(m!)2

(x
2

)2m

is a Bessel function of first kind and I0(x) = J0(ix) is a modified Bessel function of
the first kind. We conclude that

|β〉cc =

√
2

J0(2|β1|1/2) + I0(2|β1|1/2)

∞∑
j=0

β̄j1
(2j)!

|j, β2〉bc |j, β̄3〉bc.

The weights N (β)2|β1|2j(2j)!−2 in |β〉cc are depicted in figure 2 for different values
of the classical action J(|β1|) ≈ ~

√
|β1|/2 (see the discussion in the next section).
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Figure 2: Weight distributions for different values of classical target action J (J =
20~, 50~, 100~) over j.

3.1 The classical choice of coherent state parameters
Like in section 2.3.4 we would also want to determine a positive measure density µ on
C3 which defines a resolution of the identity for our set of coherent states, that is∫

C3

|β〉〈β|µ(β)d6β =
∑
j,m,k

|j, 0,m, k〉〈j, 0,m, k|. (23)

Here and in what follows we drop the subscript cc, since we have determined the set
of coherent states we want to work with. Assuming that the measure is invariant under
rotations, it is natural to require for µ to take the form

µ(β) = F (|β1|)(1 + |β2|2)−2(1 + |β3|2)−2

for some non negative function F . In particular it is not restrictive introduce the func-
tion W defined as

W (x) =
2F (x1/2)

J0(2x1/4) + I0(2x1/4)

and rewrite the measure µ in the following way

µ(β) =
1

2
(J0(2|β1|1/2) + I0(2|β1|1/2))W (|β1|2)(1 + |β2|2)−2(1 + |β3|2)−2

with W non negative function to be determined. From the expression of the resolution
of the identity for Bloch coherent states (9) parametrized by β2 and β3, using the polar
form for β1, and integrating over its argument, we end up with∫ +∞

0

W (x)xjdx =
((2j + 1)!)2

π3
where j ∈ N0.
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We recognize a Stieltjes moments problem for function W . If we define ρ(s) as

ρ(s) =
1

π3
Γ(2s+ 2)2 where s ∈ C

we have that any solution W for the Stieltjes moments problem satisfies∫ +∞

0

W (x)xjdx = ρ(j) where j ∈ N0.

Using the formula (see for instance eq. 10.43.19 of [30, 31])∫ ∞
0

tµ−1 Kν(t)dt = 2µ−1Γ

(
µ− ν

2

)
Γ

(
µ+ ν

2

)
where |Re ν| < Reµ

for the modified Bessel function of the second kind Kν(t), we have that∫ ∞
0

xs(
1

π3
K0(2x1/4))dx = ρ(s).

Consequently, if we set

W (x) =
1

π3
K0(2x1/4)

we can verify that W is positive and that it defines a solution of the moments problem
(for some interesting insights into the relationship between the Stieltjes moments prob-
lem for W and the expression of ρ in a broader context see [32]). We conclude that
the measure density that defines the resolution of identity for our set of coherent states
(23) is given by

µ(β) =
1

2π3
(J0(2|β1|1/2) + I0(2|β1|1/2)) K0(2|β1|1/2)(1 + |β2|2)−2(1 + |β3|2)−2.

As done in sec. 2.3.4, we relate the complex parameters β to the classical phase
space. We require that β2 and β3 parametrize each a sphere of radius J : β2 character-
izes the angular momentum in the laboratory frame, while β3 characterizes the angular
momentum in the body frame. We also require that β1 parametrizes the magnitude
of the total angular momentum J and its conjugated angle φJ . Imposing the ansatz
β1 = b(J) eiφJ , with b positive and increasing function, we have that

µ(β) d6β = ~3 b(J)

4J2
(J0(2b(J)1/2) + I0(2b(J)1/2))K0(2b(J)1/2)

db(J)

dJ

( ω

2π~

)3

.

Imposing the condition

µ(β) d6β =
( ω

2π~

)3

we obtain
dJ(b)

db
J2(b) = ~3 b

4
(J0(2b1/2) + I0(2b1/2)) K0(2b1/2)

where J = J(b) can be seen as the inverse of b(J). If we introduce the quantities
y = J3 and x = 2b1/2, and consider y = y(x) as a function of x, we can rewrite the
previous equation as

dy(x)

dx
=

3~3

32
x3(J0(x) + I0(x)) K0(x).
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Exploiting the fact that y(0) = 0 this gives

y(x) =
3~3

32

∫ x

0

t3(J0(t) + I0(t)) K0(t)dt

=
3~3

128
π−1/2

(
16G 3,0

0,4

(
1, 1, 3/2, 0

∣∣ x4

64

)
+G 2,2

2,4

(
1, 5/2

2, 2, 0, 2

∣∣∣∣ x2

))
where

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z)
denotes a Meijer G-function (see for instance [33, 34]). Going back to the original
parameters this results in

J(b) = ~
31/3

4 · 21/3π1/6

(
16G 3,0

0,4

(
1, 1, 3/2, 0

∣∣ b2
4

)
+G 2,2

2,4

(
1, 5/2

2, 2, 0, 2

∣∣∣∣ 4b

))1/3

=
~
√
b

2

(
3

2
√
π

(
1√
2
G 3,0

0,4

(
1
4 ,

1
4 ,

3
4 ,−

3
4

∣∣ b2
4

)
+G 2,2

2,4

(
− 1

2 , 1
1
2 ,

1
2 ,−

3
2 ,

1
2

∣∣∣∣ 4b

)))1/3

.

(24)
Despite the complex expression it is possible to analyze the asymptotic behavior for
b ∼ ∞ and to obtain:

J(b) ∼ ~
√
b

2
= Jas(b).

We can at this point check the expectation values of quantum observables on coherent
states. Using the formulas for the expectation values of Bloch coherent states we have

〈β|Î|β〉= 2~
J0(2|β1|1/2) + I0(2|β1|1/2)

∞∑
j=0

j|β1|2j

((2j)!)2

=
~
√
|β1|
2

I1(2|β1|1/2)− J1(2|β1|1/2)

J0(2|β1|1/2) + I0(2|β1|1/2)

|β1|∼∞−→
~
√
|β1|
2

− ~
8

= Jas(|β1|)−
~
8
.

Note that the sum in the above equation can be evaluated using the Taylor expansion
of J0 and its derivative. Similar expressions are easily obtained for 〈β|M̂i|β〉 and for
〈β|K̂i|β〉. In the limit of large |β1|, which is equivalent to small ~, and so it can be
thought as a semi-classical limit, we come to the expected agreement (up to a small
term of order of ~):

〈β|M̂i|β〉 ∼
(
J(|β1|)−

~
8

)
pi(β2)

〈β|K̂i|β〉 ∼
(
J(|β1|)−

~
8

)
pi(β3)

〈β|Î|β〉 ∼ J(|β1|)−
~
8

where pi(β1) and pi(β2) represent the ith components of the unit vectors obtained from
β1 and β2 respectively through the inverse of the complex stereographical projection
(10) (with a choice of ρ equal to 1). The comparison of 〈β|Î|β〉 and J |β1|) is presented
in figure 3.
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Figure 3: Comparison between the expectation value of Î as defined in equation (19)
and J(|β1|) as defined in equation (24) for coherent states on T∗SO(3) as functions of
complex parameter β1.

3.2 Body standard coordinates: trivialization of T∗SO(3)

To draw a more direct relationship to the classical system we can reparameterize the
family of coherent states employing a more commonly used set of parameters. We
observe that, for fixed β ∈ C3, there exists an unique g1 ∈ SO(3) such that

U (j)(g1)|j, β3〉bc = |j, β2〉bc ∀j ∈ N0

where U (j)(g) is the unitary representative of g in the irreducible representation of
SO(3) of weight j. Moreover, there exists a unique g2 ∈ SO(3), which leaves β2

invariant and changes the phase of the Bloch function so that

U (j)(g2)|j, β2〉bc = exp(−ijφJ)|j, β2〉bc ∀j ∈ N0

(recall that φJ is the argument of β̄1). Consequently we have that there exists a unique
g = g2 ◦ g1 ∈ SO(3) such that

|β〉= N (b(J))

∞∑
j=0

b(J)j

(2j)!
U (j)(g)|j, β3〉bc |j, β̄3〉bc

(recall that b(J) is the absolute value of β1). We can think about g as being the classical
rotation that corresponds to the coherent state |β〉and that relates the laboratory and the
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body frames. If to any v ∈ R3 we associate θ(v) ∈ C such that

θ(v) =
v1 + iv2

‖v‖ − v3
,

we can relabel, our coherent state |β〉 using kc ∈ R3 and g ∈ SO(3)

|g, kc〉BF = N (b(‖kc‖))
∞∑
j=0

b(‖kc‖)j

(2j)!
U (j)(g)|j, θ(kc)〉bc |j, θ(kc)〉bc

or equivalently, using mc ∈ R3 (the equivalence being given by mc = g kc),

|g,mc〉LF = N (b(‖mc‖))
∞∑
j=0

b(‖mc‖)j

(2j)!
|j, θ(mc)〉bc

(
U (j)(g)

)T
|j, θ(mc)〉bc.

In this way we identify T∗SO(3) with SO(3) × so(3)∗, where so(3)∗ is in turn iden-
tified with R3, through left and right trivializations. The respective parameters (g, kc)
or (g,mc) parametrize the families of coherent states |g, kc〉BF and |g,mc〉LF giving
representations in the body or in the laboratory frame respectively. In applications this
means that we can specify the orientation of J in the laboratory frame or in the body
frame by vectors mc and kc respectively, relate the two frames by the rotation g, and
use coherent states |g,mc〉LF or |g, kc〉BF to follow the evolution of the system in terms
of g and mc or kc.

4 Coherent states on T∗SO(3) in physical applications
We conclude the paper with a practical application of our coherent states. Considering a
simple, yet relevant, example of the quantum spherical top, we analyze the evolution of
a given coherent state. We use the Husimi distribution which allows representing any
quantum state as a probability distribution on the classical phase space. We use this
example to verify our construction of T∗SO(3) coherent states. In some sense, they
behave as one might expect: they stay centered on the underlying classical trajectory
while exhibiting diffusion.

It is important, however, to note that there is an evolution at all. In fact, since the
norm of the angular momentum J is conserved, it is common to study quantum rotors
for a fixed j (thus using Bloch coherent states on S2). For the spherical top, the unitary
operator that expresses the dynamics at fixed j is trivial, and is reduced to a phase
change which is not physically meaningful. This can be interpreted as the quantum
equivalent of the fact that the classical reduced Euler’s equations of motion for the
spherical rigid body on the reduced phase space S2 (spanned by the orientations of J
with respect to the body frame) are trivial. On the other hand, on the complete phase
space, the classical dynamics of this body is seen as rotation in the laboratory frame
about vector J with constant frequency proportional to ‖J‖.

We turn to numerical simulations in order to demonstrate how this classical dy-
namics is reflected in the quantum system. Considering the semi-classical regime with
~ small compared to ‖J‖, we will see that the Husimi distribution of our coherent
states is localized for long times near the respective classical orbits. This justifies most
clearly the choice of our family of coherent states.
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4.1 Bargmann and Husimi representations
We recall the basics of the Husimi distribution [35] which we will use in sec. 4.2 to
represent our coherent states as a probability distribution on T∗SO(3). Consider a
symplectic manifoldM with points p ∈ M, a quantum Hilbert space H, and a family
of coherent states |p〉 ∈ H which is associated to M. For any (normalized) state
|ψ〉 ∈ H, we can construct its Bargmann representation

B : H×M→ C : (|ψ〉, p) 7→ B|ψ〉(p) := 〈p|ψ〉.

The complex valued function B|ψ〉 determines fully the state |ψ〉: using the measure dµ
onM that defines the resolution of identity for the family |p〉we have∫

M
B|ψ〉(p)|p〉dµ(p) =

∫
M
|p〉〈p|dµ(p)|ψ〉= 1|ψ〉= |ψ〉 .

Closely related to the Bargmann representation of state |ψ〉 is its Husimi distribution

H|ψ〉(p) = |B|ψ〉(p)|2 = 〈ψ|p〉〈p|ψ〉 .

Function H|ψ〉 is real and its range equals [0, 1] for any normalized |ψ〉. Furthermore,∫
M

H|ψ〉(p) dµ(p) = 〈ψ|
∫
M
|p〉〈p|dµ(p)|ψ〉= 〈ψ|1|ψ〉= 〈ψ|ψ〉 = 1 .

In particular this defines a probability measure dµ|ψ〉 = H|ψ〉dµ onM.
It is possible to see, as an example, that the Husimi distribution of an Euclidean

coherent state |z∗〉oc withM∼ C (see sec. 2.1) is a Gaussian centered at z∗

H|z∗〉oc(z) = |oc〈z|z∗〉oc|2 = exp
(
−|z − z∗|2

)
,

while in the case of Bloch coherent states (sec. 2.2),

H|j,z∗〉bc
(z) = |bc〈j, z|j, z∗〉bc|2 = cos2j(∠zz∗)

defines through (10) a similar probability distribution on the Riemann sphere S2
ρ(j).

Considering coherent states |p〉 as states that are the “most localized” at point p in
the classical phase spaceM, the values of H|ψ〉 can be interpreted as the probability of
finding the state |ψ〉 at p ∈ M. Of a particular interest to our work is the study of the
Husimi distribution of the evolution of a coherent state |p〉, a time-dependent probabil-
ity distribution onM, under a given quantum Hamiltonian, and the comparison of this
evolution to the corresponding classical orbit passing through p.

4.2 The spherical top
As a concrete application, let us consider the quantum spherical top. With an appro-
priate time rescaling, the Hamiltonian of this system can always be put in the simple
form

Ĥ =
1

2
K̂

2
,

where K̂ represents angular momentum Ĵ in the body frame, see eqs. (19b). Note
that the same Hamiltonian is used in [19] to evolve coherent states on T∗S2, so it
is instructive to compare what we do below with the computations in sec. 4 of [19].
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Recall that the eigenspectrum of Ĥ is discrete and equals 1
2~

2j(j + 1) with j ∈ N0,
and that these eigenvalues (energies) are (2j + 1)2 degenerate. Under Hamiltonian Ĥ ,
the evolution of the T∗SO(3) coherent state with parameter β ∈ C3 is given by

|β; t〉= exp

(
Ĥt

i~

)
|β〉= N (β1)

+∞∑
j=0

eiωjt β̄j1 |j, β2〉sc |j, β̄3〉sc .

where the frequencies associated to the quasi-periodic dynamics are

ωj = −~
2
j(j + 1).

Since j is integer (and so j(j + 1) is even) we have that, if we define T = 2π~−1,

Tωj ∈ 2πZ for all j ∈ N0, (25)

it is also possible to see that T is the smallest positive number satisfying this condition
(for instance by checking this on the frequency ω1). An immediate consequence of
expression (25) is

|β; t+ T 〉= |β; t〉 for all t ∈ R and β ∈ C3.

This allows us to conclude that the dynamics is periodic with minimal period T (in-
dependent from the orbit). This purely quantum phenomenon depends on ~ and its
origin lies in the resonant structure of the discrete spectrum of Ĥ whose degenerate
eigenvalues are separated by gaps that are integer multiples of ~2. It has no relation
to the periodicity of the classical motion for which the period depends on the initial
conditions β. Excluding the trivial case where β1 = 0 (in this case |β〉 is a stationary
state), for a given coherent state |β〉 the condition ensuring that |β; t〉, for some t such
that 0 < t < T , is coherent, is equivalent to the existence of α ∈ C such that

eiωjt = αj for all j ∈ N0.

After some manipulations this condition can be rewritten in the form

t

T
∈ Z

which has no solutions, henceforth we conclude that |β; t〉 is not a coherent state.
Fixed initial condition β ∈ C3, further insight on the quantum/classical dynamics

relationship can be provided by the Husimi distribution H|β;t〉 of |β; t〉. First of all, for
visualization purpose, we need to reduce the number of coordinates in the phase space
we will consider. Drawing the comparison to the classical case, we observe that only
the angle φJ conjugate to ‖J‖ evolves. Furthermore, noting that φJ is represented by
the argument of β1, we can restrict ourselves on the one-dimensional section of the
phase space parametrized by λ ∈ [0, 2π), and defined as

λ→
(
eiλβ1, β2, β3

)
.

On this section the Husimi distribution of |β; t〉 becomes a function of λ and t alone.
If we use (24) to define the corresponding target value of classical action J (the norm
‖J‖ of the angular momentum), we have that the classical evolution of the respective
conjugate angle is

φJ(t) = φJ(0) + tJ,
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which in the (λ, t) plane is described by a line (we recall that, in our choice of param-
eterization of the section, φJ = φJ(0) corresponds to λ = 0)

λ∗(t) = tJ. (26)

In fig. 4 we represent the Husimi distribution of |β; t〉on the (λ, t) plane along with the
corresponding classical orbit (26) for different values of J . It can be well seen that this
distribution is localized in λ and clearly follows the classical orbit before spreading.
In other words, our coherent state follows (at least for some time) the evolution of the
classical system. The localization time scale, the spatial localization, and the quantum-
classical correspondence itself improve for large J .

5 Discussion and perspectives
We constructed in sec. 3 a new family of coherent quantum states that parametrizes the
phase space of the rigid body. Exploiting the resolution of identity and the associated
measure, we established the most direct and detailed relation between the quantum sys-
tem and its classical analog. This relation is confirmed by the computation of expec-
tation values of principal quantum observables, and is further supported numerically
by how well the evolution of our coherent states replicates in the semi-classical limit
the behavior of the classical system. Our construction makes an opening for further
research and applications, some of which are suggested below.

Simple expressions in the spherical top case (sec. 4) make it possible to compute
explicitly the ~ → 0 limit for the quantum evolution. This can in turn give the correct
classical dynamics and thus support further our construction. The quantum and classi-
cal dynamics of the symmetric top, while being more complex, can still be represented
in closed form, and a similar analysis can follow.

More generally, since it is possible to express quantum evolution of the Bargmann
distribution of a state as a set of state-independent partial differential equations (with
boundary conditions determined by the state), it is interesting to verify how these equa-
tions can be reduced, to a factor of the order of ~, to the classical equations of motion
for the densities on the phase space. In particular, this can be studied using our coherent
states and the classical and quantum rigid body Hamiltonian.

The author of [8, 9] used geometric quantization to define coherent states on T∗G
with G a compact Lie group. Since this should work for SO(3), it is interesting to
compare in detail the states in [8, 9] to our construction in sec. 3.

Our states open the way for the numerical analysis of more complicated systems,
notably the study of the triaxial rigid and semi-rigid bodies, such as asymmetric top
molecules. Particularly interesting are perturbations depending on the orientation of
such bodies with respect to the laboratory frame. For example, we can study interac-
tions of the external electric fields with molecules possessing permanent dipole mo-
ments, which can be modelled as heavy tops, see [36, 37, 38], which in turn can be ei-
ther classically integrable (for instance in the case of the Lagrange or the Kovalevskaya
tops) or, in the general non-symmetric case, non-integrable. While the necessary com-
putations pose certain challenges, they can be highly rewarding. For instance, we can
make possible a detailed analysis of the quantum counterpart of the classical dynamics
near unstable relative equilibria, or in the presence of bifurcations of stable equilib-
ria, such as gyroscopic destabilization (see [39] and references therein), and, generally,
within the emerging chaotic regions in the phase space.
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J = 20~

J = 50~

J = 100~

Figure 4: Quantum evolution of the canonical angle λ conjugate to the classical action
J of the spherical top. Each row corresponds to one fixed classical target value of J~−1

(respectively 20, 50 and 100); left column presents Husimi distribution of |β; t〉 as
function of λ and time; right column shows three constant successive λ = π (mod 2π)
sections of this distribution (first three successive returns).
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It is possible and important to uncover more fully the relation of Schwinger-like
coherent states to the parallel classical construction for the 2 and 4-mode isotropic os-
cillator systems and their derivatives. Specifically, reducing the 1:1 resonance symme-
try S1, we come to the reduced Euler top described using the standard Bloch coherent
states. In higher dimension, reduction of the 1:1:1:1 resonance symmetry, together
with an additional S1 symmetry, which is a classical analogue of the requirement for
the eigenvalues λ of Λ̂ in (19a) to be equal 0, results in the description of the regularized
Keplerian systems, most notably, the hydrogen atom and its perturbations [25], within
the framework of the Kustanheimo-Stiefel approach. So coherent states, similar to the
ones in sec. 3, but with unrestricted values of j, which becomes the principal (shell)
quantum number n, can be used to analyze quantum-classical correspondence for these
systems, and more generally—for systems on the phase space S2×S2, including bifur-
cations, integer and fractional monodromy, adiabatic invariants, and much more. In
this context, it is interesting to relate our states to the SO(4) coherent states on S3 [40,
chapt. 9]. Further generalizations to non-zero λ or/and to resonances like 1:1:2:2 can
be used for similar studies of the vibrational dynamics of linear polyatomic molecules
such as C2H2, C2N2, and others.
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