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Abstract— The global warming has serious impact on our
climate. Due to this, the frequency and the intensity of forest
fires is increasing. It has shown serious challenges such as the
protection  of  resources,  human  and  wild  life,  health,  and
property.  This  study  focuses  on  developing  an  artificial
intelligence assistive innovative solution for active fire detection
in  the  context  of  smart  cities  and  vicinities.  This  paper
addresses  spectral  analysis,  detection  and  classification  of
active fires  and seeing the invisible  through smoke and thin
clouds. The appealing applications are in urban surveillance,
smart cities,  future industries,  forests  and earth observation.
The idea is realizable by using an intelligent hybridization of
machine/deep learning models and using multi-sensor images
(aerial, satellite). For this purpose, we use hyperspectral images
(Visible,  Near  Infra-red  (NIR)  and  Short-Wave  Infrared
(SWIR))  from  AVIRIS  aerial  and  Multi-Spectral  Sentinel-2
satellite  images.  AVIRIS  images  are  224  spectral  bands  of
wavelengths with a spatial resolution of 15 meters, which varies
from 366nm (nanometers)  up to 2500nm. However,  AVIRIS
image studied for their spectral richness of wavelengths not yet
completely  exploited  by  machine  and  deep  learning  and  in
SWIR to  detect  active  fires.  While,  Sentinel-2  image  has  13
spectral  bands  (Visible,  NIR  and  SWIR)  with  three  spatial
resolutions  (10,  20  and  60  meters).  First,  we  explain  and
describe  the  preparation  phase  of  hyperspectral  and
multispectral image databases of forest fires. These databases
contain hyperspectral and multispectral endmembers data of
different  sites  for  forest  fires.  Then,  we  conduct  a  spectral
analysis  from  these  endmembers  to  characterize  the
hyperspectral/multispectral  reflectance  of  active  fires  to
identify the distinct wavelengths for fire detection. We identify
the wavelengths that can be used for an effective identification
of fire and to see through fires smoke and thin clouds. Onward,
the selected  feature set  is  processed by robust  machine/deep
learning  algorithms  and  their  performance  is  compared  for
automated  identification  of  fire  and  invisible  vision
amelioration.  The  proposed  machine/deep  learning  method
secured an overall test accuracy of 99.1%.

Keywords—  Deep  learning;  Machine  learning;
Classification; Semantic segmentation; Hyperspectral and Multi-
spectral  image;  Active  fire  detection;  Spectral  analysis;  Earth
observation; Smart urban surveillance

I. INTRODUCTION

In our days, forest fires have been increasing dramatically
in fire intensity and frequency in many countries in Europe
and  Canada.  Hyperspectral  remote  sensing  systems  were
used to detect, identify and characterize forest fires [1, 2].
Hyperspectral  systems  collect  spectral  information  of
wavelengths  where  the  wavelengths  vary  in  spectral
range from Visible (400-750 nm) to  Near Infra-Red (NIR,

750-1100 nm) and Short-Wave Infra-Red (SWIR, 1100-2500
nm)  [2,  3,  4,  5,  6,  7].  Despite  being  an  expensive  and
complex system, hyperspectral system is robust to detect and
identify  fires  [8,  9].  Indeed,  it  has  been  shown  that
NIR/SWIR  hyperspectral  systems  between  1400nm  and
2500nm are promising to identify forest fires based on fire
index [8] because the spectral reflectance of active fires have
distinct features in this range [6, 7, 8, 9].

Recently,  machine  learning  methods,  such  as  Support
Vector  Machine  (SVM)  [7],  Artificial  Neural  Network
(ANN) [10],  and  Random Forests  [11,  12 ]  were  used to
classify images (hyper-spectral [9], multispectral [10, 13, 14]
and RGB) in order to detect and classify fires. In [7], authors
used  hyperspectral  images  from  Hyperspectral  PRISMA
Italian  satellite  for  fire  identification  in  Australia  forests.
They  explored  classification  technique  based  on  SVM
combined with visual  interpretation of PRISMA image for
validation as ground truth.

Compared  to  machine  learning  models,  deep  learning
models based upon convolutional neural networks (CNN) are
proposed to classify fires in [9, 11, 15, 16]. For example, 1-
Dimensional  Convolution  Neural  Network  (1D-CNN)
architectures  were  developed,  trained  on  hyperspectral
PRISMA images to classify wildfires [8, 9]. In [13], authors
proposed a  Fire-Net  deep  learning  framework.  Fire-Net  is
trained  on  Landsat-8  multispectral  satellite  images  for  the
classification of active fires and burned areas. Specifically,
three optical spectral bands (Red, Green and Blue) are fused
with thermal spectral bands of Landsat-8 images for a more
effective detection of active fires.

The main contributions of  this paper are the following
points:  (1)  Discussing the advantages of hyperspectral  and
multispectral  images  over  spectral  analysis  of
Visible/NIR/SWIR  spectral  bands  for  hyperspectral  active
fire  detection;  (2)  Presenting  the  potential  of  machine
learning  models  (KNN,  SVM,  ANN)  and  deep  learning
models  based  on  1-Dimensional  Convolution  Neural
Network to detect and classify active fires. Then the results
will  be  compared  and  discussed.  (3)  Discussing  the
possibility  and  the  benefit  to  integrate  the  hyperspectral
imaging  embedded systems (as  similar  as  to  AVIRIS and
PRISMA) coupled with machine and deep learning models
can  open  new  research  opportunities  for  fire  detection  in
application security of urban surveillance, smart cities, and
industrial plants. 

The rest of the paper is structured as follows. Section II
addresses the description of the study areas, the benchmark
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datasets  of  AVIRIS  hyperspectral  and  Sentinel-2
multispectral  image,  the  spectral  analysis  for  active  fire
detection. In Section III, we will apply a supervised machine
and  1D-CNN  deep  learning  models  for  active  fire
classification.  While  in  Section  IV,  the  results  of  the
proposed  models  are  presented  with  a  critical  discussion.
Conclusions are given in Section V.

II. STUDY AREAS, BENCHMARK  DATASETS AND

SPECTRAL ANALYSIS FOR ACTIVE FIRE DETECTION

A. Areas of Interest and Datasets for Active Fire Detection

The  first  datasets  utilized  in  this  paper  are  Airborne
Visible/Infrared  Imaging  Spectrometer  (AVIRIS)
hyperspectral images. AVIRIS is an instrument in the real-
time  of  Earth  Observation  and  Remote  Sensing.  AVIRIS
sensor delivers calibrated images of spectral radiance in 224
spectral  bands  with  wavelengths  from  366  to  2500
nanometers  and  a  spatial  resolution  of  15  meters.  A
hyperspectral image can be represented by a data-cube of two
spatial dimensions (rows and colons) and third dimension as
a spectral dimension for the number of spectral bands. The
Shortwave  Infra-red  (SWIR)  range  covering  wavelengths
from  1400  to  2500  nm,  can  include  significant  emitted
radiance  from  fire.  The  utility  of  hyperspectral  remote
sensing images are evaluated for active fire detection [8, 9],
and  in  particular,  NIR/SWIR remote  sensing  images.  We
used AVIRIS data for the study area of the 2019 California
wildfire season that  burned across the state of California in
US (Fig. 1). 

Fig. 1. a) RGB True color composite image from AVIRIS over
parts of Sheridan fire in the Prescott National Forest in Arizona,
USA on August 21, 2019. This composite used the spectral bands:
647 nm (Red), 550 nm (Green) and 472 nm (Blue); b) color-infrared
(CIR) image by dividing the spectral range into three bands : 859nm
near infrared (NIR), 647 nm Red, and 550 nm Green bands; c) and
d) False color composite inputting active fires monitoring in NIR
and SWIR at : 2176 nm (red), 1561nm (green) and 956 nm (blue)) 

All AVIRIS images are available free on  AVIRIS Data
Portal1.  For  AVIRIS hyperspectral  dataset  preparation and
the  purpose  of  the  accurate  evaluation  of  the  detection
performance of metrics, we discriminate between active fire
pixels and non-fire pixels (smoke, burned area, vegetation,
bare soil, and water). To do this discrimination, we select
manually pixels with endmembers where each endmember is
given by the mean value of spectral reflectance associated
with each image patch of size (3×3×224) pixels. The mean
value is calculated over all its 9 (3×3) pixels and converted
into a vector data of size 1x224 (number of AVIRIS bands).
These endmembers are the ground truth that used to train/test
the  supervised  machine  and  deep  learning  models  for  the
classification  task  in  Section  III.  This  step  of  manual
selection and classification is needed to determine the ground
truth  pixels  for  the  implementation  of  automatic
classification based on machine and deep learning. We select
these image patches of 9 pixels by exploring the false color
composite  (Fig.  1c  and  1d)  and  looking  at  the  AVIRIS
hyperspectral  reflectance,  which  was  comparable  with  the
corresponding classes in [6, 7, 8, 9]. Specifically, Non-Fires
class contains  five  subclasses:  smoke,  burned  areas,
vegetation, bare soil and water. To prepare the ground truth
of  training  datasets,  we  selected  528  endmembers,  which

represent  pixels  of  two  classes:  one  for  active  fires/Fires
class and  the  other  for  Non-Fires  class.  These  528
endmembers  are  divided  into  the  following  number  of
labeled endmembers: 270 endmembers for active fires, 114
endmembers representing smoke, 18 endmembers for burned
areas, 27 endmembers for the bare soil class, 63 endmembers
for vegetation, and 36 endmembers for water. We grouped
the endmembers of smoke, bare soil, vegetation, burned areas
and water into Non-Fires class. Finally,  for learning phase,
training/validation datasets have 270 endmembers of active
fires  for  Fires  class and  258  endmembers  for  Non-Fires
class of training data (See Table I). Of the ground truth, we
considered  a  five-fold  cross-validation  for  the
training/validation  datasets.  Then,  we  selected  106
endmembers for test datasets which are completely different
of training/validation datasets. Test datasets are divided into
the  following  number  of  labeled  endmembers:  65
endmembers  for  active  fires,  8  endmembers  representing
smoke, 13 endmembers for burned areas, 3 endmembers for
the  bare  soil,  6  endmembers  for  vegetation,  and  11
endmembers  for  water.  As  similar  to  training  data,  test
datasets have 65 endmembers of active fires for  Fires class
and  41  endmembers  for  Non-Fires  class for  prediction
phase.

The second datasets utilized in this paper are Sentinel-2
multispectral  satellite  image  for  Canada  and  Greece’s
multiple wildfire in July 2023. Multispectral Imager (MSI) of
Sentinel-2  satellite  delivers  13  spectral  bands  with  three
spatial resolution (10, 20 and 60 meters) [14, 15, 17]. These
13 spectral bands range from the Visible (VNIR) and Near
Infra-Red (NIR) to the Short Wave Infra-Red (SWIR). Four
spectral bands (Blue (B2), Green (B3), Red (B4), and Near-
Infrared (B8)) have a 10-meter spatial resolution and these
bands are centered at the following central wavelengths (in
nanometers) respectively: 490 nm, 560 nm, 665 nm, 842 nm.
Next, six spectral bands in VNIR and SWIR spectral rang are
given as follows: red edge (B5, 705nm), near-infrared NIR
(B6, 740 nm; B7, 783 nm; and B8A, 865 nm), and short-
wave infrared SWIR (B11,  1610 nm; and B12,  2190 nm)
which have a 20-meter spatial resolution. Finally, the coastal
aerosol (B1, 443 nm), water vapour band (B9, 940 nm), and
cirrus (B10, 1375 nm) spectral bands have a 60-meter spatial
resolution. Where for the correction of atmospheric effects
(e.g., aerosols, cirrus or water vapor), three bands B01, B09
and  B10  are  used.  The  remaining  ten  spectral  bands  are
primarily  intended  to  land  use  and  land  cover
applications. All  Sentinel-2  images  are  available  free  on
Copernicus Open Access Hub2. For the purpose of active fire
detection,  we  use  Sentinel-2  level-2A  images  that  are
atmospherically corrected surface reflectance in cartographic
geometry. At  this  level,  these  ten  spectral  bands,  which
explored in this study, are B2, B3, B4, B5, B6, B7, B8, B8A,
B11 and B12 with spatial resolution of 20-meter where four
bands B2, B3, B4 and B8A are resampled to 20-meter spatial
resolution. For the selected area of interest, we obtained the
corresponding  Sentinel-2  level2A  images  at  the  start  day
or/and 5 days after of the set fire providing  reference data
for active fires class, several days before providing  ground
truth for vegetation (of selected area of interest) as non-fires
class,  and  after the set fire start date for burned areas as
non-fires class. As similar to AVIRIS visual interpretation in
Fig. 1, false-color images of the SWIR (bands B11 and B12)
and NIR (band B8A)  are so useful for visual fire detection

1JPL | nasa.gov: https://aviris.jpl.nasa.gov/dataportal/
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(Fig.  2).  Similar  to  AVIRIS  datasets,  for  Sentinel-2
multispectral  datasets  preparation,  Sentinel-2  images  are
resampled and converted into image patches. Each image is
divided into a grid of image patches of size 3×3 pixels. Since,
ten VNIR/SWIR spectral bands are considered and the total
number of image patches of size (3×3×10) pixels are 1652
manually selected. Then, we select endmembers divided into
372  Fires  and  384  Non-Fires  classes from  these  image
patches where each endmember of 9 pixels is calculated by
the  mean  multispectral  reflectance  associated  with  each
image  patch  of  size  (3×3×10)  pixels.  The  mean  value  is
calculated over all its 9 (3×3) pixels leading to a vector data
of size 1x10 (number of  VNIR/SWIR bands of Sentinel-2
images). With supervised machine and deep learning models,
we divide the datasets into two parts of endmembers: (1) 288
Fires  and  284  Non-Fires  classes for  training/validation
datasets,  and  (2)  the  rest  for  test  datasets.  The  Sentinel-2
multispectral reflectance corresponding to six classes: active
fire,  smoke,  burned areas,  vegetation,  bare soil  and water
are presented in Fig. 2c.

Fig. 2. a) True color composite image from the Sentinel-2 over
wildfires burning on the Greek island of Rhodes on July 23, 2023.
The RGB composite used the bands centered at 665 nm (B4, Red),
560  nm  (B3,  Green)  and  490  nm  (B2,  Blue);  b)  False  color
composite inputting active fires monitoring in NIR and SWIR at
wavelengths  2190  nm  (band  B12)  (red),  1610  nm  (band  B11)
(green)  and  865  nm  (band  B8A).  (c)  Sentinel-2  Multi-Spectral
Reflectance  corresponding  to  six  classes:  active  fire,  bare  soil,
burned areas, smoke, vegetation, and water.

B. Spectral Analysis of Hyperspectral and Multispectral 
Datacubes for Active Fire Detection

In  this  subsection,  we  perform  a  spectral  analysis  of
endmembers  to  characterize the  hyperspectral/multispectral
reflectance  of  active  fire.  Based  on  the  training  and  test
datasets, endmembers were selected by examining the false
color  composite  (Figs.  1c  and  1d)  and  considering  the
AVIRIS hyperspectral reflectance (see Fig. 3 and Fig. 4). We
found  spectral  discrimination  features  with  specific
hyperspectral/multispectral  bands  in  these  NIR/SWIR
wavelengths:  from  1950nm  to  2450nm;  from  1511nm  to
1800nm;  from  1166nm  to  1332nm;  and  from  966nm  to
1100nm;  with  very  good  discrimination  features  to  see
through  smoke  and  detect  active  fires  in  real-time
applications.  This  spectral  analysis  shows that  the spectral
reflectance of fires obtained is similar to that in [7, 8, 9, 10]
using PRISMA hyperspectral  images.  For the detection of
active  fire  using  hyperspectral  images  in  industrial
environments,  we need a NIR/SWIR hyperspectral  camera
with spectral range from 1100 nm to 2500 nm. For smoke
detection  in  the  VNIR  range,  smoke  can  be  quite  easily
detected by considering the Visible-NIR bands/wavelengths
reported in Fig. 2c and Fig. 3.

Fig. 3. AVIRIS hyperspectral reflectance corresponding to six
classes:  active  fire,  bare  soil,  burned  areas,  smoke,  vegetation,
and water. Red bracket  number 0  and yellow bracket  number 1
indicate  the  overlapping  bands  of  VNIR-SWIR;  Black  brackets
number 2 and 3 indicate atmospheric attenuation by water vapor,
which can occur  at  1400 nm and 1900 nm respectively;  bracket
number 4 indicates the CO2 absorption bands around 2000 nm.

Fig. 4. AVIRIS reflectance for  Fire class endmember against
the background (Non-Fire classes) showing CO2 absorption bands
around 2000 nm and 2010 nm (λn), and around 2050 nm and 2060
nm (λn).  The  locations  of  the  wavelengths  corresponding  to  the
“peaks  features”  of  active  fires  are  indicated  as  λ1 (absorption
features to the left of λn) and λ2 (absorption features to the right of
λn), respectively.

III. MACHINE LEARNING (ML) AND CNN DEEP

LEARNING (DL) MODELS FOR ACTIVE FIRE DETECTION 

In this section, we will apply a supervised machine and
deep  learning  models  to  classify  active  fires  using
hyperspectral  and  multispectral  images.  For  this  end,  we
propose  to  apply  three  well-known  supervised  machine
learning models (K-Nearest Neighbor classification (KNN),
Support  Vector  Machines  (SVM)  and  Artificial  Neural
Networks (ANN)) and convolutional deep learning models to
classify  the  endmembers  of  the  training  datasets  for  the
learning phase, and the test datasets for the prediction phase,
which  are  described  in  Section  II.A.  We  describe  the
proposed supervised machine and deep learning models for
active fires detection. For the learning phase in this work, the
stopping condition as 30-epochs is defined for all  models.
The test datasets were used to evaluate the trained models
where  metrics  were  calculated  in  the  prediction  phase.
Finally, we test four trained models with real hyperspectral
images to detect active fires.

2 Copernicus Open Access Hub:   https://scihub.copernicus.eu/dhus/#/home  
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A. Machine Learning Models (ML)

Based  on  the  training  and  test  datasets,  imbalanced
classification and weakly supervised learning are challenges
for  predictive  classification  because  most  supervised
machine  learning models  used for  classification task  were
designed  around  the  assumption  of  an  equal  number  of
samples for each class. To take into account these limitations,
we have selected three supervised machine-learning models:
KNN,  SVM and ANN.  For  each  model,  there  are  hyper-
parameters to be optimized to determine the best fine-tuning
of the classification model by using the training endmembers
in  the learning phase and then to evaluate its performance
with the test endmembers  in the prediction phase. To fine-
tune the hyper-parameters of the classification model with
challenges  of  imbalance  class  and  weakly  supervised
learning,  Hyper-Parameter  (HP)  optimization  methods,
Bayesian  and  Random  research,  offer  possibilities  to
automatically  select  a  classification  model  with  optimized
fine-tuning hyper-parameters.

For the issue of fire classification, we therefore propose
to  apply the  main  three  following phases:  (1)  in  the  first
phase, PCA dimensionality reduction by feature extraction is
applied on the training datasets; (2) in the learning phase,
serval models of supervised machine learning as KNN, SVM
and  ANN  classification  models  are  applied  with  HP
optimization  methods  of  fine-tuning  hyper-parameters  to
determine the best validation accuracy as in [3].  Five-fold
cross-validation is considered to protect the trained models
against  overfitting.  This  scheme  partitions  the  training
datasets into five disjoints fold. Each fold is used once as a
validation-fold and the others form a set  of  training-folds.
That  allows  calculating  the  size  of  validation  by  the  20
percent of the training datasets (Table I).

TABLE I. AVIRIS DATASETS FOR ACTIVE FIRE DETECTION 

Endmembers
extracted from
AVIRIS images

Number of Endmembers
for Two classes

Total number of
endmembers for

Fires Non-Fires

Training endmembers 270 258
528 (83.3 % of Total

endmembers)
Validation

endmembers (five-fold
cross-validation)

54 (20 % of
training)

52 (20 % of
training)

106 (16.7 % of Total
endmembers)

Test endmembers 65 41
106 (16.7 % of

Totalendmembers)

Total endmembers 335 299 634 (100%)

For  each  validation-fold,  the  classification  model  is
trained  using  the  training-folds  and  the  validation
classification accuracy is assessed using the validation-fold.
The average validation accuracy is then calculated over all
the folds and is used to optimize the fine-tuning parameters
of  the  classification  model.  These  hyper-parameters  are
determined  by  an  automatic  hyper-parameter  optimization
using  two  optimization  methods:  Bayesian  and  random
research.  The  final  validation  accuracy  have  a  high
estimation  of  the  predictive  accuracy  of  the  classification
model. (3) In the prediction phase, we test the trained models
obtained during the learning phase to the test endmembers to
determine  the  overall  test  accuracy  of  the  trained
classification model.  Here, the test  datasets are completely
different of the training datasets. Based on these three phases,
Table II presents the top ten-classification models that  we
tested  with  different  dimensions  of  the  feature  subspace
obtained  by  PCA  (128,  96,  and  64)  and  with  two  HP
optimization methods. The first column of this Table II gives

the name of the tested classification model, the second one
indicates the dimension of the features subspace and the third
column gives the name of the used HP optimization method.
The goal of optimization method is to find a combination of
HP values  that  minimizes  an  objective  function,  here  the
classification  error  rate.  To  find  this  combination,  the
iteration  number  of  the  used  method  is  fixed  to  30.  The
fourth column of Table II describes the determined optimized
hyper-parameters. This column is divided into several cells
whose number depends on the classification model. For each
tested classification model, the validation accuracy computed
with  the  training  datasets  and  the  test  accuracy  computed
with the test datasets appear in the fifth and sixth columns,
respectively.  Accuracy  is  given  as  the  percentage  of
endmembers (training or test) that are correctly classified.

B. CNN Deep Learning Model 

In  this  subsection,  we  propose  a
lightweight Convolutional  Neural  Network  (CNN)  for
classification of active fire in hyper/multispectral images that
improves the  performance of  fire  detection.  The proposed
deep learning model based on a 1-Dimensional Convolution
Neural  Network  (called 1D-CNN) presented in  Fig.  6  and
trained on AVIRIS hyperspectral images to classify  active
fires.  The  1D-CNN model  includes  three  convolutional
layers, 2 Fully Connected (FC) layers, and one max-pooling
(Max-Pooling) layer.  At the end of  the  1D-CNN model,  a
softmax activation  function  is  applied.  This  classification
model is inspired by the one described in [8, 9]. The input of
1D-CNN model is the endmember (obtained in Section II.A)
comprising  the  Visible/NIR/SWIR  spectral  bands  of
AVIRIS. The input layer of the 1D-CNN model is the 1x224
input features during the training/learning phase. Thus, it is
a vector data of size  1xC where (C1=224 is the number of
spectral bands for AVIRIS, and C2=10 for Sentinel-2). The
first  layer  is  one  Dimensional  (1D)  convolutional  layer
(Conv1) with kernel size equal to 1, number of filters equal
to  n1=224,  same  padding  with  "PaddingValue"  equal  to
"replicate", leakyReluLayer(value=0.1) activation  function.
The second layer  is  1D convolutional  layer  (Conv2)  with
kernel  size equal to  3,  number of  filters equal  to  n2=128,
same  padding  with  "PaddingValue"  equal  to  "replicate",
leakyReluLayer(value=0.1) activation  function.  After  these
two  1D  convolutional  layers,  a  Max-pooling  layer is
connected  to  the  Conv2  output  with  these  parameters:
pooling size of 2 and stride of 2 (with respect Fig. 6, note that
n3=n2=128).The output of Max-pooling layer is passed to the
third layer  of  1D convolutional  layer  (Conv3)  with kernel
size  equal  to  3,  number  of  filters  equal  to  n2=64,  same
padding  with  "PaddingValue"  equal  to  "replicate",
ReluLayer  activation  function.  Then,  the  result  of  third
convolutional layer (Conv3) is passed and conncected to the
first  fully  connected  layer  (FC1)  of  32  unites  with
leakyReluLayer(value=0.1) activation  function.  The  last
layer is fully connected layer (FC2) of 2 unites and softmax
activation function to  classify the output into classes.  The
1D-CNN  model  is  trained  on  single  GPU  using  Adam
optimizer.  The objective function of the 1D-CNN model is
the  categorical  cross-entropy  loss  function of  the
classification output layer. All hyper-parameters are given in
Table II. Models (KNN, SVM, ANN, 1D-CNN) have been
implemented using MATLAB R2021a Machine Learning and
Deep Learning Toolbox. 
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IV. RESULTS AND DISCUSSION

In this section, we present the performance evaluation of
active  fire  detection  using  the  top  ten  machine  and  deep
learning models. Metrics as confusion matrix for test datasets
(Fig. 8) and the validation/test accuracy assessment are given
in Table II. The whole results for the proposed models are
summarized in Table II with the comparison of the different
results. Experimental results, given in Fig. 8, show the test
confusion  matrix  and  overall  test  accuracy  for  fire
classification with four models: (1) Model1-KNN, (2) Model
5-SVM, (3) Model 8-ANN Bi-layered Neural Network, (4)
Model 1D-CNN. an overall test accuracy on the test datasets
is 99.1% for three different models (Model1-KNN, Model8-
ANN,  Model  1D-CNN)  and  100%  for  the  Model5-SVM,
while  using  the  proposed  model  1D-CNN  achieves  high-
accuracy to  detect  active fires  on  real  AVIRIS images as
shown as in Fig. 9. Generally, these results are higher than

97.83% where 1D-CNN used in [8, 9] for validation datasets
from PRISMA hyperspectral images. 

Fig.  6.  Architecture  of  1D-CNN  model  for  active  fires
classification of AVIRIS images

TABLE II. PERFORMANCE EVALUATION OF ACTIVE FIRE DETECTION USING THE TOP TEN MACHINE AND DEEP LEARNING MODELS

AVIRIS Machine / Deep
Learning Models for Active

Fire Classification 

Value of
PCA 

Optimizer
Method 

Fine-tuning / Optimized Hyper-Parameters (HP)
Validation
accuracy

Test
accuracy

KNN - Number of
neighbors

Distance metric Distance weight Standardize data

Model 1-
KNN

PCA
disabled

Bayesian
optimization

258 Cosine Squared inverse false 99.4% 99.1%

Model 2-
PCA128-KNN

128 Random
search

7 Minkowski
(cubic)

inverse false 98.5% 99.1%

Model 3-
PCA96-KNN

96 Random
search

1 Euclidean Inverse false 98.5% 99.1%

Model 4-
PCA64 -KNN

64 Random
search

2 Correlation Equal true 98.3% 82.1%

SVM
(Kernel
scale: 1)

- Multi-class
method

Box 
constraint level

Kernel 
function

Standardize data

Model 5- SVM PCA
disabled

Bayesian
optimization

One-vs- All 26.867 Linear true 99.8% 100.0%

Model 6-
PCA128-SVM

128 Bayesian
optimization

One-vs-All 980.8977 Linear false 95.8% 93.3%

Model 7-
PCA96-SVM

96 Bayesian
optimization

One-vs-All 0.0010009 Quadratic true 97.5% 83.0%

Artificial
Neural

Network
ANN

Model 8-ANN
Bi-layered

Neural Network

PCA
disabled

Bayesian
optimization

Number of
FC layers: 2

Activation:
Relu

Regularization
strength

(Lambda):
5.0497e-08

Standardize
data: yes 

98.7% 99.1%

First layer
size: 10

Second layer
size: 10

Third layer size:
0

Iteration limit:
1000

Model 9-
PCA128-ANN

Tri-layered
Neural Network

128 Random
search

Number of
FC layers: 3

Activation:
ReLU

Regularization
strength

(Lambda):  0

Standardize
data: yes

90.9% 83.6%

First layer
size: 10

Second layer
size: 10

Third layer size:
10

Iteration limit:
1000

1D-CNN Model 10-
1D-CNN

PCA
disabled

Adam
Optimizer

Number of
FC layers: 2;
Convolution
layers: three

Number of
Max-Pooling

layer : one

Activation:
LeakyRelu/

ReLU; Softmax
for output layer

Regularization
strength

(l2norm): 
1.0e-4

99.4% 99.1%

First layer
size: 32

Second layer
size: 2

Mini Batch
Size: 12

Learning Rate:
3e-4

The segmentation map obtained by the prediction phase
of the four proposed model are reported in Fig. 9 for the area
of interest over parts of Sheridan fire in the Prescott National
Forest in Arizona, USA on August 21, 2019. We found that
Model  5-SVM  and  Model  8-ANN  model  returned  false
alarms  of  active  fires  detection  when  we  tested  on  real
AVIRIS images,  while  Model  1D-CNN and  Model1-KNN
give best performance for test and real AVIRIS images. 

The results of this paper demonstrates the potentialities of
hyperspectral data for active fire detection. The availability
of  hyperspectral  reflectance  allows  analyzing  the
hyperspectral information in order to detect and identify fires
in smart cities and urban environment. The possibility to use

a VNIR/SWIR hyperspectral camera embedded on drone [18,
19]  or  robot  for  smart  surveillance  of  fires  in  urban  and
industrial environments is one of the bigger advantages of
hyperspectral  images  when  we  talking  about  active  fire
detection in early-warning, real-time smart surveillance and
to  be  considered  for  future  mission  dedicated  for  climate
changes and environmental analysis of smart cities.
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Fig. 8. Test confusion matrix
and overall test accuracy for fire classification with: (1) Model1-
KNN,  (2)  Model  5-SVM,  (3)  Model  8-ANN  Bi-layered  Neural
Network, (4) Model 1D-CNN   

Fig.  9.  Segmentation  map results  (fires  in  yellow color):  (a)
RGB AVIRIS aerial, and (b) False-colored images, and the results
of  the  classification  prediction  from  four  proposed  models:  (c)
Model1-KNN, (d) Model 5-SVM, (e) Model 8-ANN, and (f) Model
1D-CNN

V. CONCLUSION 

For active fire detection, this paper has shown the interest
of spectral analysis and machine /deep learning coupled with
VNIR/SWIR  hyperspectral  and  multispectral  images.  The
results of the proposed models demonstrate that VNIR/SWIR
hyperspectral/multispectral images allows to perform many
different  analysis  in  order  to  classify  active  fires  and  see
through  smoke  by  looking  at  different  spectral  bands  in
NIR/SWIR spectral range. Then, an automatic classification
of active fire  using supervised machine and deep learning
models based on a one-dimensional convolutional layers has
been performed.  This paper showed also that machine and
deep  learning  models  coupled  with  VNIR/SWIR
hyperspectral/multispectral  images  embedded  on  an
industrial robot or Unmanned Drone is a promising solution
to identify and detect active fires in application security of
urban surveillance, smart cities, and industrial environments.
In  future  applications,  robot  and  drone’s  VNIR/SWIR
camera  embedded  may  be  enable  us  to  easily  identify
hotspots of active fires.
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