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Abstract The problem of shifted linear systems is an important and challenging issue in a number of research
applications. Krylov subspace methods are effective techniques for different kinds of this problem due to their
advantages in large and sparse matrix problems. In this paper, two new block projection methods based on
respectively block FOM and block GMRES are introduced for solving sequences of shifted linear systems.
We first express the original problem explicitly by a sequence of Sylvester matrix equations whose coefficient
matrices are obtained from the shifted linear systems. Then, we show the restarted shifted block FOM (rsh-
BFOM) method and derive some of its properties. We also present a framework for the restarted shifted block
GMRES (rsh-BGMRES) method. In this regard, we describe two variants of rsh-BGMRES, including: 1) rsh-
BGMRES with an unshifted base system that applies a fixed unshifted base system and 2) rsh-BGMRES with a
variable shifted base system in which the base block system can change after restart. Furthermore, we consider
the use of deflation techniques for improving the performance of the rsh-BFOM and rsh-BGMRES methods.
Finally, some numerical experiments are conducted to demonstrate the effectiveness of the proposed methods.

Keywords Block Arnoldi process · Block Krylov subspace methods · Deflation · Sequences of shifted linear
systems
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1 Introduction

In this work, we consider the solution of sequences of shifted linear systems that have the form

(A−σ
(i)
j In)x(i)j = b(i), for i = 1, . . . ,s, and j = 1, . . . ,k, (1)

where A∈Cn×n, x(i)j , b(i) ∈Cn, σ
(i)
j ∈C and In is the identity matrix of size n. The coefficient matrices A−σ

(i)
j In

are assumed to be nonsingular for all σ
(i)
j .

The solution of linear systems having the form (1) is of great importance in a variety of practical applications
and scientific fields. Shifted linear systems are encountered in several contexts such as control theory [7,12,29],
quantum chromodynamics problems [3,5,14,35,39], time-dependent partial differential equations [17,18,30,
52], large-scale eigenvalue problems [24,25] and other engineering problems [13,38,44,45,50,54].
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It is clear that direct methods based on the LU decomposition are not recommended for the solution of (1)
since the LU decomposition must be recalculated for each shift σ

(i)
j . In addition, in many practical situations,

the matrix A is not explicitly available.
Usually, the coefficient matrices appearing in shifted linear systems are large and sparse, so it makes sense

to use projection methods on Krylov subspaces. Thus, one of the simplest ideas for solving the ks shifted linear
systems appearing in (1) is to apply some classical Krylov method separately to each system [2]. Recall that
block Krylov methods are matrix free and are very attractive for solving general linear systems that have several
right-hand sides but share the same coefficient matrix and which have the form

AX = B, (2)

where X = [x(1), . . . ,x(s)] and B= [b(1), . . . ,b(s)]. Compared to Krylov methods for solving a single linear system,
projection methods on block Krylov subspaces have important advantages. Indeed, the block search space allows
the simultaneous computation of matrix-vector products and is much larger and contains more information
than the single space. Recently, exploiting the important and well-known shift-invariance property, various and
numerous Krylov subspace methods for shifted linear systems were proposed. For example, shifted versions
based on the Lanczos process are described in [10,14,15,44,50,51]. Shifted methods based on the Arnoldi
process can be found in [13,16,27,41,48] and the references therein. More recently, restarted methods that
use the Hessenberg process were introduced in [22,23]. Shifted algorithms, combined with preconditioning,
deflation and augmentation techniques, were described in [1,2,30,38,47,54], [5,6,55] and [21,48] respectively.

Denoting by Σ j the s×s diagonal matrix whose entries are σ
(1)
j ,σ

(2)
j , . . . ,σ

(s)
j and letting L j be the Sylvester

operator defined as in [11,40] by
L j(X) = AX−X Σ j,

then the family of systems in (1) can be written as

L j(X j) = AX j−X j Σ j = B, for j = 1, . . . ,k, (3)

where X j = [x(1)j ,x(2)j , . . . ,x(s)j ]. Similarly, noting that each equation involved in (1) is a matrix Sylvester equation,
we see that it is also possible to apply a specific method, such as those developed in [11,26,37] and the references
therein. However, and as said before, it is preferable to exploit the shift-invariance property [8,36]. Indeed, if the
initial vectors are collinear, then the Krylov subspaces with respect to the matrices A and the Sylvester operator
L j are equal for all j ∈ {1, . . . ,k}. The shift-invariance property makes it possible to achieve computational
savings by generating only the basis for a well-chosen Krylov subspace. Thus, this computed basis will not
only be used to determine the approximate solution of the selected system but will also be reused to determine
cheaply the solutions of all other systems.

In the present paper, we focus on block Arnoldi based methods and describe two methods for solving fam-
ilies of shifted linear systems of the form (1). The first of these methods is the restarted shifted block FOM
method. It can be seen as a generalization to the block case of the restarted shifted FOM method introduced
by Simoncini in [41]. We also describe two variants of a block generalization of the restarted shifted GMRES
which was described by Frommer and Glässner in [16]. In the first of these variants, we make use of a fixed
unshifted base system, while in the second variant a shifted system -which could varies at each restart- is used.
We inform the reader that other generalizations of the shifted FOM and GMRES algorithms to the block case
exist. However, the generalization described here is based on a block shift of the matrix A with a diagonal matrix
as indicated in (3). Our generalization differs from those proposed in [46,49,54,53] because the formulation of
the methods mentioned in the last references is based on a scalar shift of the matrix A.

For reasons of memory requirements and to limit the increasing cost of storage, the shifted block FOM and
GMRES methods are implemented with a restarting strategy. Unfortunately, this often leads to a significant in-
crease in the number of matrix-vector products and this is particularly true for matrices with small eigenvalues.
Indeed, it has been established that the distribution of eigenvalues of the coefficient matrices influences the con-
vergence of Krylov subspace methods [32,34]. For this reason, deflation techniques, which reduce the influence
of small eigenvalues, have been incorporated into Krylov projection methods. We recall that in recent years,
many methods based on the deflation technique have been proposed [5,6,19,21,31,32,34,49,53,54,55].

The structure of the paper is as follows. In Section 2, results on the shift-invariance property of block
Krylov subspaces are recalled. Also, the derivation of the Block Full Orthogonalisation (BFOM) and the Block
Generalized Minimal Residual (BGMRES) are briefly summarized. Section 3 is devoted to the description of
restarted shifted block FOM method (rsh-BFOM) and its modification that include the deflation technique at the
restart (rsh-BFOM-D). The restarted shifted block GMRES (rsh-BGMRES) algorithm and its deflated variant
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(rsh-BGMRES-D) are described in Section 4. The behaviour of the described methods is illustrated by some
numerical comparisons in Section 5. Finally, we draw a conclusion in Section 6.

2 Preliminaries

We begin this section with a brief review and background on block Krylov subspace methods.

2.1 Block Krylov subspace

Given A ∈ Cn×n and G ∈ Cn×s, the m-th block Krylov subspace generated with the pair (A,G) and denoted by
Km(A,G) is defined as

Km(A,G) = block span{G,AG, . . . ,Am−1 G}.

We note that W ∈ Cn×s belongs to Km(A,G) if and only if there exists Ωi ∈ Cs×s such that W = ∑
m−1
i=0 Ai GΩi.

Using the ◦ notation [28,43], we also have

Km(A,G) = {P(A)◦G, P ∈ Pm−1,s} ,

where Pm−1,s is the set of s× s matrix-valued polynomials of degree m− 1 and P = (Ωi) ∈ Pm,s means that
P(t) = ∑

m
i=0 t i Ωi. Using the linear operator L j, we introduce the block subspace K(L j,G) spanned by the

blocks G, L j(G), . . . , L
(m−1)
j (G), i.e.,

Km(L j,G) = block span
{

G,L j(G), . . . ,L
(m−1)
j (G)

}
,

where L
(0)
j (G) = G and L

(i)
j (G) = L j(L

(i−1)
j (G)) [11,36,40].

We note that the shift-invariance property -of classical Krylov subspaces [8]- extend naturally to the block
setting. More precisely, the following lemma given in [11,40] shows that the block Krylov subspaces con-
structed with the matrix A and with the operator L j are identical.

Lemma 1 [40] For all j ∈ {1, . . . , j} and for all m > 0 we have

Km(A,G) =Km(L j,G).

Before moving to the description of the block Arnoldi process, we note that the previous property plays a key
role in the generalization to the block case of shifted Arnoldi based algorithms for solving sequences of shifted
linear systems. Thus, if equations (2) and (3) need to be solved simultaneously, the previous lemma shows that it
is not necessary to build two different bases to generate each of the two block spaces Km(A,B) and Km(L j,B).

2.2 The block Arnoldi process

The generation of a block Krylov subspace associated to A and G can be carried out by means of the block
Arnoldi process described by Algorithm 1 and which constructs an orthonormal basis {V1,V2, . . . ,Vm}.

Algorithm 1 The block Arnoldi process.
Input: A ∈ Cn×n, G ∈ Cn×s, m ∈ N.
1: Compute the reduced QR decomposition of G, i.e., G =V1 H1,0;
2: for j = 1, . . . ,m do
3: W = AVj;
4: for i = 1, . . . , j do
5: Hi, j =V H

i W ,
6: W =W −Vi Hi, j;
7: end for
8: Compute the QR decomposition of W , i.e., W =Vj+1 H j+1, j;
9: end for



4 Lakhdar. Elbouyahyaoui et al.

Assuming that all the s× s triangular sub-matrices H j+1, j are not rank deficient, then m steps of the block
Arnoldi process can carried out. In this case, the following recursions hold

AVm = Vm+1 H̃m (4)

= VmHm +Vm+1 Hm+1,m E(m)
m

T
, (5)

where Vm = [V1,V2, . . . ,Vm] is a n×ms orthonormal matrix and H̃m = [Hi, j] is (m+1)s×ms upper block Hes-
senberg matrix and E(m)

m = [0s, . . . ,0s, Is]
T is the m-th block formed by the last s columns of the identity matrix

Ims.

Now, we recall some properties that will be used in the next sections and whose verification is straightfor-
ward.

Proposition 1 Suppose that m steps of Algorithm 1 are applied to the pair (A,B) without encountering any
breakdown, then the following properties hold for every j ∈ {1, . . . ,k} :

1. The columns of Vm form an orthonormal basis of Km(L j,V1).
2. For Y ∈ Cms×s, we have

L j (Vm Y ) = Vm+1 L j(Y ), (6)

where

L j(Y ) = H̃m Y −
[

Y
0

]
Σ j.

Proof The first item of Proposition 1 follows immediately thanks to the shift-invariance property. For the second
item (6), we have

L j(Vm Y ) = AVm Y −Vm Y Σ j

= Vm+1 H̃m Y −Vm Y Σ j

= Vm+1 H̃m Y −Vm+1

[
Y
0

]
Σ j

= Vm+1 L j(Y ).

2.3 Restarted block FOM and block GMRES methods

Here, we briefly describe the restarted BFOM and restarted BGMRES for solving multiple linear systems of the
form (2). Starting from X0 ∈ Cn×s an initial block guess and letting R0 = B−AX0 be the corresponding initial
block residual, we seek for approximate solutions under the form Xm =X0+Vm Ym, where Vm is the orthonormal
basis constructed by the block Arnoldi process applied to the pair (A,R0) and the correction Ym ∈ Cms×s is
obtained by imposing an orthogonality condition on the associated residual Rm = B−AXm. More precisely:

– imposing the Petrov-Galerkin condition Rm ⊥ Km(A,R0) defines the BFOM iterates. In this case, Ym is the
solution of the ms×ms block linear system

Hm Ym = E(m)
1 H1,0,

where E(m)
1 = [Is,0s, . . . ,0s]

T ∈ Cms×s is the first s-block of the identity matrix Ims.
– imposing the orthogonality condition Rm ⊥ AKm(A,R0) yields to the BGMRES iterates. In this case, Ym is

the solution of the (m+1)s×ms least-squares problem

min
Y∈Cms×s

‖E(m+1)
1 H1,0− H̃m Y‖F . (7)

Note that for each of the described methods, the computational and storage requirements grow with iterations.
Thus, in practice, these constraints limit the value of m and cause both methods to be implemented with a
restarting strategy. This assumes that if the obtained solution Xm is not sufficiently accurate, we restart the
method by considering X0 = Xm as a new starting guess. Next, we describe briefly the restarted BFOM and
BGMRES algorithms which are denoted by BFOM(m) and BGMRES(m) respectively.
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Algorithm 2 Restarted BFOM and BGMRES methods.
Input: A ∈ Cn×n, B = [b(1), . . . ,b(s)] ∈ Cn×s, m ∈ N; and a tolerance ε;
1: Choose X0 ∈ Cn×s; compute R0 = B−AX0;
2: Compute the reduced QR decomposition of R0, i.e., R0 =V1 H1,0;
3: Generate Vm+1, H̃m by Algorithm 1 applied to the pair (A,V1);

4: Solve

Hm Ym = E(m)
1 H1,0 (BFOM);

Ym = argmin
Y∈Cms×s

‖E(m+1)
1 H1,0− H̃m Y‖F (BGMRES)

5: Compute the approximate solution Xm = X0 +Vm Ym; Rm = B−AXm;
6: if ‖Rm‖F < ε then
7: stop;
8: else
9: update X0← Xm; R0← Rm; goto line 2;

10: end if

3 The restarted shifted block FOM method with deflation

This section focuses on deriving a block version for the restarted shifted FOM described in [41] in order to solve
the family of shifted linear systems (3). To retain the convergence rate of the restarted shifted BFOM method,
we incorporate a deflation technique that was initially proposed by Morgan in [34]. This procedure computes
-at each restart- the eigenvectors associated to the smallest eigenvalues and incorporate them in the projection
process to suppress the influence of the small eigenvalues.

3.1 The restarted shifted block FOM method

Let Vm and Hm be the orthonormal basis and the upper block Hessenberg matrix generated by the block Arnoldi
process applied to (A,B) respectively. For each j = 1, . . . ,k, starting in the first cycle from an initial guess
X ( j)

0 = 0n×s we seek for an approximate solution X ( j)
m such that

X ( j)
m = Vm Y ( j)

m .

Denoting by R( j)
m = B−L j(X

( j)
m ) the associated residual, then according to the Petrov-Galerkin condition R( j)

m ⊥
Km(A,B), the correction Y ( j)

m is obtained as the solution of the reduced shifted block system

Hm Y ( j)
m −Y ( j)

m Σ j = E(m)
1 H1,0.

Note that the previous equation can be seen as a particular Sylvester equation since Σ j is a diagonal matrix.
We also mention that, thanks to the shift-invariance property, we see that once a basis has been generated for
one of the block shifted linear systems (3), it could also be reused for all other block shifted linear systems.
So, the expensive cost required for constructing an orthonormal basis for each Krylov subspace Km(L j,R

( j)
0 ) is

reduced. Using (5) and (6), we can express the residual R( j)
m as follows

R( j)
m =−Vm+1 Hm+1,m E(m)

m
T

Y ( j)
m =−Vm+1 Hm+1,m (Y ( j)

m )m,

where (Y ( j)
m )m is the m-th s× s sub-matrix of Y ( j)

m . This shows that all residuals produced, at the m-th step by the
shifted BFOM are collinear with the (m+1)-th block Vm+1. These observations are summarized in the following
proposition.

Proposition 2 For each j = 1, . . . ,k, let X ( j)
m =Vm Y ( j)

m be an approximate solution to (3) where Vm is the block
orthonormal basis constructed by Algorithm 1 applied to the pair (A,B). Then the residuals R( j)

m are all collinear
with Vm+1. More precisely, there exists β

( j)
m =−Hm+1,m (Y ( j)

m )m ∈ Cs×s such that

R( j)
m =Vm+1 β

( j)
m .

Similarly to the shifted FOM [41], we note that the shifted BFOM can be restarted by taking any of the residuals
R( j)

m , j = 1, . . . ,k as a new initial block residual for constructing a new block Krylov subspace.
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At the end of the first cycle, we consider a new starting block V̄1 to build a new basis V̄m by taking V̄1 =Vm+1.
In this case, we have V̄1 = R( j)

m (β
( j)
m )−1, for j = 1, . . . ,k. This allows us to still apply the Petrov-Galerkin

condition with respect to the new block Krylov subspace. Hence, at the end of the cycle and for the j-th block
shifted system, the corresponding new approximate solution X̄ ( j)

m is updated by X̄ ( j)
m = X ( j)

m + V̄m Ȳ ( j)
m , for j =

1, . . . ,k, and where Ȳ ( j)
m is solution of the projected shifted block system

H̄m Ȳ ( j)
m − Ȳ ( j)

m Σ j = E(m)
1 β

( j)
m , for j = 1, . . . ,k. (8)

Similarly, from the previous description it is clear that, for each shifted block system we again have

R̄( j)
m = R( j)

m − (A V̄m Ȳ ( j)
m − V̄m Ȳ ( j)

m Σ j) =−V̄m+1 H̄m+1,m E(m)
m

T
Ȳ ( j)

m =−V̄m+1 H̄m+1,m (Ȳ ( j)
m )m.

We next summarize the restarted shifted block FOM method for solving (3).

Algorithm 3 Restarted shifted block FOM.

Input: A ∈ Cn×n, B = [b(1), . . . ,b(s)] ∈ Cn×s, {σ (i)
j }

i=1,...,s
j=1,...,k ⊂ C; m ∈ N;

1: Set X0 = 0n×s, R0 = B and J = {1, . . . ,k};
2: Compute the reduced QR decomposition of R0, i.e., R0 =V1 H1,0;
3: for j = 1, . . . ,k do
4: Set: Σ j = diag([σ (1)

j , . . . ,σ
(s)
j ]), X ( j)

m = X0, β
( j)
m = H1,0;

5: end for
6: Generate Vm+1, H̃m by Algorithm 1 applied to the pair (A,V1);
7: for each j ∈J do
8: solve Hm Y ( j)

m −Y ( j)
m Σ j = E(m)

1 β
( j)
m ;

9: update X ( j)
m ← X ( j)

m +Vm Y ( j)
m ;

10: Set β
( j)
m =−Hm+1,m (Y ( j)

m )m;
11: end for
12: Eliminate converged systems and update J ;
13: if J = /0 then
14: exit;
15: else
16: update V1←Vm+1 and goto line 6;
17: end if

Remark 1 We end this section by listing some remarks:

1. The ms× s Sylvester equation (8) can be solved by a standard direct method like the Hessenberg-Schur
algorithm [20].

2. In line 8 of Algorithm 3, obtaining Y ( j)
m the solutions of the k Sylvester equations (8) is mathematically

equivalent to obtaining Ym = [Y (1)
m , . . . ,Y (k)

m ] ∈ Cms×ks the solution of the single Sylvester equation

HmYm−Ym ∆ = E,

where ∆ = diag(Σ1, . . . ,Σk) ∈ Cks×ks, E = E(m)
1 [β

(1)
m , . . . ,β

(k)
m ] ∈ Cms×ks. Moreover, since ∆ is a diagonal

matrix, then each column y( j)
i (i = 1, . . . ,s) of each block Y ( j)

m ( j = 1, . . . ,k) is solution of the single linear
system

(Hm−σ
( j)
i Ims)y( j)

i = E(m)
1 (β

( j)
m )i,

where (β
( j)
m )i is the i-th column of β

( j)
m .

3.2 The deflated restarted shifted BFOM

It is known that in practice, block linear solvers can suffer from a linear dependence between some columns of
the residuals [19,31,34]. Taking inspiration from the deflation strategy which has been proposed by Meng et al.
[31], we propose the restarted shifted block FOM method with deflation of eigenvalues (called rsh-BFOM-D)
for solving the matrix equations (3). The main idea here is to deflate the smallest eigenvalues in magnitude to
improve convergence of the rsh-BFOM method. To begin, we recall the definition of a Ritz pair which plays an
important role in deflated restarting.
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Definition 1 Assume that U is a generic subspace of Cn. Let C ∈Cn×n,θ ∈C and y ∈U . Then, the pair (θ ,y)
is a Ritz pair of C with respect to U if and only if it satisfies the following relation

C y−θy⊥U ,

or equivalently, for the canonical scalar product,

∀w ∈ range(U ), wH (C y−θ y) = 0.

The vector y is called a Ritz vector associated with the Ritz value θ .

Assume that one cycle of the restarted shifted BFOM method applied to the Sylvester equations (3) is performed
and that the recursions (4) and (5) are obtained. Then, before restarting, we determine l Ritz vectors gi associated
to the l smallest eigenvalues θi (i, . . . , l) where l is a suitable integer. Then, in view of Definition 1, the Ritz pairs
(θi,gi) (for i = 1,2, . . . , l) of A in range(Vm) satisfy

VH
m (AVm gi−θiVm gi) = 0.

Now, since that Vm is orthonormal and Hm = VH
m AVm and taking into account the previous relation then the l

targeted eigenpairs (θi,gi) are obtained as the solution of the following eigenvalue problem

Hm gi = θi gi, i = 1,2, . . . , l. (9)

Let us denote by rRitz
i = AVm gi− θiVm gi the Ritz residual vector for i = 1,2, . . . , l and by R( j0)

m the residual
associated to the approximate solution X ( j0)

m , where the index j0 is obtained by the seed selection strategy used
in [4,42], i.e., j0 is the index satisfying

‖R( j0)
m ‖F = max

j=1,...,k
‖R( j)

m ‖F . (10)

Next, we establish a result that gives a useful relation between the Ritz residual vectors rRitz
i and the residual

R( j0)
m .

Lemma 2 Assume that one cycle of the restarted shifted block FOM applied to the Sylvester equations (3) have
been performed and let rRitz

i = AVm gi− θiVm gi, for i = 1,2, . . . , l, be the Ritz residual vectors. Then, there
exists a matrix T ∈ Cs×l such that

[rRitz
1 , . . . ,rRitz

l ] = R( j0)
m T. (11)

Proof By using the relations (5) and (9), it follows that for i = 1,2, . . . , l

rRitz
i = (VmHm +Vm+1 Hm+1,m E(m)

m
T
)gi−θiVm gi

= Vm (Hm−θi I)gi +Vm+1 Hm+1,m E(m)
m

T
gi

=Vm+1 Hm+1,m E(m)
m

T
gi (12)

= Vm+1

[
0ms×1

Hm+1,m E(m)
m

T
gi

]
︸ ︷︷ ︸

=:r̃i

,

where r̃i ∈ C(m+1)s. As a result, we deduce that rRitz
i ∈ span{Vm+1}.

On the other hand, using the relations (4) and X ( j0)
m = X0+Vm Y ( j0)

m implies that the residual R( j0)
m of the selected

block system can be expressed as

R( j0)
m =−Vm+1 Hm+1,m E(m)

m
T

Y ( j0)
m (13)

= Vm+1

[
0ms×s

−Hm+1,m E(m)
m

T
Y ( j0)

m

]
︸ ︷︷ ︸

=:R̂m

(14)

which reveals that R( j0)
m ∈ range(Vm+1) since R̂m ∈ C(m+1)s×s.
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Moreover from (12) and (13) we deduce that rRitz
i ∈ range(R( j0)

m ) for i = 1,2, . . . , l, then there exist scalars
t ji ∈ C such that

rRitz
i =

s

∑
j=1

t j,i R( j0)
m (:, j),

where R( j0)
m (:, j) denotes the jth column of R( j0)

m . Finally letting T = [t ji], it follows that

[rRitz
1 , . . . ,rRitz

l ] = R( j0)
m T,

which completes the proof.

Now, suppose the l targeted Ritz vectors are given by Vm Gl , where Gl = [g1, . . . ,gl ] ∈ Cms×l . Then, using
relations (11) and (14), we have

AVm Gl = Vm Gl diag(θ1, . . . ,θl)+Vm+1 R̂m T

= Vm+1

[
Gl diag(θ1, . . . ,θl)

0s×l

]
+Vm+1 R̂m T

= Vm+1

[[
Gl

0s×l

]
, R̂m

] [
diag(θ1, . . . ,θl)

T

]
.

Let also assume that Gl = QlΓl is the reduced QR factorization of Gl , where Ql ∈ Cms×l is an orthonormal
matrix and Γl ∈Cl×l is an upper triangular matrix. Therefore, we augment Gl by defining Gl+1 ∈C(m+1)s×(l+1)s

to be

Gl+1 =

[[
Ql

0s×l

]
, R̂m

]
, (15)

and get

AVm Ql Γl = Vm+1 Gl+1

[
Γl diag(θ1, . . . ,θl)

T

]
.

Post-multiplying the above relation by Γ
−1

l gives

AVm Ql = Vm+1 Gl+1

[
Γl diag(θ1, . . . ,θl)

T

]
Γ
−1

l .

Thereafter, orthogonalizing the block matrix R̂m against
[

Ql
0s×l

]
gives the QR decomposition Gl+1 = Ql+1 Γl+1

where Ql+1 ∈ C(m+1)s×(s+l) and Γl+1 ∈ C(s+l)×(s+l). Thus,

AVm Ql = Vm+1 Ql+1Γl+1

[
Γl diag(θ1, . . . ,θl)

T

]
Γ
−1

l .

Therefore, denoting by Vnew
l = Vm Ql , H̃new

l = Γl+1

[
Γl diag(θ1, . . . ,θl)

T

]
Γ
−1

l and Vnew
l+s = Vm+1 Ql+1, it can be

readily verified that H̃new
l = QH

l+1 H̃m Ql , and also, we have

AVnew
l = Vnew

l+s H̃
new
l ,

which shows that the block Arnoldi relation holds.
In order to complete the current cycle of the restarted shifted block FOM method with deflation, we perform

m− l
s iterations (in which it is assumed that l is divisible by s) of the block Arnoldi process with the starting

matrix Vnew
l+s (:, l + 1 : l + s). After updating the matrices Vm+1 and H̃m, we continue our algorithm by solving

the updated projected equations (8). What is explained so far is summarized in Algorithm 4.
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Algorithm 4 Restarted shifted block FOM with deflation of eigenvalues (rsh-BFOM-D).

Input: A ∈ Cn×n,B ∈ Cn×s, {σ (i)
j }

i=1,2,...,s
j=1,2,...,k and m ∈ N.

1: Set X0 = 0n×s,R0 = B and J = {1,2, . . . ,k};
2: Perform one cycle of the shifted block FOM described by Algorithm 3 to generate the matrices Vm+1, H̃m and the approximate solutions

X ( j)
m with their corresponding residuals R( j)

m ;
3: for each j ∈J do
4: set X ( j)

0 = X ( j)
m and R( j)

0 = R( j)
m ;

5: end for
6: Eliminate converged systems and update J ; If J = /0 exist;
7: Select j0 the index of the base block system using (10).
8: Compute the eigenpairs (θi,gi) of the eigenvalue problem (9); Let g1, . . . ,gl be the l eigenvectors corresponding to the l smallest

eigenvalues (If gi is complex consider the real and complex parts of gi as two distinct eigenvectors. In this case, it may be necessary to
adjust l); set Gl = [g1,g2, . . . ,gl ] ∈ Cms×l ;

9: Compute the reduced QR factorizations of Gl and Gl+1, i.e., Gl = Ql Γl , Gl+1 = Ql+1 Γl+1; % Gl+1 is defined by (15).
10: Set Vnew

l = Vm Ql ,Vnew
l+s = Vm+1 Ql+1 and H̃new

l = QH
l+1 H̃m Ql ;

11: Let Vl = Vnew
l ,H̃l = H̃new

l and Vl+s = Vnew
l+s ;

12: for j = l
s +1, . . . ,m do

13: W = AV j;
14: for i = 1, . . . , j do
15: Set Hi, j =V H

i W , W =W −Vi Hi, j;
16: end for
17: Compute the reduced QR decomposition of W , i.e., W =Vj+1 H j+1, j;
18: end for
19: for each j ∈J do
20: solve Hm Y ( j)

m −Y ( j)
m Σ j = VH

m R( j)
0 ;

21: set X ( j)
m = X ( j)

0 +Vm Y ( j)
m ;

22: compute R( j)
m = B− (AX ( j)

m −X ( j)
m Σ j);

23: end for
24: Eliminate converged systems and update J ; If J = /0 exist.
25: for each j ∈J do
26: update X ( j)

0 ← X ( j)
m and R( j)

0 ← R( j)
m ;

27: end for
28: go to line 7;

4 The restarted shifted block GMRES method with deflation

In this section, we aim to describe a block version of the shifted GMRES algorithm introduced in [16] in order to
solve (3). First, according to (7), the m-th residual of BGMRES applied to solve (2) is given by Rm =Vm+1 Zm+1,
where

Zm+1 = E(m+1)
1 H1,0− H̃m Ym. (16)

Moreover, the approximate solution Xm can be expressed as Xm = X0 +Qm−1(A) ◦R0, where Qm−1 is a right
matrix-valued polynomial of degree≤m−1 and its residual satisfies Rm = R0−AQm−1(A)◦R0 =Pm(A)◦R0,
with Pm(t) = Is− t Qm−1(t) and Pm(0) = Is. In the sequel, a similar notation will be adopted for the shifted
block systems (3) for which we seek for approximate solutions X ( j)

m ∈ X ( j)
0 +Km(L j,R

( j)
0 ) and which can be

formulated as
X ( j)

m = X ( j)
0 +Q

( j)
m−1(L j)◦R( j)

0 , (17)

where Q
( j)
m−1 is a matrix valued-polynomial such that

Q
( j)
m−1(L j)◦R( j)

0 =
m−1

∑
i=0

L
(i)
j (R( j)

0 )Ωi, where Ωi ∈ Rs×s.

The corresponding residual is given by

R( j)
m = R( j)

0 − (AQ
( j)
m−1(L j)−Q

( j)
m−1(L j)Σ j)◦R( j)

0 = P
( j)
m (L j)◦R( j)

0 .

To derive a recursion for obtaining X ( j)
m , we will use similar ideas to those used for the shifted GMRES [16].

Hence, we assume that the starting residuals satisfy R( j)
0 = R0Ψ

( j)
0 for each j = 1, . . . ,k, (it suffices to choose

X ( j)
0 = 0). Then applying BGMRES to the base block system (2), we obtain an approximate solution to (3) by

requiring a collinearity condition with the residual of the base block system, i.e.,

R( j)
m = RmΨ

( j)
m , (18)
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where the collinearity coefficient Ψ
( j)

m ∈ Cs×s. Using matrix valued-polynomials, we verify that P
( j)
m (L j) ◦

R( j)
0 = (Pm(A)◦R0)Ψ

( j)
m . Then, since R( j)

0 = R0ψ
( j)
0 we have

P
( j)
m (t Is−Σ j)Ψ

( j)
0 = Pm(t)Ψ

( j)
m , with P

( j)
m (0) = Is. (19)

From the previous discussion, we are now in a position to state the following result.

Lemma 3 Assume that the block Krylov space Km+1(A,R0) is full-rank and that Ψ
( j)

0 is a nonsingular matrix.

Then there exist a matrix polynomial P( j)
m and a matrixΨ

( j)
m satisfying (19) if and only if Pm(Σ j) is nonsingular.

We then have
Ψ

( j)
m = Pm(Σ j)

−1
Ψ

( j)
0 and P

( j)
m (t Is−Σ j) = Pm(t)Pm(Σ j)

−1.

We mention that in practice the matrix polynomial Pm need not to be calculated. Moreover, the collinearity
condition (18) is not always satisfied, but when it is so, the residual R( j)

m and the corresponding vector solution
X ( j)

m are unique.

We continue our description of the shifted BGMRES algorithm by showing how to obtain practically an
approximate solution X ( j)

m for each block shifted system (3). This description, which depends on the choice of
the base system, will be detailed in the following two sub-sections.

4.1 The shifted BGMRES algorithm with an unshifted base system

Here, and as in [16] the non-shifted block system (2) is considered as a base block system. It is clear that this
base system is fixed and does not change after restarting. By taking X ( j)

0 =X0 = 0n×s, we have R( j)
0 =R0Ψ

( j)
0 =B

with Ψ
( j)

0 = Is. As Xm and X ( j)
m are in Km(A,R0) =Km(L j,R

( j)
0 ), then BGMRES gives an approximate solution

Xm = X0 +Vm Ym such that its corresponding residual is Rm = Vm+1 Zm+1, where Zm+1 is given by (16). The
approximate solutions X ( j)

m = X ( j)
0 +Vm Y ( j)

m of the shifted block system (3) can be updated by requiring the
collinearity condition (18). This implies

R( j)
m = RmΨ

( j)
m ⇔ R( j)

0 − (AVm Y ( j)
m −Vm Y ( j)

m Σ j) = Vm+1 Zm+1Ψ
( j)

m ,

⇔ R0Ψ
( j)

0 − (Vm+1 H̃m Y ( j)
m −Vm Y ( j)

m Σ j) = Vm+1 Zm+1Ψ
( j)

m . (20)

As Vm+1 is orthonormal and R0 =V1 H1,0, we get

Vm+1

(
H̃m Y ( j)

m −
[

Y ( j)
m
0s

]
Σ j +Zm+1Ψ

( j)
m

)
= Vm+1 E(m+1)

1 H1,0Ψ
( j)

0 ,

which can be rewritten as [
H̃m, Zm+1

] [ Y ( j)
m

Ψ
( j)

m

]
−
[

Y ( j)
m
0s

]
Σ j = E(m+1)

1 H1,0Ψ
( j)

0 .

Partitioning the (m+1)s× s matrix Zm+1 as Zm+1 =

[
Zm

zm+1

]
, we obtain

 [Hm, Zm]

[
Y ( j)

m

Ψ
( j)

m

]
−Y ( j)

m Σ j = E(m)
1 H1,0Ψ

( j)
0

Hm+1,m (Y ( j)
m )m + zm+1Ψ

( j)
m = 0

,

where (Y ( j)
m )m = E(m)

m
T

Y ( j)
m . The last equality gives

Ψ
( j)

m =−z−1
m+1 Hm+1,m (Y ( j)

m )m, (21)

and so
Hm Y ( j)

m −Zm z−1
m+1 Hm+1,m (Y ( j)

m )m−Y ( j)
m Σ j = E(m)

1 H1,0Ψ
( j)

0 .

Denoting by

HZ
m =Hm−Zm z−1

m+1 Hm+1,m E(m)
m

T
, (22)
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which is also an upper block Hessenberg matrix, we see that Y ( j)
m is the solution of the reduced Sylvester equation

HZ
m Y ( j)

m −Y ( j)
m Σ j = E(m)

1 H1,0Ψ
( j)

0 , (23)

where Ψ
( j)

m is given by (21). Finally and before summarizing the restarted shifted BGMRES algorithm, we
point out that when restarting, the new initial residuals R̄0 for the base system and R̄( j)

0 for each add system are

R̄0 = Rm and R̄( j)
0 = R( j)

m respectively. In this case, the collinearity condition on the new initial residual is still

satisfied with Ψ̄
( j)

0 =Ψ
( j)

m .

Algorithm 5 Restarted shifted BGMRES with an unshifted base system.

Input: A ∈ Cn×n, B = [b(1), . . . ,b(s)] ∈ Cn×s, {σ (i)
j }

i=1,...,s
j=1,...,k ⊂ C; m ∈ N;

1: Set X0 = 0n×s, R0 = B and J = {1, . . . ,k};
2: for each j ∈J do
3: set: Σ j = diag([σ (1)

j , . . . ,σ
(s)
j ]), X ( j)

0 = X0; Ψ
( j)

0 = Is;
4: end for
5: Compute the reduced QR decomposition of R0, i.e., R0 =V1 H1,0;
6: Generate Vm+1, H̃m by Algorithm 1 applied to the pair (A,V1);
7: Determine Ym the solution of the least squares problem min

Y∈Cms×s
‖E(m+1)

1 H1,0− H̃m Y‖F ;

8: Compute Zm+1 = E(m+1)
1 H1,0− H̃m Ym; Rm = Vm+1 Zm+1;

9: Compute HZ
m =Hm−Zm z−1

m+1 Hm+1,m E(m)
m

T
;

10: for each j ∈J do
11: solve HZ

m Y ( j)
m −Y ( j)

m Σ j = E(m)
1 H1,0Ψ

( j)
0 ;

12: update X ( j)
m ← X ( j)

m +Vm Y ( j)
m ;

13: compute: Ψ
( j)

m =−z−1
m+1 Hm+1,m Y ( j)

m ; R( j)
m = RmΨ

( j)
m ;

14: end for
15: Eliminate converged systems and update J ; If J = /0 exit;
16: for each j ∈J do
17: update X ( j)

0 ← X ( j)
m , Ψ

( j)
0 ←Ψ

( j)
m ; R0 = Rm;

18: end for
19: goto line 5;

Remark 2 Before ending this subsection, we list below some remarks:

1. The residual norms of R( j)
m are available cheaply at each iteration without explicit computation of each cor-

rection X ( j)
m since we have ‖R( j)

m ‖F = ‖RmΨ
( j)

m ‖F . This avoids the need to carry out vector-matrix products
with the large matrix A.

2. As was the case with the restarted shifted BFOM algorithm:
– The solutions Y ( j)

m of the k Sylvester equations (23) can all be computed by solving the single Sylvester
equation

HZ
mYm−Ym ∆ = E,

where the unknown Ym = [Y (1)
m , . . . ,Y (k)

m ] ∈ Cms×ks, the matrix ∆ = diag(Σ1, . . . ,Σk) ∈ Cks×ks and the
right-hand side E= E(m)

1 H1,0 [Ψ
1

0 , . . . ,Ψ
(k)

0 ] ∈ Cms×ks.

– The s columns y( j)
i of each block Y ( j)

m ( j = 1, . . . ,k) can be obtained successively by solving the single
linear systems

(HZ
m−σ

( j)
i Ims)y( j)

i = E(m)
1 H1,0 (Ψ

( j)
0 )i,

where (Ψ
( j)

0 )i is the i-th column of Ψ
( j)

0 .

4.2 The shifted BGMRES algorithm with a variable shifted base system

Now, instead of the fixed base block system (2), we consider here a base block system that can change after
restart. Specifically, in the hope of improving the convergence, this base block system will be selected as done in
the previous section and so the index j0 satisfies (10). As previously used, we take before restarting X ( j)

0 = 0n×s
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for j = 1, . . . ,k and search for approximate solutions X ( j)
m = X ( j)

0 +Vm Y ( j)
m where Vm is the orthonormal basis

generated by the block Arnoldi process applied to the pair (A,R( j0)
0 ). Then, applying the orthogonality condition

R( j0)
m ⊥ AKm(A,R

( j0)
0 ),

we easily check that Y ( j0)
m is the solution of the following least-squares problem

min
Y∈Cms×s

∥∥∥∥E(m+1)
1 H1,0− H̃m Y −

[
Y
0s

]
Σ j0

∥∥∥∥
F
, (24)

and the corresponding residual is R( j0)
m = Vm+1 Z( j0)

m+1, where

Z( j0)
m+1 = E(m+1)

1 H1,0− H̃m Y ( j0)
m −

[
Y ( j0)

m
0s

]
Σ j0 . (25)

Notice that each Y ( j)
m in the approximate solution X ( j)

m of the add system (3) ( j = 1, . . . ,k and j 6= j0) is deter-
mined by requiring the collinearity condition

R( j)
m = R( j0)

m Ψ
( j)

m , where Ψ
( j)

m ∈ Cs×s. (26)

Based on this collinearity condition and as done in the case of the unshifted base system, we check that the
correction Y ( j)

m for j 6= j0 satisfies

[H̃m, Z( j0)
m+1]

[
Y ( j)

m

Ψ
( j)

m

]
−
[

Y ( j)
m
0s

]
Σ j = E(m+1)

1 H1,0Ψ
( j)

0 .

Partitioning the matrix Z( j0)
m+1 under the form Z( j0)

m+1 =

[
Z( j0)

m

z( j0)
m+1

]
, the previous equality is transformed as follows


[
H̃m, Z( j0)

m

][ Y ( j)
m

Ψ
( j)

m

]
−Y ( j)

m Σ j = E(m+1)
1 H1,0Ψ

( j)
0 ,

Hm+1,m E(m)
m

T
Y ( j)

m + z( j0)
m+1Ψ

( j)
m = 0.

Then Ψ
( j)

m is obtained by

Ψ
( j)

m =−(z( j0)
m+1)

−1 Hm+1,m E(m)
m

T
Y ( j)

m ,

and Y ( j)
m is the solution of the projected Sylvester equations

HZ
m Y ( j)

m −Y ( j)
m Σ j = E(m)

1 H1,0Ψ
( j)

0 ,

in which HZ
m =Hm−Z( j0)

m (z( j0)
m+1)

−1 Hm+1,m E(m)
m

T
.

Once, all the approximate solutions have been computed and the converged block systems have been dis-
carded, we proceed to the restart phase by selecting a new index j̄0 and taking X̄ ( j)

0 = X ( j)
m , R̄( j)

0 = R( j)
m and

Ψ̄
( j)

0 = (Ψ
( j̄0)

m )−1Ψ
( j)

m . This ensures that the new starting residuals R̄( j)
0 are all collinear with R̄( j̄0)

0 . The previous
modifications are summarized in the following algorithm.

Remark 3 Since Σ j0 is a diagonal matrix, the i-th column of Y ( j0)
m = [y( j0)

1 , . . . ,y( j0)
s ] the solution of the mini-

mization problem (24) is

y( j0)
i = argmin

y∈Cms
‖E(m+1)

1 (H1,0):,i− (H̃m−σ
( j0)
i I(m+1)s×ms)y‖2, for i = 1, . . . ,s.
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Algorithm 6 Restarted shifted BGMRES with a variable base system.

Input: A ∈ Cn×n, B = [b(1), . . . ,b(s)] ∈ Cn×s, {σ (i)
j }

i=1,...,s
j=1,...,k ⊂ C; m ∈ N;

1: Set X0 = 0n×s, J = {1, . . . ,k} and j0 = 1;
2: for each j ∈J do
3: set: Σ j = diag([σ (1)

j , . . . ,σ
(s)
j ]), X ( j)

0 = X0; R( j)
0 = B; Ψ

( j)
0 = Is;

4: end for
5: Compute the reduced QR decomposition of R( j0)

0 , i.e., R( j0)
0 =V1 H1,0;

6: Generate Vm+1, H̃m by Algorithm 1 applied to the pair (A,V1);

7: Determine Y ( j0)
m the solution of the least squares problem min

Y∈Cms×s

∥∥∥∥E(m+1)
1 H1,0− H̃m Y −

[
Y
0s

]
Σ j0

∥∥∥∥
F

;

8: Compute Z( j0)
m+1 = E(m+1)

1 H1,0− H̃m Y ( j0)
m −

[
Y ( j0)

m
0s

]
Σ j0 ; R( j0)

m = Vm+1 Z( j0)
m+1;

9: Compute HZ
m =Hm−Z( j0)

m (z( j0)
m+1)

−1 Hm+1,m E(m)
m

T
;

10: for j ∈J do
11: if j 6= j0 then
12: solve HZ

m Y ( j)
m −Y ( j)

m Σ j = E(m)
1

T
H1,0Ψ

( j)
0 ;

13: compute Ψ
( j)

m =−z−1
m+1 Hm+1,m Y ( j)

m ; R( j)
m = R( j0)

m Ψ
( j)

m ;
14: end if
15: update X ( j)

m ← X ( j)
m +Vm Y ( j)

m ;
16: end for.
17: Eliminate converged systems and update J ; If J = /0 exit;
18: Select j0 the index of the base block system using (10).
19: for each j ∈J do
20: update X ( j)

0 ← X ( j)
m , Ψ

( j)
0 ← (Ψ

( j0)
m )−1Ψ

( j)
m ; R( j)

0 ← R( j)
m ;

21: end for.
22: goto line 5;

4.3 The deflated restarted shifted BGMRES method

In this subsection, taking inspiration from the deflation strategy proposed by Morgan [34], the restarted shifted
BGMRES with deflation of eigenvalues (called rsh-BGMRES-D) for solving the matrix equations (3) is de-
scribed in detail. In addition, we consider here the two cases:

– Case 1: rsh-BGMRES-D with a fixed base system.
– Case 2: rsh-BGMRES-D with a variable base system.

To begin, the definition of a harmonic Ritz pair is recalled since it plays an important role in the deflation
procedure.

Definition 2 Assume that U is a generic subspace of Cn. Let C ∈Cn×n,θ ∈C and y ∈U . Then, the pair (θ ,y)
is a harmonic Ritz pair of C with respect to U if and only if it satisfies the following relation

C y−θ y⊥C range(U ),

or equivalently, for the canonical scalar product,

∀w ∈C range(U ), wH (C y−θ y) = 0.

The vector y is called a harmonic Ritz vector associated with the harmonic Ritz value θ .

Using similar arguments that were used for rsh-BFOM-D, we assume that (θi,Vm gi), for i = 1,2, . . . , l, are the
harmonic Ritz pairs of A in range(Vm) and orthogonal to A range(Vm). Therefore, it follows that

(AVm )H (AVm gi−θiVm gi) = 0, for i = 1,2, . . . , l. (27)

From (4) and since VH
m+1Vm+1 = I(m+1)s, we get

H̃H
m

(
H̃m gi−θi

[
Ims
0s

]
gi

)
= 0, (28)

which can be rewritten as the following generalized eigenvalue problem(
HH

m Hm +E(m)
m HH

m+1,m Hm+1,m E(m)
m

T
)

gi = θiHH
m gi,
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or equivalently, (
Hm +H−H

m E(m)
m HH

m+1,m Hm+1,m E(m)
m

T
)

gi = θi gi. (29)

Therefore, the l targeted eigenpairs (θi,gi) are obtained by solving the eigenvalue problem (29).

Before discussing the framework of rsh-BGMRES-D, the following lemma, which its proof is similar to that
of Proposition 1 in [19], is presented. This lemma shows that the residuals of the matrix equation (2) and the
residuals of the harmonic Ritz vectors belong to the subspace spanned by Zm+1 = E(m+1)

1 H1,0− H̃m Ym.

Lemma 4 Let Hm be full-rank and Zm+1 = E(m+1)
1 H1,0 − H̃m Ym. Then there exist vectors αi ∈ Cs, for i =

1,2, . . . , l, such that

H̃m gi−θi

[
Ims
0s

]
gi = Zm+1 αi.

Proof It reveals from the relation (28) that

H̃m gi−θi

[
Ims
0s

]
gi ∈ ker(H̃H

m), (30)

for i = 1,2, . . . , l. Since Hm is full-rank and

dim(range(H̃H
m))+dim(ker(H̃H

m)) = ms+ s,

it follows that dim(ker(H̃H
m)) = s. It is also well-known that

Ym = argmin
Y∈Cms×s

∥∥∥E(m+1)
1 H1,0− H̃m Y

∥∥∥
F
,

such that H̃m Ym is the orthogonal projection of E(m+1)
1 H1,0 onto range(H̃m), and

E(m+1)
1 H1,0− H̃m Ym ⊥ range(H̃m).

It implies that
E(m+1)

1 H1,0− H̃m Ym ∈ range(H̃m)
⊥ = ker(H̃H

m).

Therfore, since dim(range(E(m+1)
1 H1,0− H̃mYm)) = s, we have

range(E(m+1)
1 H1,0− H̃m Ym) = ker(H̃H

m),

and then, according to the relation (30), it is observed that all the vectors H̃m gi− θi

[
Ims
0s

]
gi, for i = 1, . . . , l,

belong to range(E(m+1)
1 H1,0− H̃m Ym). This completes the proof.

The next proposition has a key role in the implementation of the rsh-BGMRES-D method and characterizes a
useful relation between the harmonic Ritz residual vectors rhRitz

i = AVm gi−θiVm gi, for i = 1,2, . . . , l, and the
residual Rm associated to the approximate solution Xm.

Proposition 3 Suppose that one cycle of Algorithm 5 applied to the matrix equations (3) is performed and let
Rm be the residual associated to Xm an approximate solution of (2). Also, assume that rhRitz

i = AVm gi−θiVm gi,
for i = 1,2, . . . , l, are the harmonic Ritz residual vectors. Then, there exists a matrix T ∈ Cs×l such that[

rhRitz
1 , . . . ,rhRitz

l

]
= Rm T. (31)

Proof Using relation (4), then for i = 1,2, . . . , l, we obtain

rhRitz
i = AVm gi−θiVm gi

= Vm+1 H̃m gi−θiVm+1

[
Ims
0s

]
gi

= Vm+1

(
H̃m gi−θi

[
Ims
0s

]
gi

)
.



On restarted and deflated block FOM and GMRES methods for sequences of shifted linear systems 15

Moreover, relation (27) yields that the residual Rm can be expressed as

Rm = Vm+1 Zm+1 = Vm+1

(
E(m+1)

1 H1,0− H̃m Ym

)
.

On the other hand, Lemma 4 indicates that there exist vectors ti ∈ Cs (i = 1, . . . , l) such that

H̃m gi−θi

[
Ims
0s

]
gi =

(
E(m+1)

1 H1,0− H̃m Ym

)
ti. (32)

Pre-multiplying the above relation (32) by Vm+1 gives

Vm+1

(
H̃m gi−θi

[
Ims
0s

]
gi

)
= Vm+1

(
E(m+1)

1 H1,0− H̃m Ym

)
ti.

Letting T = [t1, . . . , tl ], it follows that [
rhRitz

1 , . . . ,rhRitz
l

]
= Rm T,

which completes the proof.

Now, after obtaining the l harmonic Ritz vectors and in order to update the next cycle, we use (31) to get

AVm Gl = Vm Gl diag(θ1, . . . ,θl)+Vm+1 Zm+1 T

= Vm+1

[
Gl diag(θ1, . . . ,θl)

0s×l

]
+Vm+1 Zm+1 T

= Vm+1

[[
Gl

0s×l

]
, Zm+1

] [
diag(θ1, . . . ,θl)

T

]
,

where Gl = [g1, . . . ,gl ]∈Cms×l . Similarly, letting Gl =Ql Γl be the reduced QR factorization of Gl , we therefore
get

AVm Ql Γl = Vm+1

[[
Ql

0s×l

]
, Zm+1

] [
Γl diag(θ1, . . . ,θl)

T

]
.

Post-multiplying the above relation by Γ
−1

l implies that

AVm Ql = Vm+1

[[
Ql

0s×l

]
, Zm+1

]
︸ ︷︷ ︸

=:Gl+1

[
Γl diag(θ1, . . . ,θl)

T

]
Γ
−1

l . (33)

Orthogonalizing the block matrix Zm+1 against
[

Ql
0s×l

]
, we obtain the QR factorization Gl+1 =Ql+1 Γl+1, where

Ql+1 ∈ C(m+1)s×(ks+l) and Γl+1 ∈ C(ks+l)×(ks+l). Using this factorization, (33) can be expressed as

AVm Ql = Vm+1 Ql+1 Γl+1

[
Γl diag(θ1, . . . ,θl)

T

]
Γ
−1

l .

Therefore, denoting by Vnew
l =Vm Ql , H̃new

l =Γl+1

[
Γl diag(θ1, . . . ,θl)

T

]
Γ
−1

l and Vnew
l+ks =Vm+1 Ql+1, it can be

readily verified that H̃new
l = QH

l+1 H̃m Ql and we also have

AVnew
l = Vnew

l+ks H̃
new
l ,

which shows that the block Arnoldi relation holds.
Next, setting Vl =Vnew

l , Vl+1 =Vnew
l+ks(:, l+1 : l+ks) and H̃l = H̃new

l , the block Arnoldi then carries out (m− l
s )

iterations (in which it is assumed that l is divisible by s) with the starting block vector Vl+1 to obtain at the end
of the current cycle a block-Arnoldi relation similar to (4).

In the next sub-sections, we incorporate the deflation technique into the restarted shifted BGMRES with a
fixed unshifted base system and into the restarted shifted BGMRES with a variable and shifted base system.
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4.4 rsh-BGMRES-D with an unshifted base system

Now, we apply the first cycle of BGMRES to the block system (2) and generate the block Arnoldi relation:
AVm = Vm+1 H̃m. The residual Rm corresponding to the approximate solution Xm = X0 +Vm Ym ∈ Cn×s of the
base system can be written as Rm = Vm+1 (VH

m+1 R0− H̃m Ym), where Ym is the solution of the following least-
squares problem

min
Y∈Cms×s

∥∥∥VH
m+1 R0− H̃m Y

∥∥∥
F
.

The approximate solutions of the add block systems can be updated by X ( j)
m = X ( j)

0 +Vm Y ( j)
m , where Y ( j)

m is
determined by the required collinearity condition (18). From (20), we have

R( j)
m = RmΨ

( j)
m ⇐⇒ Vm+1

(
H̃m Y ( j)

m −
[

Y ( j)
m
0s

]
Σ j +Zm+1Ψ

( j)
m

)
= Vm+1 C( j)

m+1,

where C( j)
m+1 = VH

m+1 R0Ψ
( j)

0 . Pre-multiplying both sides by VH
m+1 implies that

H̃m Y ( j)
m −

[
Y ( j)

m
0s

]
Σ j +Zm+1Ψ

( j)
m =C( j)

m+1.

Thus, the sought parameters Y ( j)
m and Ψ

( j)
m can be obtained simultaneously by solving the following linear

equations [
H̃m, Zm+1

] [ Y ( j)
m

Ψ
( j)

m

]
−
[

Y ( j)
m
0s

]
Σ j =C( j)

m+1. (34)

Partitioning the matrices Zm+1 and C( j)
m+1 as Zm+1 =

[
Zm

zm+1

]
and C( j)

m+1 =

[
C( j)

m

c( j)
m+1

]
, the relation (34) is written

as follows 
[Hm, Zm]

[
Y ( j)

m

Ψ
( j)

m

]
−Y ( j)

m Σ j =C( j)
m ,

Hm+1,m E(m)
m

T
Y ( j)

m + zm+1Ψ
( j)

m = c( j)
m+1.

From the second equation, we obtain

Ψ
( j)

m = z−1
m+1

(
c( j)

m+1−Hm+1,m E(m)
m

T
Y ( j)

m

)
,

and Y ( j)
m is the solution of the following Sylvester matrix equation

HZ
m Y ( j)

m −Y ( j)
m Σ j =C( j)

m −Zm z−1
m+1 c( j)

m+1,

where HZ
m =Hm−Zm z−1

m+1 Hm+1,m E(m)
m

T
.

Notice that when restarting, the new initial residuals R0 for the base system and R( j)
0 for each add system

are taken equal to Rm and R( j)
m respectively. Obviously, in this case the new collinearity coefficients Ψ

( j)
0 for

j = 1, . . . ,k are Ψ
( j)

0 =Ψ
( j)

m . The implementation of the rsh-BGMRES-D method with a fixed base system is
given in Algorithm 7.

4.5 rsh-BGMRES-D with a variable shifted base system

Suppose that the first cycle has been performed and consider the block Arnoldi relation AVm =Vm+1H̃m. Then,
letting j0 satisfying (10) as the index of the selected base block system, we set R( j0)

0 = R( j0)
m and Ψ

( j)
0 =Ψ

( j)
m . In

a similar way to the case of the rsh-BGMRES-D with a fixed base system, we adapt the deflation procedure to
construct the new block Arnoldi relation. To achieve this goal, it is assumed that the new block Arnoldi relation
is

AVnew
m = Vnew

m+1 H̃new
m .



On restarted and deflated block FOM and GMRES methods for sequences of shifted linear systems 17

Algorithm 7 Restarted shifted block GMRES method with deflation of eigenvalues (rsh-BGMRES-D) with a
fixed base system.

Input: A ∈ Cn×n,B ∈ Cn×s,
{

σ
(i)
j

}i=1,2,...,s

j=1,2,...,k
and m ∈ N.

1: Set X0 = 0n×s,R0 = B and J = {1,2, . . . ,k};
2: for each j ∈J do
3: set: Σ j = diag

([
σ
(1)
j , . . . ,σ

(s)
j

])
,X ( j)

0 = X0;Ψ ( j)
0 = Is;

4: end for
5: Compute the reduced QR decomposition of R0, i.e., R0 =V1 H1,0;
6: Generate Vm+1,H̃m by Algorithm 1 applied to the pair (A,V1);

7: Determine Ym the solution of the least-squares problem min
Y∈Cms×s

∥∥∥E(m+1)
1 H1,0− H̃m Y

∥∥∥
F

;

8: Compute Zm+1 = E(m+1)
1 H1,0− H̃m Ym; Rm = Vm+1 Zm+1;

9: Compute HZ
m =Hm−Zm z−1

m+1 Hm+1,m E(m)
m

T
;

10: for each j ∈J do
11: solve HZ

m Y ( j)
m −Y ( j)

m Σ j = E(m)
1 H1,0Ψ

( j)
0 ;

12: set X ( j)
m = X ( j)

0 +Vm Y ( j)
m ; Ψ

( j)
m = z−1

m+1 Hm+1,m E(m)
m

T
Y ( j)

m ;R( j)
m = RmΨ

( j)
m ;

13: update X ( j)
0 ← X ( j)

m , Ψ
( j)

0 ←Ψ
( j)

m and R0 = Rm;
14: end for
15: Compute the eigenpairs (θi,gi) of the eigenvalue problem (29); Let g1,g2, . . . ,gl be the l eigenvectors corresponding to the l smallest

eigenvalues in magnitude (If gi is complex, consider the real and complex parts of gi as two distinct eigenvectors. In this case, it may
be necessary to adjust l); set Gl = [g1,g2, . . . ,gl ] ∈ Cms×l .

16: Compute the reduced QR factorizations of Gl and Gl+1, i.e., Gl = Ql Γl , Gl+1 = Ql+1 Γl+1; % Gl+1 is defined in (33)
17: Set Vnew

l = Vm Ql , Vnew
l+ks = Vm+1 Ql+1 and H̃new

l = QH
l+1 H̃m Ql ;

18: Set Vl =Vnew
l , H̃l = H̃new

l , Vl+ks =Vnew
l+ks and apply m− l

s steps of the block Arnoldi process to extend Vl+ks and H̃l to Vm+1 and H̃m
respectively;

19: Determine Ym the solution of the least-squares problem min
Y∈Cms×s

∥∥∥VH
m+1 R0− H̃m Y

∥∥∥
F

;

20: Compute Zm+1 = VH
m+1 R0− H̃m Ym, Rm = Vm+1 Zm+1; HZ

m =Hm−Zm z−1
m+1 Hm+1,m E(m)

m
T

;
21: for each j ∈J do

22: compute C( j)
m+1 = VH

m+1 R0Ψ
( j)

0 ; % C( j)
m+1

T
= [C( j)

m
T
, c( j)

m+1
T
];

23: solve HZ
m Y ( j)

m −Y ( j)
m Σ j =C( j)

m −Zm z−1
m+1 c( j)

m+1;

24: set X ( j)
m = X ( j)

0 +Vm Y ( j)
m , Ψ

( j)
m = z−1

m+1

(
c( j)

m+1−Hm+1,m E(m)
m

T
Y ( j)

m

)
and R( j)

m = RmΨ
( j)

m ;

25: end for
26: Eliminate converged systems; Update J , if J = /0 exist.
27: for each j ∈J do
28: update X ( j)

0 ← X ( j)
m , Ψ

( j)
0 ←Ψ

( j)
m , and R0 = Rm;

29: end for
30: go to line 5;

Setting Vm =Vnew
m , Vm+1 =Vnew

m+1 and H̃m = H̃new
m yield AVm =Vm+1H̃m. Now, the approximate solution X ( j0)

m

and the corresponding residual R( j0)
m of the base system can be updated easily. In fact, we have

X ( j0)
m = X ( j0)

0 +Vm Y ( j0)
m and R( j0)

m = Vm+1 Z( j0)
m+1,

where

Z( j0)
m+1 = VH

m+1 R( j0)
0 − H̃m Y ( j0)

m −
[

Y ( j0)
m
0s

]
Σ j0 ,

and

Y ( j0)
m = argmin

Y∈Cms×s

∥∥∥∥VH
m+1 R( j0)

0 − H̃m Y −
[

Y
0s

]
Σ j0

∥∥∥∥
F
.

For the add systems, the approximate solutions X ( j)
m can be updated as X ( j)

m = X ( j)
0 +Vm Y ( j)

m where the correc-

tions Y ( j)
m are obtained by using the collinearity condition (26). Indeed, we have

R( j)
m = R( j0)

m Ψ
( j)

m ⇐⇒ R( j)
0 −

(
AVm Y ( j)

m −Vm Y ( j)
m Σ j

)
= Vm+1 Z( j0)

m+1Ψ
( j)

m .
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Analogously to the case of an unshifted bas system, we let C( j)
m+1 = VH

m+1 R( j0)
0 Ψ

( j)
0 and we partition Z( j0)

m+1 and

C( j)
m+1 as Z( j0)

m+1 =

[
Z( j0)

m

z( j0)
m+1

]
and C( j)

m+1 =

[
C( j)

m

c( j)
m+1

]
respectively. Then, it follows that

Ψ
( j)

m = (z( j0)
m+1)

−1
(

c( j)
m+1−Hm+1,m E(m)

m
T

Y ( j)
m

)
,

and Y ( j)
m is the solution the reduced Sylvester equation

HZ
m Y ( j)

m −Y ( j)
m Σ j =C( j)

m −Z( j0)
m (z( j0)

m+1)
−1 c( j)

m+1,

where Hz
m = H̃m−Z( j0)

m (z( j0)
m+1)

−1 Hm+1,m E(m)
m

T
.

Once, all the approximate solutions have been computed and the converged block systems have been dis-
carded, we proceed to the restart phase by selecting a new index j̄0 and taking X̄ ( j)

0 =X ( j)
m ,Ψ̄

( j)
0 = (Ψ

( j̄0)
m )−1Ψ

( j)
m

and R̄( j)
0 = R( j)

m . This ensure that the new starting residual R̄( j)
0 are all collinear with R̄( j̄0)

0 . The discussion, pre-
sented in this section, is summarized in Algorithm 8.

5 Numerical experiments

In this section, we give some experimental results to compare the different proposed methods and show their
effectiveness. In what follows, “the restarted shifted BGMRES algorithm with an unshifted base system” and
“the shifted BGMRES algorithm with a variable shifted base system” are denoted by “rsh-BGMRES-v1” and
“rsh-BGMRES-v2”, respectively.

In the first part our experiments, we use some test matrices from the University of Florida Matrix Col-
lection [9]. In addition, two test matrices “bidiag” and “tridiag”, which have been introduced in [33,?], are
applied. The bidiag matrix is bidiagonal in which the diagonal elements are -2, -1, 1, . . . , 998, and the super
diagonal elements are all equal to 0.1. The tridiag matrix is tridiagonal in which the diagonal elements are
0.1,0.2,0.3,0.4,0.5,6, . . . ,1000, and the sub and the super diagonal elements are all equal to 1. The details
of these test matrices are provided in Table 1. In the next part, we consider some matrices from the quantum
chromodynamics application.

Table 1 Information of the test matrices used in Examples 1 to 4.

Name Size Nonzeros Type Application area
nos5 468 5172 real symmetric Structural Problem
sherman4 1104 3,786 real unsymmetric Computational Fluid Dynamics Problem
raefsky1 3,242 293,409 real unsymmetric Computational Fluid Dynamics Problem
poisson3Da 13,514 352,762 real unsymmetric Computational Fluid Dynamics Problem
memplus 17,758 99,147 real unsymmetric Circuit Simulation Problem
wang3 26,064 177,168 real unsymmetric Semiconductor Device Problem
wathen100 30,401 471,601 real symmetric Random 2D/3D Problem
wathen120 36,441 565,761 real symmetric Random 2D/3D Problem
Dubcova2 65,025 1,030,225 real symmetric 2D/3D Problem
poisson3Db 85,623 2,374,949 real unsymmetric Computational Fluid Dynamics Problem

bidiag 1,000 1,999 real unsymmetric Academic
tridiag 1,000 2,998 real symmetric Academic

In all the experiments – except otherwise stated – the s×s diagonal matrix Σ j, for j = 1,2, . . . ,k, is randomly
generated with a uniform distribution on [−2,0]. The initial guess is considered as X0 = 0n×s. The columns of
the right-hand side B were generated randomly and their coefficients were uniformly distributed in [0, 1]. For all
the different methods, a maximum of 501 restarts was allowed and the algorithms were stopped as soon as the
residual norm ‖R( j)

m ‖F ≤ ε ‖R( j)
0 ‖F with ε = 10−10. Note that the notation ”-” in a table of results refers to the

case where a method does not converge within 501 restarts. All the experiments were performed on a computer
with an Intel Core i5 processor at 2.00 GHz and 4GB of RAM. The algorithms were coded in Matlab Release
2015a. The machine precision was equal to 2.2210−16.

In the following numerical results, the parameters m and l denote the dimension of the search subspace and
the number of Ritz vectors (or harmonic Ritz vectors) added to the search subspace, respectively. Furthermore,
for the sake of comparison, the number of matrix-vector products (denoted by mv), the Frobenius norm of the
maximum true residual (denoted by mnres) and the total CPU time in terms of seconds (denoted by CPU) are
illustrated in tables related to the examples.
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Algorithm 8 Restarted shifted block GMRES method with deflation of eigenvalues (rsh-BGMRES-D) with a
variable base system.

Input: A ∈ Cn×n, B ∈ Cn×s,
{

σ
(i)
j

}i=1,2,...,s

j=1,2,...,k
and m ∈ N.

1: Set J = {1,2, . . . ,k} and j0 = 1;
2: for each j ∈J do
3: set: Σ j = diag

([
σ
(1)
j , . . . ,σ

(s)
j

])
,X ( j)

0 = 0n×s, R( j)
0 = B and Ψ

( j)
0 = Is;

4: end for
5: Compute the reduced QR decomposition of R( j0)

0 , i.e., R( j0)
0 =V1 H1,0;

6: Generate Vm+1,H̃m by Algorithm 1 applied to the pair (A,V1);

7: Determine Y ( j0)
m the solution of the least squares problem min

Y∈Cms×s

∥∥∥∥E(m+1)
1 H1,0− H̃m Y +

[
Y
0s

]
Σ j0

∥∥∥∥
F

;

8: Compute Z( j0)
m+1 = E(m+1)

1 H1,0− H̃m Y ( j0)
m +

[
Y ( j0)

m
0s

]
Σ j0 and R( j0)

m = Vm+1 Z( j0)
m+1;

9: Compute HZ
m =Hm−Z( j0)

m (z( j0)
m+1)

−1 Hm+1,m E(m)
m

T
;

10: for each j ∈J do
11: if j 6= j0 then
12: solve HZ

m Y ( j)
m −Y ( j)

m Σ j = E(m)
1 H1,0Ψ

( j)
0 ;

13: end if
14: set X ( j)

m = X ( j)
0 +Vm Y ( j)

m , Ψ
( j)

m =−(z( j0)
m+1)

−1 Hm+1,m E(m)
m

T
Y ( j)

m and R( j)
m = R( j0)

m Ψ
( j)

m ;

15: update X ( j)
0 ← X ( j)

m , Ψ
( j)

0 ←Ψ
( j)

m , and R( j)
0 = R( j)

m ;
16: end for
17: Compute the eigenpairs (θi,gi) of the eigenvalue problem (29); Let g1,g2, . . . ,gl be l the eigenvectors corresponding to the l smallest

eigenvalues in magnitude (If gi is complex consider the real and complex parts of gi as two distinct eigenvectors. In this case, it may be
necessary to adjust l); set Gl = [g1,g2, . . . ,gl ] ∈ Cms×l .

18: Compute the reduced QR factorizations of Gl and Gl+1, i.e., Gl = Ql Γl , Gl+1 = Ql+1 Γl+1; % Gl+1 is defined in (33)
19: Set Vnew

l = Vm Ql , Vnew
l+ks = Vm+1 Ql+1 and H̃new

l = QH
l+1 H̃m Ql ;

20: Set Vl = Vnew
l ,H̃l = H̃new

l , Vl+ks = Vnew
l+ks and apply m− l

s steps of the block Arnoldi process to extend Vl+ks and H̃l to Vm+1 and H̃m
respectively;

21: Determine Y ( j0)
m the solution of the least squares problem (24);

22: Compute Z( j0)
m+1 using (25) and set R( j0)

m = Vm+1 Z( j0)
m+1; HZ

m =Hm−Z( j0)
m (z( j0)

m+1)
−1 Hm+1,m E(m)

m
T

;
23: for each j ∈J do*

24: compute C( j)
m+1 = VH

m+1 R( j0)
0 Ψ

( j)
0 ; % C( j)

m+1
T
= [C( j)

m
T
, c( j)

m+1
T
];

25: if j 6= j0 then
26: solve HZ

m Y ( j)
m −Y ( j)

m Σ j =C( j)
m −Z( j0)

m (z( j0)
m+1)

−1 c( j)
m+1;

27: end if
28: compute X ( j)

m = X ( j)
0 +Vm Y ( j)

m ; Ψ
( j)

m = (z( j0)
m+1)

−1
(

c( j)
m+1−Hm+1,m E(m)

m
T

Y ( j)
m

)
and R( j)

m = RmΨ
( j)

m ;

29: end for
30: Eliminate converged systems; Update J , if J = /0 exist.
31: Select j0 the index of the base block system using (10).
32: for each j ∈J do
33: update X ( j)

0 ← X ( j)
m ; Ψ

( j)
0 ← (Ψ

( j0)
m )−1Ψ

( j)
m ;R( j)

0 = R( j)
m ;

34: end for
35: go to 5;

Example 1 In this example, we assess the performance of the rsh-BFOM, rsh-BGMRES-v1 and rsh-BGMRES-
v2 methods and examine the applicability of their deflated versions. The test matrices for this example are nos5,
sherman4, memplus, wang3, wathen120, bidiag and tridiag. Here, the dimension of the search subspace m is
taken from {20,30}, and the number of harmonic ritz values is assumed to be equal to 10, i.e., l = 10. We also
set s = 5 and k = 3.

Table 2 reports the number of matrix-vector products, maximum true residual norm and CPU time in terms
of the different values of m. It can be seen from this table that the rsh-BGMRES-v2 method outperforms the rsh-
BFOM and rsh-BGMRES-v1 methods in terms of the number of matrix-vector products or CPU time in many
cases. In particular, for the cases of “bidiag when m = 20,30” and “tridiag when m = 30”, the rsh-BFOM and
rsh-BGMRES-v1 methods fail to converge within 501 restarts, while the rsh-BGMRES-v2 method enjoys a
high level of performance.

From Table 2, it is also observed that the deflated version of the rsh-BFOM and rsh-BGMRES-v1 methods
needs less matrix-vector products and CPU time than the non-deflated ones. For instance, in the cases of “bidiag
when m = 20,30” and “tridiag when m = 20,30”, the rsh-BFOM and rsh-BGMRES-v1 methods do not con-
verge within 501 restarts, while the deflated version of these methods performs perfectly well. In addition, the
rsh-BGMRES-D-v1 method converges in less matrix-vector products and CPU time than the other comparison
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Table 2 Numerical results for Example 1 with s = 5, m = 20,30, k = 3 and l = 10.

m = 20 m = 30
Test problem Method mv mnres CPU mv mnres CPU

nos5

rsh-BFOM 22600 2.8107e-09 8.7969 13950 2.5515e-09 6.2656
rsh-BFOM-D 3160 1.9502e-09 2.4688 2390 6.9215e-10 2.6719
rsh-BGMRES-v1 19000 2.8186e-08 9.4063 12150 2.6601e-09 7.8750
rsh-BGMRES-D-v1 2890 1.8278e-09 2.3281 2110 1.7984e-09 2.6250
rsh-BGMRES-v2 12400 2.6855e-09 6.6875 9150 2.4940e-09 6.6094
rsh-BGMRES-D-v2 6080 3.9500e-09 6.8281 4930 6.0492e-09 7.4688

sherman4

rsh-BFOM 1200 6.6441e-10 0.7968 900 2.1881e-09 0.8281
rsh-BFOM-D 550 3.2294e-10 0.6093 430 2.6012e-09 0.6250
rsh-BGMRES-v1 1300 1.9355e-09 1.0469 1050 2.4728e-09 1.0625
rsh-BGMRES-D-v1 460 1.3464e-09 0.5781 430 3.8605e-09 0.6175
rsh-BGMRES-v2 1000 3.0184e-09 0.7812 750 2.3152e-09 0.8750
rsh-BGMRES-D-v2 950 1.4488e-08 1.3281 580 4.0279e-05 1.1563

memplus

rsh-BFOM 200 7.9429e-09 1.8750 300 3.9373e-10 3.7656
rsh-BFOM-D 190 7.9429e-09 1.7344 290 3.9373e-10 3.2969
rsh-BGMRES-v1 200 1.4348e-09 1.8906 300 5.1926e-10 3.7188
rsh-BGMRES-D-v1 190 1.7599e-12 1.7206 290 6.2127e-10 3.1094
rsh-BGMRES-v2 200 7.6338e-09 1.9844 300 5.2733e-09 3.7813
rsh-BGMRES-D-v2 190 2.5941e-06 1.9063 290 2.2206e-04 3.5781

wang3

rsh-BFOM 200 1.0611e-09 3.0938 300 8.0289e-13 5.8906
rsh-BFOM-D 190 1.0611e-09 2.7656 290 8.0289e-13 5.5000
rsh-BGMRES-v1 200 1.1773e-12 3.1563 300 7.5715e-13 5.9688
rsh-BGMRES-D-v1 190 6.4842e-09 2.0625 290 1.0018e-09 5.4031
rsh-BGMRES-v2 200 1.3365e-12 3.0781 300 7.4894e-13 6.0156
rsh-BGMRES-D-v2 190 8.3149e-06 3.0156 290 3.5338e-10 5.8906

wathen120

rsh-BFOM 6000 2.0014e-08 167.52 2850 1.8597e-08 109.09
rsh-BFOM-D 1810 2.3124e-08 63.703 1410 1.2208e-08 62.672
rsh-BGMRES-v1 5500 2.2777e-08 160.50 3000 1.4634e-08 119.23
rsh-BGMRES-D-v1 1720 1.7338e-08 56.672 1410 1.5710e-08 60.484
rsh-BGMRES-v2 4900 3.4170e-08 142.83 2850 1.1646e-08 113.28
rsh-BGMRES-D-v2 2850 4.6137e-08 91.297 2320 3.4796e-08 97.781

bidiag

rsh-BFOM - - - - - -
rsh-BFOM-D 820 5.2023e-10 2.4375 850 8.5163e-10 3.1875
rsh-BGMRES-v1 - - - - - -
rsh-BGMRES-D-v1 820 2.7902e-09 2.2031 850 3.5940e-10 3.0625
rsh-BGMRES-v2 4600 1.4413e-04 10.234 2700 2.2761e-09 6.9844
rsh-BGMRES-D-v2 2850 4.2540e-08 7.8906 1740 1.4768e-07 6.2656

tridiag

rsh-BFOM - - - - - -
rsh-BFOM-D 820 2.8806e-09 2.5625 710 3.5091e-10 2.3125
rsh-BGMRES-v1 - - - - - -
rsh-BGMRES-D-v1 820 1.4243e-09 2.0938 710 1.6357e-10 2.2188
rsh-BGMRES-v2 - - - 3000 2.5907e-09 7.7188
rsh-BGMRES-D-v2 2660 1.0421e-08 7.3125 1740 8.0097e-07 5.9844

methods. This table also demonstrates that, except for the test matrices nos5 and sherman4 when m = 20,30,
the rsh-BGMRES-D-v2 method requires less matrix-vector products and CPU time than the rsh-BGMRES-v2
method. It is also worthwhile to note that in cases such as nos5 or sherman4, the CPU time correspond to
the convergence of rsh-BGMRES-D-v2 is greater than that of rsh-BGMRES-v2 even though the first method
requires less matrix-vector products than the other one. The reason for this situation lies in the fact that in case
the harmonic Ritz value information is applied, it is needed to solve a generalized eigenvalue problem and to
sort the eigenvalues. In conclusion, we may infer from the above observations that the use of the eigenvalue
deflation technique in the rsh-BFOM, rsh-BGMRES-v1 and rsh-BGMRES-v2 methods improves the efficiency
of the original methods.

Example 2 In this example, the test matrices are nos5, sherman4, wathen120, Dubcova2, bidiag and tridiag.
The value of s is taken from {3,5}, the value of k is fixed as 3, and the value of the parameters m and l is set as
20 and 15, respectively.

Table 3 displays the number of matrix-vector products, maximum true residual norm and CPU time in terms
of the different values of s.

From this table, it turns out that

– for the cases of “sherman4 and wathen120 when s = 3,5” and “Dubcova2 when s = 5”, the rsh-BFOM
method needs less matrix-vector products or CPU time than rsh-BGMRES-v1 and rsh-BGMRES-v2.

– for some cases, such as “nos5 when s = 3,5”, “Dubcova2 when s = 3”, “bidiag when s = 3,5” and “tridiag
when s = 5”, the rsh-BGMRES-v2 method is superior to the rsh-BFOM and rsh-BGMRES-v1 methods.

As indicated in Table 3, except for the case of “Dubcova2 when s = 5”, the required matrix-vector products
and CPU time for the rsh-BFOM-D method are less than those of rsh-BFOM. Moreover, except for the cases of
“sherman4 when s = 3,5”, “wathen120 and Dubcova2 when s = 5”, we can see that the rsh-BGMRES-D-v2
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Table 3 Numerical results for Example 2 with s = 3,5, m = 20, k = 3 and l = 15.

m = 20 s = 3 s = 5
Test problem Method mv mnres CPU mv mnres CPU

nos5

rsh-BFOM 14280 2.0949e-09 4.7813 23300 2.6213e-09 8.0781
rsh-BFOM-D 1725 1.8782e-09 1.3594 2310 6.4439e-10 2.0156
rsh-BGMRES-v1 13380 2.1355e-09 5.7969 18600 5.2781e-08 9.1875
rsh-BGMRES-D-v1 1635 3.9361e-09 1.1094 2055 2.2047e-09 1.7656
rsh-BGMRES-v2 9600 2.1677e-09 4.0938 11300 2.3522e-09 5.9531
rsh-BGMRES-D-v2 2100 3.6981e-09 1.5781 4810 3.0451e-09 5.0938

sherman4

rsh-BFOM 660 5.9177e-10 0.4531 1500 3.3237e-09 1.0156
rsh-BFOM-D 330 2.7676e-10 0.4218 525 5.9144e-10 0.6250
rsh-BGMRES-v1 660 2.6078e-09 0.5937 3000 2.9209e-06 2.2656
rsh-BGMRES-D-v1 330 2.1252e-10 0.3906 525 3.3766e-10 0.6218
rsh-BGMRES-v2 660 2.6406e-09 0.5156 1900 3.2142e-09 1.4219
rsh-BGMRES-D-v2 735 6.9338e-09 0.8750 1110 6.5625e-08 1.6250

wathen120

rsh-BFOM 1680 1.9009e-08 28.297 1900 2.3336e-08 53.766
rsh-BFOM-D 870 1.1184e-08 22.281 1205 1.3785e-08 44.891
rsh-BGMRES-v1 1620 1.4964e-08 29.891 1900 9.6145e-09 58.594
rsh-BGMRES-D-v1 825 1.2061e-08 19.000 1205 2.2034e-08 38.578
rsh-BGMRES-v2 1620 1.3875e-08 29.797 1800 1.3131e-08 54.109
rsh-BGMRES-D-v2 1260 2.6917e-08 25.922 1665 3.7816e-08 55.016

Dubcova2

rsh-BFOM 1020 8.7651e-09 51.641 600 2.0704e-08 33.922
rsh-BFOM-D 645 1.9497e-08 45.000 610 1.3701e-09 42.000
rsh-BGMRES-v1 960 2.2585e-08 50.016 600 2.3452e-08 35.188
rsh-BGMRES-D-v1 645 5.7092e-09 41.078 525 2.8957e-08 33.016
rsh-BGMRES-v2 960 9.4332e-07 49.531 600 1.9072e-08 34.797
rsh-BGMRES-D-v2 840 1.3384e-07 47.891 740 3.5496e-07 46.172

bidiag

rsh-BFOM - - - - - -
rsh-BFOM-D 510 2.4030e-10 1.7344 695 1.9708e-09 2.0469
rsh-BGMRES-v1 - - - - - -
rsh-BGMRES-D-v1 510 2.6322e-10 1.3594 695 6.3707e-09 1.8281
rsh-BGMRES-v2 6840 4.5704e-07 15.406 4900 2.5540e-06 11.125
rsh-BGMRES-D-v2 3045 8.6032e-09 7.9531 3145 6.4237e-09 8.8750

tridiag

rsh-BFOM - - - - - -
rsh-BFOM-D 510 6.9935e-10 1.7813 695 8.7645e-10 2.1094
rsh-BGMRES-v1 - - - - - -
rsh-BGMRES-D-v1 465 2.2872e-09 1.1875 695 2.4902e-09 1.8438
rsh-BGMRES-v2 - - - 6400 2.8854e-04 14.156
rsh-BGMRES-D-v2 2205 9.7581e-09 5.7188 2775 1.6692e-08 7.6719

method works better than the rsh-BGMRES-v2 method in terms of the number of matrix-vector products or
CPU time. On the other hand, similar to Example 1, the reported numerical results disclose the superiority of
the rsh-BGMRES-D-v1 method over the other comparison methods.

In order to make a fair comparison, Figure 1 depicts the log10 plot of the maximum residual norms with
respect to the number of matrix-vector products for the proposed methods when s = 3. We observe that the rsh-
BFOM-D and rsh-BGMRES-D-v1 methods not only converge more rapidly than the other methods, but they
also achieve more accurate residual norms. In fact, for the test matrices bidiag and tridiag, it can be seen that
rsh-BFOM and rsh-BGMRES-v1 begin to diverge significantly, while the rsh-BFOM-D and rsh-BGMRES-D-v1
methods converge very fast. It should also be noted that, for wathen120 and Dubcova2, the rsh-BGMRES-D-v1
method slightly outperforms rsh-BFOM-D. Finally, a comparison among the proposed deflated methods reveals
that the performance of rsh-BGMRES-D-v2 is not satisfying as well as that of rsh-BFOM-D and rsh-BGMRES-
D-v1.

Example 3 In this example, the different values of l are considered in order to further evaluate the efficiency of
the deflated version of the rsh-BFOM, rsh-BGMRES-v1 and rsh-BGMRES-v2 methods. To this end, we use the
five test matrices nos5, memplus, wang3, wathen120 and Dubcova2. The value of the parameter l is coming
from {10,15}, and the value of the parameters k, s and m is set to be 3, 5 and 20, respectively.

The numerical results for the different values of l are shown in Table 4. This table illustrates that the number
of matrix-vector products and CPU time for the rsh-BFOM-D, rsh-BGMRES-D-v1 and rsh-BGMRES-D-v2
methods decrease when the value of l increases from 10 to 15. Moreover, for l = 15, the rsh-BGMRES-D-v1
method outperforms the other methods with respect to the number of matrix-vector products or CPU time.

Example 4 In this example, we take the s× s diagonal matrix Σ j = diag([σ (1)
j , . . . ,σ

(s)
j ]) as Σ j = α j Is, where

j = 1,2, . . . ,k. In fact, we consider the special case σ
(i)
j = α j, for i = 1, . . . ,s. Moreover, we choose α j =

−8 ∗ ( j+ 1) ∗ 10−8 ∗ones(s,1), where the MATLAB-command ones creates an s-by-1 vector of ones. The
test matrices used in this example are raefsky1, poisson3Da, wathen100 and poisson3Db. We also take m= 20,
k = 3, s = 3 and l = 3.
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(a) A = nos5. (b) A = sherman4.

(c) A = wathen120. (d) A = Dubcova2.

(e) A = bidiag. (f) A = tridiag.

Fig. 1 The log10 plot of the maximum residual norms with respect to the number of matrix-vector products for Example 2 with s = 3,
m = 20, k = 3 and l = 15.

Table 4 Numerical results for Example 3 with s = 5, m = 20, k = 3 and l = 10,15.

nos5 memplus wang3 wathen120 Dubcova2
Method mv CPU mv CPU mv CPU mv CPU mv CPU
rsh-BFOM 22600 8.7969 200 1.8750 200 3.0938 6000 167.52 1200 67.125
rsh-BGMRES-v1 19000 9.4063 200 1.8906 200 3.1563 5500 160.50 1200 69.797
rsh-BGMRES-v2 12400 6.6875 200 1.9844 200 3.0781 1810 63.703 910 61.344
rsh-BFOM-D 3160 2.4688 190 1.7344 190 2.7656 4900 142.83 1100 64.641

l = 10 rsh-BGMRES-D-v1 2890 2.3281 190 1.7206 190 2.0625 1720 56.672 910 58.094
rsh-BGMRES-D-v2 6080 6.8281 190 1.9063 190 3.0156 2850 91.297 1330 82.172
rsh-BFOM-D 2310 2.0156 100 0.8593 185 2.7656 1205 44.891 610 42.000

l = 15 rsh-BGMRES-D-v1 2055 1.7656 185 0.7656 185 2.7650 1205 38.578 525 33.016
rsh-BGMRES-D-v2 4810 5.0938 185 1.8906 185 3.0313 1665 55.016 740 46.172

The numerical results for the mentioned test matrices are reported in Table 5. Except for the test matrix
wathen100, the numerical results of this table demonstrate that the rsh-BFOM method is superior to the rsh-
BGMRES-v1 and rsh-BGMRES-v2 methods. We can also see that the number of matrix-vector products and
CPU time for the deflated version of the rsh-BFOM, rsh-BGMRES-v1 and rsh-BGMRES-v2 methods are
smaller than those of the non-deflated ones. Particularly, for the test matrix raefsky1, the rsh-BFOM, rsh-
BGMRES-v1 and rsh-BGMRES-v2 methods do not converge, whereas the performance of their deflated ver-
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sions is quite satisfactory. Table 5 also indicates that rsh-BGMRES-D-v1 outperforms the other methods in
terms of both the number of matrix-vector products and CPU time.

Table 5 Numerical results for Example 4 with s = 3, m = 20, k = 3 and l = 3.

raefsky1 poisson3Da
Method mv mnres CPU mv mnres CPU
rsh-BFOM - - - 1380 8.8852e-09 8.3906
rsh-BFOM-D 1998 2.5506e-09 8.3906 744 1.4904e-09 6.2344
rsh-BGMRES-v1 - - - 1380 6.9788e-09 9.6719
rsh-BGMRES-D-v1 1827 6.8562e-09 6.0156 687 5.7101e-09 5.1406
rsh-BGMRES-v2 - - - 1380 6.9724e-09 9.7344
rsh-BGMRES-D-v2 15561 6.3848e-09 49.313 1053 2.2605e-08 8.0625

wathen100 poisson3Db
Method mv mnres CPU mv mnres CPU
rsh-BFOM 8280 1.4089e-08 109.08 2700 1.2945e-08 186.94
rsh-BFOM-D 1485 1.4603e-08 26.000 1827 2.0786e-08 158.75
rsh-BGMRES-v1 8880 4.2202e-07 131.91 3360 2.6493e-08 247.64
rsh-BGMRES-D-v1 1428 9.2839e-09 22.922 1713 2.4723e-08 139.89
rsh-BGMRES-v2 6900 2.3093e-08 103.91 3360 2.4485e-08 248.55
rsh-BGMRES-D-v2 3744 2.8557e-08 58.313 2457 3.3705e-08 186.97

For the sake of studying the numerical behavior of the different methods, Figure 2 shows the log10 plot
of the maximum residual norms with respect to the number of matrix-vector products. In some cases, e.g.,
poisson3Da and poisson3Db, it should be mentioned that the curves of rsh-BGMRES-v1 and rsh-BGMRES-
v2 are overlapped with each other. According to this figure, the rsh-BFOM-D, rsh-BGMRES-D-v1 and rsh-
BGMRES-D-v2 methods converge much faster than their non-deflated versions.

(a) A = raefsky1. (b) A = poisson3Da.

(c) A = wathen100. (d) A = poisson3Db.

Fig. 2 The log10 plot of the maximum residual norms with respect to the number of matrix-vector products for Example 4 with s = 3,
m = 20, k = 3 and l = 3.

Example 5 The aim of this example is to consider the quantum chromodynamics (QCD) application to illustrate
the performance of the rsh-BFOM, rsh-BGMRES-v1 and rsh-BGMRES-v2 methods and their deflated versions.
It is known that the QCD application consists of problems with multiple right-hand sides and multiple shifts
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[6]. In this example, a set of six QCD matrices, denoted by Di for i = 1, . . . ,6, is chosen from the University of
Florida Sparse Matrix Library. For each matrix Di, the base matrix is considered as Ai = ( 1

κc
+ 10−3)I−Di in

which the parameter κc represents the critical value. Furthermore, the right-hand side is set as B = ones(n,s).
Table 6 describes some details of these QCD matrices. It should be also mentioned that the values of κc are
considered as suggested in [56].

Table 6 Information of the six QCD matrices used in Example 5.

Matrix ID QCD matrix Size Nonzeros Type κc
A1 conf5 0-4x4-14 3,072 119,808 complex 0.20328
A2 conf5 0-4x4-22 3,072 119,808 complex 0.20235
A3 conf5 0-4x4-26 3,072 119,808 complex 0.21070
A4 conf5 4-8x8-10 49,152 1,916,928 complex 0.17843
A5 conf6 0-8x8-20 49,152 1,916,928 complex 0.15717
A6 conf6 0-8x8-80 49,152 1,916,928 complex 0.15623

Table 7 reports the number of matrix-vector products and CPU time when m= 120, k = 2, s= 3 and l = 3. In
each case, except for A2 and A4, this table shows that the rsh-BFOM method uses the least CPU time compared to
other methods. In addition, rsh-BGMRES-v2 produces better results than rsh-BGMRES-v1 in all the cases. The
results obtained in this table indicate that rsh-BFOM-D requires fewer matrix-vector products or CPU time than
rsh-BGMRES-D-v1 and rsh-BGMRES-D-v2. We can also see that, except for A1, the number of matrix-vector
products for the rsh-BFOM-D, rsh-BGMRES-D-v1 and rsh-BGMRES-D-v2 methods is either smaller than or
equal to that of their corresponding non-deflated ones, while the CPU time required by the deflated methods is
slightly higher than that required by their corresponding non-deflated ones. Therefore, this experiment shows
that the rsh-BFOM, rsh-BGMRES-v1 and rsh-BGMRES-v2 methods perform better than their deflated versions
in terms of CPU time.

Table 7 Numerical results for Example 5 with s = 3, m = 120, k = 2 and l = 3.

A1 A2 A3
Method mv CPU mv CPU mv CPU
rsh-BFOM 360 8.4219 720 16.766 360 8.6094
rsh-BGMRES-v1 360 10.797 720 21.672 720 19.469
rsh-BGMRES-v2 360 8.8906 720 15.563 720 15.359
rsh-BFOM-D 360 8.5000 360 8.1719 360 8.2344
rsh-BGMRES-D-v1 708 24.125 708 24.453 708 23.859
rsh-BGMRES-D-v2 708 21.688 708 21.344 780 21.938

A4 A5 A6
Method mv CPU mv CPU mv CPU
rsh-BFOM 720 321.22 720 320.20 360 159.47
rsh-BGMRES-v1 720 326.00 720 326.25 720 323.75
rsh-BGMRES-v2 720 318.38 720 323.94 360 161.06
rsh-BFOM-D 708 325.56 708 326.64 360 159.65
rsh-BGMRES-D-v1 708 331.63 708 332.14 708 330.66
rsh-BGMRES-D-v2 708 328.64 708 325.45 708 330.80

6 Conclusion

Frommer and Glässner [16] and Simoncini [41] have proposed the restarted shifted GMRES and restarted
shifted FOM methods, respectively. In this paper, due to the shift-invariance property of the block subspace
and the collinearity property, we have established two block versions for restarted shifted FOM and restarted
shifted GMRES, called rsh-BFOM and rsh-BGMRES, so as to solve sequences of shifted linear systems. We
have presented two implementations of the rsh-BGMRES method, i.e., “rsh-BGMRES with an unshifted base
system” and “rsh-BGMRES with a variable shifted base system”. Moreover, we have introduced the deflated
version of the above-mentioned methods. The numerical experiments on several large and sparse test matrices
have demonstrated that (1) the rsh-BFOM and rsh-BGMRES methods are efficient for solving sequences of
shifted linear systems; (2) rsh-BFOM outperforms “rsh-BGMRES with a variable shifted base system” for some
cases, while “rsh-BGMRES with a variable shifted base system” works better than rsh-BFOM for some other
cases; (3) the performance of rsh-BFOM and “rsh-BGMRES with a variable shifted base system” is better than
that of “rsh-BGMRES with an unshifted base system”; (4) the application of the deflation technique into the
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rsh-BFOM and rsh-BGMRES methods can boost the efficiency level of the original methods; (5) the deflation
version of “rsh-BGMRES with an unshifted base system” outperforms the other comparison methods. However,
from the experiment on the QCD application, we have found that the number of matrix-vector products for the
methods rsh-BFOM, “rsh-BGMRES with an unshifted base system” and “rsh-BGMRES with a variable shifted
base system” is smaller than or equal to that of their corresponding non-deflated methods, while the CPU time
demanded by the deflated methods was slightly higher compared to that time required for their corresponding
non-deflated methods. Therefore, further investigations are needed to enhance the performance of the deflated
version of the proposed methods. For a future work, we will intend to apply the idea of preconditioning strategy
to deflated variant of the rsh-BFOM and rsh-BGMRES methods.
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