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Abstract: This study focused on the detection of mesoscale meteorological phenomena, such as
the nocturnal low-level jet (NLLJ) and sea breeze (SB), using automatic deterministic detection
wavelet technique algorithms (HWTT and SWT) and the machine learning recurrent neural network
(RNN) algorithm. The developed algorithms were applied for detection of NLLJ and SB events
from ultrasonic anemometer measurements, performed between January 2018 and December 2019
at a nearshore experimental site in the north of France. Both algorithms identified the SB and NLLJ
days successfully. The accuracy of SB event detection by the RNN algorithm attained 95%, and we
identified 67 and 78 SB days in 2018 and 2019, respectively. Additionally, a total of 192 and 168 NLLJ
days were found in 2018 and 2019, respectively. To demonstrate the capability of the algorithms to
detect SB and NLLJ events from near-ground ultrasonic anemometer measurements, analysis of the
simultaneous wind lidar measurements available for 86 days were performed. The results show a
good agreement between the RNN-based detection method and the lidar observations, detecting 88%
of SB. Deterministic algorithms (HWTT and SWT) detected a similar number of NLLJ events and
provided high correlation (0.98) with the wind lidar measurements. The meteorological phenomena
studied can significantly affect the energy production of offshore wind farms. It was found that the
maximum hourly average peak power production could be to 5 times higher than that of the reference
day due to higher wind speed observed during NLLJ events. During SB events, hourly average peak
power production could be up to 2.5 times higher. In this respect, the developed algorithms applied
for analysis, from near-ground anemometer measurements, may be helpful for monitoring and
forecasting the meteorological phenomena capable of disturbing the energy production of offshore
wind turbines.

Keywords: sea breeze; nocturnal low-level jet; machine learning algorithm; wind; phenomenon
automatic detection algorithm

1. Introduction

A number of meteorological phenomena, such as the nocturnal low-level jet (NLLJ)
and sea breeze (SB), are observed in the lower atmospheric boundary layer in coastal
regions. During these events, changes in wind speed, direction, and turbulence parameters
occur at a time scales smaller than one hour. As a result, NLLJ and SB may have some
impacts on the power production of wind turbines and air quality [1–3].

During SB events, the wind speed increases and the wind blows from the sea towards
the land. This phenomenon occurs due to an adverse atmospheric pressure gradient
generated by the temperature difference between the land and sea during the daytime. SB
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evolution depends on a large range of geophysical factors including topography, Coriolis
force, heat diffusion, solar radiation, synoptic forcing, and sea surface temperature [4–6].

In coastal regions, LLJ, characterized by a maximum in the wind speed profile in the
lower troposphere [7,8], can have different driving mechanisms [9]. According to Schulz-
Stellenfleth et al. [10], LLJ can be attributed to frictional decoupling from the underlying
surface or baroclinicity due to the temperature contrast between the land and sea. Over the
southern North Sea, relatively warm continental air advected over the cooler sea surface
supports the development of surface temperature inversion, leading to the decoupling of
the surface friction and acceleration of an air mass [11,12]. Moreover, the surface roughness
difference between the land and sea favors the air flow acceleration [13]. Over the southern
part of the North Sea, LLJ mainly occurs during the nighttime hours [13].

Recently, the power production of offshore wind turbines has become a large source
of renewable energy capable of minimizing global carbon emissions. Since the SB is an
important event of the coastal and offshore wind climate, it may significantly affect the
resource assessment during the initial pre-construction phase of a wind farm. Indeed,
the effect of the SB on offshore wind power production is not negligible; for example,
along the Gujarat coast (India), the SB contributed 6.2% of the annual energy generation
at the nearshore locations [14]. In the Llobregat Delta (NE of the Iberian Peninsula),
Mazon et al. [2] found that a range of 42 to 55% of total wind energy was generated during
the SB period, which accounts for 22% of the total time in a year. The resource assessment
studies highlighted the importance of sea breezes, because they occur frequently during
peak energy demand periods (summer afternoons) across many coastlines designated
for offshore wind energy [15,16]. Some studies conducted in the European North Sea
reported an enhancement in energy production due to SB [17,18]. Around the southern
North Sea, Steele et al. [17] estimated wind energy enhancement of 10% due to the presence
of the coastal jet, depending on the sea-breeze type and coastline characteristics. The SB
may affect LLJ formation. During the North Sea OBLEX-F1 campaign, SB circulations
have been observed that vanished before jet detection [9]. This process was previously
observed by Angevine et al. [19], where an LLJ evolved after an SB breakdown [19]. During
the OBLEX-F1 campaign, most LLJ detections occurred between the evening and the
morning [9]. As population density and economic activity in the coastal zone increase [20],
this nocturnal phenomenon can have some important impact on air quality [21–24] and
on power production of wind turbines, especially during the high-electricity-consumption
evening period (peak period), corresponding to the evening hours (after sunset) when
there is a lot of demand [25]. To meet the nighttime power requirement from offshore wind
turbines, NLLJ events can be effective in coastal regions.

Therefore, there is a strong motivation to fully understand the offshore wind and
to develop algorithms capable of efficiently, easily, and quickly detecting SB and NLLJ
from near ground, in situ measurements. In the literature, several methods have been
developed for time series classification, such as feature-based [26] and transformation-based
ensembles [27,28], supervised machine learning algorithms [29], and deep learning [30,31].
However, to the best of our knowledge, no study has focused on SB day classification
algorithms using machine learning and NLLJ using deterministic methods applied mainly
to in situ wind measurements near the ground.

The present study focused on the development of cutting-edge classification algo-
rithms for SB and NLLJ, using time series of wind speed, wind direction, and turbulence
kinetic energy measured by an ultrasonic anemometer in the coastal region of northern
France. Moreover, we checked the performance of these algorithms by comparing them
with lidar measurements. The second objective of this study was to develop a new ma-
chine learning algorithm using a recurrent neural network (RNN) to detect SB days and
algorithms to detect NLLJ using discrete wavelet transform. The measurement techniques
and the methodology for analysis and classification are presented in Section 2, and results
are summarized in Section 3, followed by the conclusion in Section 4.
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2. Materials and Methods

Measurements were taken in Dunkerque for a period of 2 years, using a 20 Hz ultra-
sonic anemometer (Figure 1). This measurement device provides 15 min averaged data. In
the frame of EPhEMER project (Etude des Phénomènes météorologiques et leurs impacts
sur la production Eolienne en MER) and during an intensive observation period (IOP) of
86 days (from July to October 2021), another ultrasonic anemometer located in the front of
the coastal line (15 m AGL) and two Vaisala WindCube lidars (WLS7 and WLS100) were
deployed to assess the impact of NLLJ and SB on wind turbines.

Figure 1. Measurement location map of North West of Europe (a); location in Dunkerque of the
different experimental devices used in the measurement campaign (2 ultrasonic anemometers and
2 wind lidars) (b).

2.1. Calculation of Turbulence Parameters

uR, vR, and wR are respectively the zonal, meridional, and vertical components of
wind velocity measured using the ultrasonic anemometer. The wind flow directions
are detailed in [32]. To avoid the effects of the meteorological coordinate system on the
turbulence parameters, we adopted a new coordinate system where the mean flow is
aligned with the x-axis [32,33]. In the new coordinate system, the instantaneous streamwise,
transverse, and vertical wind velocity components (u, v, and w) were decomposed into a
mean part and fluctuating part as:

u = u + u′, u = u + u′, w = w + w′, (1)

where u, v, and w are mean velocity components (15 min averaged), and u′, v′, and w′ are
the corresponding velocity fluctuations.

The turbulence kinetic energy (TKE) is defined as:

TKE =
1
2

(
u′2 + v′2 + w′2

)
, (2)

The integral length scale can be calculated from the autocorrelation function using the
Taylor frozen turbulence hypothesis [34] as:

Lu = u
∫ ∞

0
Cu,x(t)d∆t, (3)

where Cu,x(t) is the autocorrelation function, given as:

Cu,x(∆t) = Cu,x(∆x) =
u′(t)·u′(t− ∆t)

u′2
, (4)
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and ∆t is the time period, defined as:

∆t =
∆x
u

, (5)

2.2. Detection Methods

To detect the SB and NLLJ, we developed four automatic detection algorithms: (i) Sign
Change of Sea-Breeze Component (SCSBC) and (ii) machine learning recurrent neural
network (RNN) for SB detection; (iii) Haar wavelet threshold technique (HWTT) and
(iv) Symlets wavelet slope technique (SWT) for NLLJ detection.

In the SCSBC algorithm, four filters were used to identify SB days (steps 1 to 4 in
Figure 2). Step 1 separates the extreme events. Step 2 rejects those days where wind
direction changes more than 90 degrees in less than 1 h. In Step 3, for a period from 08:00
to 11:00 UTC, a shift in wind direction from offshore to onshore was recognized from an
alteration of the sign of the normalized SB component (SBC = (U × sin(−WD))/U, where
WD is the wind direction and U is the horizontal wind speed). A change from a negative to
a positive value of SBC signifies the occurrence of an SB [35]. In the last step, a positive
slope of the temperature gradient confirms the authenticity of the SB.

Figure 2. Flow chart for the SCSBC sea-breeze identification method.

In the RNN framework for SB detection, long short-term memory (LSTM) neural
networks are a typical form of RNN. Hidden units in LSTM are capable of recalling the
long-term reliance on sequential data (e.g., time series data), thus enhancing the efficiency
for classifying the SB and non-SB days. Figure 3 shows the LSTM framework. Since SB
days are frequent during the summer, we used six months (from April to September) of
data in the input layer. The SBC in each day is treated as features, which consist of 15 min
averaged wind direction for a period of 24 h. A total of 182 sequential feature vectors are
used to train the network. The cell state in one LSTM block is updated by four interacting
layers, namely, forgetting gate, input gate, cell state updating, and output gate. Equations
involved in these gates are detailed in [3]. Note that a number of trials with hidden units
was made to optimize the hyperparameter. We found that 96 hidden units is best to achieve
an optimal prediction of SB days. The output from LSTM passes through a fully connected
layer (2 classes). The output from the fully connected layer is followed by an output layer
consisting of a softmax activation function, resulting in binary classification (i.e., 1 for SB or
0 for non-SB).
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Figure 3. Machine learning recurrent neural network for the sea-breeze identification method (RNN).

We used a cross-entropy loss function to train classifiers. To optimize the backpropa-
gation, the adaptive momentum estimator (ADAM) was used. The initial learning rate of
ADAM was 0.001. To achieve a maximum accuracy a minibatch of 27 sequences, 300 epochs
(6 iterations per epoch) were used. To train the network, we used 182 sequences from the
year 2018. To test the network output, the same number of sequences from 2019 was used.

For HWTT for NLLJ detection, we used 5 filters (steps 1 to 2.3) to identify the NLLJ
events (Figure 4). Since the LLJ is a nighttime event, Step 1 eliminates the extreme events.
The turbulence kinetic energy (TKE) was calculated in Step 2. The decomposition of TKE
was performed by the Haar wavelet function [1,36] in Step 2.1. In Steps 2.2 and 2.3, a large
value of the dilation coefficient from sunset until early morning signifies the occurrence
of NLLJ.

Figure 4. Flow chart for the low-level jet identification method using the Haar wavelet func-
tion (HWTT).

For the SWT for NLLJ detection (Figure 5), Steps 1 and 2 used in this algorithm are
exactly the same as those for HWTT. However, the decomposition of the TKE signal was
performed by discrete wavelet transform. Symlets mother wavelet function [37] was used
to decompose the TKE signal into 4 levels of time resolution (15 min to 1 h). We tried to
identify the NLLJ with all resolutions of decomposed TKE signals and found that a 1 h
resolution (level 4) of the TKE signal provides optimal classification. The slope of this
decomposed TKE was computed from sunset until early morning. In Steps 2.2 and 2.3,
if the slope is positive from evening to midnight, and negative from midnight to early
morning, it is considered a NLLJ event; otherwise, it is a non-NLLJ event.
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Figure 5. Flow chart for the low-level jet identification method using Symlets wavelet function and
the slope of wavelet coefficients (SWT).

3. Results
3.1. Sea-Breeze Classification Results

The daytime heating creates thermal contrast between the land and sea, resulting in a
concentrated wind flow from the sea toward land. We identified 67 and 78 SB days in 2018
and 2019, respectively, during the summertime (Figure 6) using the SCSBC algorithm.

Figure 6. Identification of SB days using SCSBC algorithm from wind measurements in 2018 (a);
2019 (b). SB days identified by RNN algorithm, 2019 (c).

Furthermore, we developed an RNN algorithm using an LSTM block capable of
detecting SB days. To train the network, we used the categorical SBC data from 2018. The
RNN was used to classify the SB days in 2019. To validate the machine learning RNN
performance, we used actual data of SBC from 2019 (Figure 7).

Figure 7. Performance test of RNN algorithm for SB day identification in 2019, actual average SBC of
all SB days (a); predicted average SBC of all SB days (b); confusion matrix and accuracy (c).
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The average actual and predicted SBC for all SB days are shown in Figure 6. In order
to check the classification performance of the RNN algorithm, three statistical metrics,
namely, sensitivity, specificity, and classification accuracy, were used. The sensitivity is
defined as the ratio between the classified true positive (i.e., both observation and prediction
samples are positive) and the total number of samples in true class 1, whereas false negative
stands for the observed samples that are positive but prediction samples are negative.
Specificity can be stated as the proportion of true negative (i.e., both observation and
prediction samples are negative) and the total number of samples in true class 2, whereas
false positive means the observed samples are negative but prediction samples are positive.
The accuracy is calculated as the ratio of true positive and negative samples to all classes.
The proposed RNN algorithm is good enough, having 98% sensitivity, 91% specificity, and
95% classification accuracy. The performance of the RNN algorithm can be enhanced with
a greater number of observations.

Figure 8 shows the time average of the wind speed of all SB days. For both years, the
range of variation in the average wind speed (Lws = 2.9 m/s to Hws = 4.9 m/s) was to be
similar, where Lws and Hws are low and high wind speed, respectively. The maximum
wind speed during the SB days occurs roughly from 13:00 UTC to 17:30 UTC. We observed
that the maximum average wind speed during SB events is around 5 m/s (10 m AGL).

Figure 8. Time average of wind speed for all SB days during 2018 (a); 2019 (b).

3.2. Nocturnal Low-Level Jet Classification Results

A concentrated wind flow after sunset is known as the NLLJ. Since the NLLJ is a
nighttime phenomenon, it can increase offshore wind power production during the night.
Therefore, it is important to detect NLLJ phenomena in coastal regions for offshore wind
turbines. We devised two automatic NLLJ detection algorithms, HWTT and SWT. Since
the performance of both algorithms is quite similar, only the NLLJ classification by SWT is
shown in Figure 9.

Figure 9. Identification of NLLJ days using SWT algorithm from wind measurements in 2018 (a);
2019 (b).

Except for October 2018 and January 2019, we found a significant occurrence of NLLJ
in every month. A total of 192 and 168 NLLJ days were found in 2018 and 2019, respectively.

Figure 10 shows the hourly average of wind speed for all NLLJ days. The NLLJ events
start during the evening; the wind speed increases until midnight, and then decreases. The
range of average wind speed, near ground, was Lws = 3.9 m/s to Hws = 4.9 m/s in 2018
during NLLJ events. However, the range of average wind speed was Lws = 4.3 m/s to
Hws = 5.2 m/s in 2019 during NLLJ events. We found that near the ground, the average
wind speed increases by 1 m/s due to NLLJ during nighttime.
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Figure 10. Time average of wind speed for all NLLJ days in 2018 (a); 2019 (b).

3.3. Validation of the Algorithms Detection

The algorithms of LLJ and SB detection were developed using only ultrasonic
anemometer measurements during 2018–2019. However, in order to validate the algo-
rithms, we exploited a statistically relevant database obtained from Vaisala WindCube lidar
WLS100 measurements during an IOP of 86 days from 23 July 2021 to 16 October 2021.
Hence, wind lidar measurements were used as a reference to validate the algorithms.

The RNN algorithm was validated by the SCSBC during 2019 and we ran it for the
IOP. In this study, the SB criteria to determine the SB events from wind lidar measurements
were the shift in wind direction from the land to the sea (<1 h) and/or the presence of
the gravity current coming from the sea (NW to NE) with a change in wind direction [1].
During the IOP, 25 SB events were observed (two SB days from 23 to 31 July, eight days in
August, 13 days in September, and two days in October 2021). The results obtained by the
RNN algorithm are in good agreement with the observations, with 22 SB events detected
(two SB days from 23 to 31 July, eight days in August, 10 days in September, and two days
in October 2021).

Concerning NLLJ observations, NLLJ days were identified in the horizontal wind
speed lidar profile, with a maximum wind (in this study below 1000 m), and decreasing
wind speeds of at least 2 m/s both below and above that height [38]. NLLJ days occurred
28% of the time (582 of 2064 measurements), corresponding to 69 NLLJ events (162 of 250).
During the IOP, the mean NLLJ core height was 260 m and the maximum observation
height was between 500 and 800 m, corresponding to less than 10% of the NLLJ core height
detected. The average NLLJ speed (wind speed at jet core height) was 10 m/s, with a
standard deviation of 3 m/s. Around 75% of LLJ core came from the land to seaward, with
a maximum of 20 m/s (Figure 11a), and a range of NLLJ speed between 8 and 14 m/s
(Figure 11b).

Figure 11. (a) Windrose of NLLJ core; NLLJ speed is shown in m/s and the percentage corresponds to
the occurrence of NLLJ speed and direction relative to the total amount of NLLJ observed; (b) relative
frequency distribution of NLLJ speed.

HWTT and SWT algorithms both detected 70 NLLJ events. The results show that 92%
of events deduced from the HWTT algorithm are in good agreement with observations.
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However, the algorithm detected 70 NLLJ events, corresponding to one event more than
those observed, which can be attributed to the difficulty of validating this NLLJ event
during a cloudy night, which limits the maximum range of wind lidar measurements.
Moreover, 573 h of NLLJ were detected by the algorithm versus 582 h of NLLJ observations.
The comparison between arrival times of NLLJ observed by the lidar and deduced from
the algorithm shows a linear regression equation with an intercept of −0.05, corresponding
to a delay of about 1 h. The NLLJ time arrival agreed well with the observations. Moreover,
comparison between the NLLJ breakdown times shows a linear regression equation with
an intercept of +0.04. This means that the algorithm no longer detects the NLLJ with a
gap of 1 h before the NLLJ breakdown times. Although the SW LLJ direction dominates
during this IOP, both results cannot be explained by the separation distance between the
anemometer and the wind lidar (located south from the anemometer). However, both
results are in good agreement, with a correlation coefficient R2 of 98% between the NLLJ
detected from HWTT and wind lidar measurements.

3.4. Influence of NLLJ and SB on Power Production by Wind Turbines

In order to illustrate the impacts of NLLJ and SB on wind turbines, the hourly average
of the horizontal wind speed for each altitude below 1000 m, measured by the wind lidar
during NLLJ event days (Figure 12a) and SB event days (Figure 12b) of the IOP, was plotted.
The date of 7 October 2021 was selected as a representative reference day without NLLJ
and SB events below 300 m (Figure 12c).

Figure 12. Time height section of hourly average horizontal wind speed using lidar measurements for
NLLJ events from WLS100 (a); SB events from WLS100 (b); and for the reference day from WLS7 (c).
Time evolution of hourly average TKE at 10 m (AGL) for NLLJ events (d); for SB events (e); and TKE
for the reference day (f). Time evolution of hourly average potential power calculated using rotor
equivalent wind speed for NLLJ events (g); for SB events (h); and for the reference day (i). Time
evolution of hourly average length scale (Lu) for NLLJ events (j); for the SB events (k); and for the
reference day (l).
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Figure 12a reveals the presence of NLLJ between 00:00 to 6:00 UTC and 18:00 to 00:00
UTC located below 600 m. During NLLJ event days, the wind speed is relatively low
during the daytime, unlike for the rest of the day, during which the NLLJ jet speed can
reach more than 8 m/s. The NLLJ jet core is roughly located between 75–600 m with a
jet speed height around 250 m. However, the majority of the jet core seems to decrease in
the early morning before dissipating during daytime. The relatively high values of TKE
observed near ground during the night can be explained by the presence of wind shear
located below the jet core, which generates turbulence (Figure 12d).

Regarding SB events (Figure 12b), the results appear similar to those obtained for
NLLJ events but with a more pronounced wind speed zone between 10:00 and 17:00 below
200 m. This zone corresponds to SB occurrence and seems to have an influence on the NLLJ
development: the latter starts about 1 h earlier compared to days without SB events. This
effect was observed in previous studies which revealed that, during low synoptic wind
speeds, SB can occur, creating a LLJ [9,19,39]. This one-hour earlier arrival time of NLLJ
may be explained by the fact that during SB events, the TKE is relatively low (Figure 12e),
in comparison to the NLLJ event days (Figure 12d) and the reference day (Figure 12f); this
may favor earlier formation of an inversion layer formation. Indeed, the daytime TKE low
values may be due to the advection of cooling air coming from the sea toward the land.
Therefore, the SB gravity current may support the development of surface temperature
inversion, leading to the decoupling effect, which may favor the formation of the NLLJ.

The wind power production was estimated for a wind turbine with a height range of
about 100–150 m. The power was calculated as:

Power =
π

2
r2URes

3ρϕ, (6)

where r is the rotor radius, URes is the rotor equivalent wind speed, ρ is air density, and ϕ is
the efficiency factor; we used ϕ = 40% for all calculations.

The rotor equivalent wind speed can be calculated as [40]:

URes =

(
nh

∑
i=1

U3
i

Åi

Å

)
,1/3 (7)

where nh is the measurement height, Ui is the average wind speed for the ith segment,
Å is the total rotor swept area, Åi(=

∫ Hi+1
Hi

{(H)dH) is the area of the ith segment, where

{(H) = 2
√

r2 − (H − Hhub)
2, r is the rotor radius, and Hhub is the hub height.

Figure 12g shows that the hourly average maximum power (≈2.5 megawatts) can
be achieved at 21:00 UTC during the NLLJ events. Hence, the maximum hourly average
estimated peak power generation is approximately 5 times higher than that of the reference
day (Figure 12i). The hourly average SB events are mainly observed between 10:00 and 17:00
UTC. Then, during the SB events, the hourly average estimated peak power generation can
be up to 2.5 times higher than that of the reference day.

The hourly average integral length scale (Lu), deduced near ground, has a similar
evolution as that of the hourly average power production during the NLLJ (Figure 12j) and
SB (Figure 12k) events, and the reference day (Figure 12l). Lu is the length of the largest
eddy at the measurement location. An increment in Lu was observed within the NLLJ
shear layer and the SB gravity current at the beginning of the NLLJ and SB occurrences.
Moreover, the Lu during the NLLJ is 1.25 times larger than that of SB, which is 1.5 times
larger than Lu of the reference day. By comparing all parameters used in this study, it was
found that the ultrasonic anemometer measurements are useful for identifying NLLJ and
SB events.
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4. Conclusions

In this study, we assessed the wind measurements with the aim to identify SB and NLLJ
meteorological events in the north of France. Measurements were mainly taken using an
ultrasonic anemometer in the coastal region of Dunkerque. We developed four algorithms
to identify NLLJ and SB days: Sign Change of Sea-Breeze Component (SCSBC), recurrent
neural network (RNN) for SB, Haar wavelet threshold technique for NLLJ (HWTT), and
Symlets wavelet slope technique for NLLJ (SWT).

These algorithms successfully identified the SB and NLLJ days. Some significant
results obtained from the analysis are the following:

1. The proposed RNN algorithm is good enough for SB identification, having 98%
sensitivity, 91% specificity, and 95% classification accuracy.

2. The results obtained from the RNN algorithm are in good agreement with the inde-
pendent lidar observations and show that 88% of SB events were detected during the
86-day IOP.

3. Regarding NLLJ, the proposed algorithms (HWTT and SWT) detected a similar
number of NLLJ events, with a R2 of 0.98 between the NLLJ detected from HWTT
and that from wind lidar measurement.

4. During the NLLJ events, the estimated maximum hourly average peak power genera-
tion was approximately 5 times higher than that of the reference day, and the peak
power generation was 2.5 times higher during the SB events.

5. The integral length scale during the NLLJ was found to be 1.25 times larger than that
during SB events. Furthermore, the integral length scale during the SB was 1.6 times
larger than that expected for a reference day.
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Abbreviations

NLLJ Nocturnal Low-Level Jet
SB Sea Breeze
AGL Above Ground Level
RNN Recurrent Neural Network
IOP Intensive Observation Period
TKE Turbulence Kinetic Energy
HWTT Haar Wavelet Threshold Technique
SWT Symlets Wavelet slope Technique
SCSBC Sign Change of Sea-Breeze Component
LSTM Long Short-Term Memory
ADAM ADAptive Momentum estimator
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