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ABSTRACT

The problem is considered of atmospheric meteorological events’ classification, such as sea breezes, fogs,

and high winds, in coastal areas. In situ wind, temperature, humidity, pressure, radiance, and turbulence

meteorological measurements are used as predictors. Local atmospheric events of 2013–14 were analyzed and

classified manually using data of the measurement campaign in the coastal area of the English Channel in

Dunkirk, France. The results of that categorization allowed the training of a few supervised classification

algorithms using the data of an ultrasonic anemometer as predictors. The comparison was carried out for the

K-nearest-neighbors classifier, support vector machine, and two Bayesian classifiers—quadratic discriminant

analysis and Parzen–Rozenblatt window. The analysis showed that the K-nearest-neighbors and quadratic

discriminant analysis classifiers reveal the best classification accuracy (up to 80% correctly classified mete-

orological events). The latter classifier has higher calculation speed and is less sensitive to unbalanced data

and the overtraining problem. The most informative atmospheric parameters for events recognition were

revealed for each algorithm. The results obtained showed that supervised classification algorithms contribute

to automation of processing and analyzing of local meteorological measurements.

1. Introduction

Information about local meteorological phenomena

is widely used in making managerial decisions related

to regional development. One of the most challenging

domains for atmospheric study are coastal zones, areas

with complex orography and industrial areas located

near large settlements. Mesoscale circulation in the

boundary layer of the atmosphere has a significant ef-

fect on the transport and dispersion of pollutants. In

particular, the development of breeze circulation con-

tributes to the accumulation of contaminants in the

area up to 20–30 km inland. The appearance of fog

leads to impairing visibility and to the formation of

smog. Multiple dangerous situations can arise from a

sudden increase of the wind speed (like squalls and

local storms).

Dangerous meteorological phenomena occurring at

regional scales often have poor predictability at synoptic

time scales. Usually, the probabilities of weather sam-

ples in selected regions are estimated based on in situ

and remote measurements or by modeling. Local cir-

culation patterns, like breezes, should be taken into

account in this type of analysis. The analysis of the sea-

breeze impact on the concentration and dispersion of

different atmospheric pollutants presented inMavrakou

et al. (2012) revealed the intensification of dispersion

processes during the sea-breeze days. Considering me-

soscale circulation under different synoptic conditions

allows a better understanding of physical mechanisms

of atmospheric pollutants’ transfer and dispersion in

densely populated industrial coastal areas (Boyouk et al.

2011; Sokolov et al. 2016; Kambezidis et al. 1998).
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Sometimes the detection of local meteorological phe-

nomena is a complicated scientific problem demanding

the expert analysis of multiple in situ, remote and atmo-

spheric modeling data. Thus, an important work should

be done to have a reliable dataset of classified meteoro-

logical events suitable for statistical study. This classifi-

cation task becomes even more complicated for the

statistical analysis of large meteorological databases. In

this article, we suggest to simplify and automate this kind

of analysis using machine learning (ML) techniques,

namely supervised classification.

The main steps of the proposed algorithm and corre-

sponding sections are the following:

1) Preparing of meteorological data. The dataset is

described in section 2.

2) Classification of meteorological events by an expert.

The information about the expert classification could

be found in section 3.

3) Selection of most informative predictors (or fea-

tures) minimizing the classification error for each

ML algorithm for the restricted and for the whole

dataset. Theoretical backgrounds and some as-

pects of ML methods are presented in section 4.

The procedure of retrieving the optimal sequence

of features could be found in section 5.

4) Evaluation of performance of selected supervised

ML algorithms by estimation of the total classification

error, other classification characteristics and corre-

sponding confidence intervals. The theoretical informa-

tion on classification characteristics and bootstrapping

technique presented in section 5.

The classification result of different ML algorithms with

restricted and whole datasets could be found in section 6.

2. Domain of study and measurements

The present study uses data collected in a field cam-

paign performed inDunkirk (see Fig. 1a), situated in the

north of France on the coastal area of the English

Channel. This area is highly urbanized and industrial-

ized, and suffers from local pollution sources such as

steel industry, oil refining, sea and land transport emis-

sions. It is also influenced by the pollution of Lille and

Paris in France, London (England), and Rotterdam (the

Netherlands) agglomerations.

The region is characterized by nearly flat orography,

and by strong atmospheric perturbations on the border

of land–sea–atmosphere. These complex atmospheric

processes are responsible for transport and dispersion of

air pollution and govern local air quality. Multiple

studies were conducted for the region on atmospheric

dynamics and pollution dispersion (Talbot et al. 2007;

Boyouk et al. 2011; Xiang et al. 2012).

We used the data of the measuring campaign that

lasted from July 2013 until August 2014. To characterize

FIG. 1. Position of (a) Dunkirk region and (b) the measuring instruments, plotted with Google Earth Pro (map data: copyright 2020

GeoBasis-DE/BKG, copyright 2020 Google; data are from SIO, NOAA, U.S. Navy, NGA, and GEBCO; image is from Landsat/

Copernicus).
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the local state of the atmosphere and phenomena

occurring on a microscale, an instrument should be

employed capable of measuring multiple atmospheric

parameters at a fine time scale of less than one hour.

Therefore, we chose the ultrasonic anemometer coupled

with a weather station (see Fig. 1b) able to perform

micrometeorological measurements in the surface layer

with a time resolution of 15min (see Fig. 1 for the po-

sition of the anemometer). We used 3D sensor USA-1 of

Metek (see http://metek.de/product/usonic-3-scientific/

), which can measure a few turbulence parameters in

addition to the horizontal wind. All atmospheric pa-

rameters measured in situ are presented in Table 1.

Wind measurements obtained by the Doppler lidar

profiler are often indispensable in addition to in situ

measurements to analyze the processes related to the dy-

namics of the lower troposphere. We used WINDCUBE

100S model produced by the Leosphere company (http://

www.leosphere.com/products/3d-scanning/windcube-

100s200s400s-turbulence-wind-lidar) (see Fig. 1 for

the position of lidar). The lidar resolution is 50m;

the range depends on atmospheric state and allows

having a dense data below 500m. Both plan position

indicator (PPI) and the range–height indicator (RHI)

scanning patterns were acquired.

In an anticyclonic situation, sunshine is essential for

the development of thermals and the formation of the

atmospheric boundary layer. It is also responsible for

the occurrence of local weather phenomena such as the

sea-breeze circulation. In this context, we applied a

model of solar radiation (see Benkaciali and Gairaa

2014; Iqbal 1983; Sen 2008) to analyze the evolution

of solar radiation during the different meteorological

events and compared the expected radiation in the case

of a clear and cloudless sky (modeling), with the

experimental data.

3. Expert classification of mesoscale
meteorological events

A local atmospheric state was analyzed manually using

the 1-yr dataset of ultrasound anemometer, weather sta-

tion and Doppler lidar wind profiler. Recognition criteria

for detection of meteorological events were established

and events were identified. Here we describe briefly the

procedure of manual events classification by an expert

[see Gengembre (2018) for details]. In some cases, the

Infoclimat meteorological site (https://www.infoclimat.fr/)

was used to analyze the global atmospheric situation.

a. Sea-breezes detection

As it was shown by few studies carried out in

Dunkirk (Boyouk et al. 2011; Talbot et al. 2007), the

breeze circulation is associated with sunny weather,

low cloudiness and low wind. The sea-breeze start was

detected under anticyclonic meteorological condi-

tions (Miller et al. 2003; Simpson 1994) by a significant

transition in meteorological parameters such as wind

direction and speed, temperature, relative humidity

and solar radiation. Previous studies have also shown

that it is difficult to identify the end of a sea breeze.

However, it is sometimes difficult to recognize breezes

using only ground measurements. In those ambiguous

situations the wind profiles obtained by Doppler lidar

allows detecting breezes. Using lidar data, we could

clearly see patterns related to the development of

thermals and increasing of the atmospheric boundary

layer before the breeze start, then we observe an impor-

tant transition of the profile of direction of the synoptic

wind and finally the breeze gravity current established

until about 300m above sea level.

To summarize, the method of the sea-breeze detec-

tion during the long campaign consists in selecting,

TABLE 1. Main meteorological and micrometeorological parameters measured by ultrasonic anemometer (rows 1–8) and the weather

station (rows 9–13).

Parameter Description Units

1 HorWind Horizontal wind speed m s21

2 DirWind Wind directionwith respect to true north, fromwhich thewind is coming

(08 corresponds to north, 908 to east, 1808 to south, and 2708 to west)

8

3 UWind Wind component from the west to the east m s21

4 VWind Wind component from the south to the north m s21

5 Ustar Friction or shear velocity m s21

6 SigW Vertical wind speed fluctuations (RMS of w) m s21

7 HF Vertical heat flux 8C�m s21

8 MF Vertical momentum flux m2 s22

9 T Temperature 8C
10 RH Relative humidity %

11 P Pressure 102 Pa

12 R Solar radiation Wm22

13 RF Rainfall 1023m
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at first, the anticyclonic and sea-wind periods (from

northwest to northeast). Then the measured solar radi-

ation is compared to the model in order to choose the

low cloud periods. Then, the periods of rapid transitions

of meteorological parameters (temperature, relative

humidity, and wind) were analyzed and breeze circula-

tion was validated using vertical wind profiles.

b. Detection of fog events

During an episode of fog, the range of the Doppler

lidar is decreased. The event recognition method is then

restricted to analyzing only the ground data of the ul-

trasonic anemometer and the weather station.

Conventionally, visibility is the parameter used to

detect fog. This type of measurement was not available

in our study, but investigations have shown that the

relative humidity threshold is a relevant parameter for

identifying a fog, although no precise threshold exists.

With regard to the relative humidity indexed in the lit-

erature (Doyle and Dorling 2002; Ding and Liu 2014;

Liu et al. 2012), we decided to apply as a first filtering

criterion a relative humidity threshold.

Like for the sea breeze, previous work has shown

marked transitions in meteorological parameters during

the setup of fog. Relative humidity increases to the near-

saturation point and the difference between air tem-

perature and dewpoint becomes small during the event.

Goswami and Sarkar (2015) showed this difference is as

low as 2K. A fog is also characterized by a low wind

speed, which is generally less than 2m�s21 (Dupont et al.

2012; Ye et al. 2015; Wang et al. 2015; Degefie et al.

2015). The Doppler lidar, which does not measure wind

profiles during the fog episodes, could nevertheless

provide useful information by decreasing of measure-

ments range, or even by the absence of a signal.

The method for detecting fog events was therefore first

selecting the periods with the relative humidity is greater

than 85%. Then we analyzed the transitions of the mete-

orological parameters (temperature, dewpoint, and wind).

c. Detection of high wind events

To detect high-wind events (HWE), the lower wind

speed threshold of 14m�s21 was introduced. Thus, HWE

corresponds to the seventh–tenth categories of the

Beaufort scale (see Saucier 1955), associated with re-

mote low pressure centers. The upper threshold corre-

sponding to the ‘‘storm’’ domain was set at 24.5 m�s21.

Relying on the data obtained during the local mea-

surement campaign, we have found that the horizontal

wind speed measured by the ultrasonic anemometer

approached the upper threshold but never exceeded it.

The lidar measurements reveal an acceleration of the

wind speed with altitude during HWEs even though the

lidar range could be reduced due to the presence of

clouds. Negative vertical velocity detected by lidar could

be related to the phenomenon of ‘‘precipitous descents’’

(see Risi et al. 2016; Kessler 1995).

To summarize, studied meteorological phenomena were

identified by values and transitions of meteorological pa-

rameters measured locally by the ultrasonic anemometer,

the weather station and the lidar profiler. By implementing

those manual weather recognition methods, the following

eventswere identifiedduring the long campaign inDunkirk:

d 36 sea breezes with an average duration of 6.5 h,
d 15 events of fogs spread over 20 days with an average

duration of 9 h, and
d 12 HWEs with an average duration of 5 h.

4. Basic supervised classification methods

The supervised classification problem can be formulated

as follows. Let X be the set of features (M-dimensional

vectors) and Y be the finite set of Q object labels. In our

case, features are atmospheric measurements, and labels

are types of meteorological events. We need to construct

an algorithm s 5 a(x), where x 2 X and s 2 Y. Unknown

parameters of the algorithm are estimated using prior in-

formation represented as the finite set

XN 5 fx
i
, y

i
g
i2〚1,N〛

(training set) consisting of pairs of elements from sets X

and Y, with N being the number of such pairs. Thus, the

algorithm a(x) should be optimal in some certain sense on

XN. We applied several basic classification algorithms of

different complexity: K nearest neighbors (KNN), error-

correcting output codes with support vector machine

(SVM), and two Bayesian classifiers (BC): quadratic

discriminant analysis (QDA) and the Parzen–Rosenblatt

window method (PRW).

a. K nearest neighbors

Similarity-based classification algorithms imply the

calculation of certain similarity function characterizing

distances between objects. KNN method is the simplest

classifier of such a type. In accordance with this method,

the object to be classified is associated with the class

owning the most number of objects similar to it.

Let us sort the training set in the order of ascending

distance r(u, xi) between the classified feature u 2X and

training features xi 2X; that is, r(u, x1)# � � �#r(u, xN).

The algorithm of K nearest neighbors can be repre-

sented by the following formula:

a(u)5 argmax
y2Y

�
N

i51

[y
i
5 y][i#K] ,
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where a(u) is the resulting class, square brackets signify

the indicator function under the statement: 1 for correct

statement and 0 for incorrect one, yi are object labels

from the sorted training set, and K is the number of

neighbors used. Thus, the classified feature vector u is

associated with the most abundant class among K of its

nearest neighbors.

For small values of K, the discriminant surface (see

Dreyfus 2005) has as a rule a complex shape and can be

multiply connected that allows solving sophisticated

classification problems. On the other hand, this surface

is very sensitive to small changes in the training sam-

ple, and accordingly the result of classification will be

unstable. For large values of K, on the contrary, the al-

gorithm is excessively stable and degenerates into a

constant. Thus, the extreme values ofK are undesirable.

The optimal value K can be determined by using the

leave-one-out cross-validation method.

The classification process described above is com-

putationally expensive because it implies the explicit

storage of all training objects and an exhaustive search

on them. This problem becomes especially important in

the case of a large number of training samples used. In

this paper, we employed a more effective search of

nearest neighbors by using the effective data structure

(see Friedman et al. 1977).

b. Error-correcting output codes with support
vector machine

Among the known approaches used to solve the su-

pervised classification problems, there is a group of

methods that were originally designed to divide the

processed data into two groups (binary classification).

One of the known effectivemethods of this kind is SVM.

The method of error-correcting output codes (ECOC;

see Dietterich and Bakiri 1995) is based on several ap-

proaches from the information coding theory and allows

extending binary classifiers to the multiclass case. The

multiclass classifier based on the combination of ECOC

and SVM methods can be described as follows.

Let us introduce the coding design matrix C 5 (cij) of

size Q 3 L with elements 1, 21, and 0. The lines of this

matrix are unique codes of Q considered classes. The L

columns of matrix C define a series of different binary

learners deciding between two composite classes con-

structed from the initial ones. Thus, for each column, the

first composite class aggregates initial classes corre-

sponding to 1, the composite class aggregates classes

corresponding to21, and classes not participating in the

binary classification correspond to 0.

The coding stage of the ECOC classifier consists in the

consecutive application of the mentioned L learners to

the query feature sample x. Thereby we obtain the code

of some unknown class corresponding to x. On the de-

coding stage, this code is compared with the codes of

initial Q classes by using some selected measure of dis-

tance, for example, Euclidian, Chebyshev, or Hamming.

Thus, the query sample x is assigned to the class label

with the most similar code.

The choice of the coding-design matrix significantly

affects the accuracy and calculation speed of the ECOC

classifier. In this paper we have used the one-versus-one

coding design, which can be defined as

C5

0
BBB@

1 1 1 0 0 0

21 0 0 1 1 0

0 21 0 21 0 1

0 0 21 0 21 21

1
CCCA

for the case of Q 5 4 initial classes. This coding design

provides the balance between the accuracy and calcu-

lation efficiency (Dmitriev et al. 2018). The Hamming

distance is chosen as the measure of similarity between

the codes of classes.

The kernel soft-margin SVM (see Scholkopf and

Smola 2002) is used in the ECOC algorithm as the

basic binary classifier. The linear soft-margin SVM

allows finding the most distant parallel hyperplanes

(w, x) 2 w0 5 1 and (w, x) 2 w0 5 21 in the multidi-

mensional feature space (w and w0 are parameters of

the hyperplanes) separating the given pair of classes

labeled as 1 and21. The hyperplanes pass through the

area containing boundary points (support vectors) of

feature distributions of these classes. Optimization is

performed by taking into account penalties for mis-

classification of the boundary points. SVM is easily

generalized to the case of nonlinear separating sur-

faces by replacement of the scalar product (x0, x00) by a
kernel K(x0, x00). In this case, the classification algo-

rithm has the form

a(x)5 sign

"
�
N

i51

l
i
(w)y

i
K(x

i
, x)2w

0

#
.

Training of this algorithm consists in the estimation

of the parameters l (and associated w) and w0. The

Gaussian kernel

K(x0, x00)5 exp

 
2
kx0 2 x00k2

2s2

!

is used in this paper (s is the kernel scale). This kernel is

well suited for outlining classes having a complex shape

in the feature space at the acceptable calculation speed.

In contrast with labels assigned to samples x, the re-

liability of classification results is not the same and
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depends on the position of x in the feature space. Thus

classification score s(x) is frequently considered as the

extended output of the classification algorithm. For SVM

classifier, the function s(x) indicates the normalized dis-

tance from the sample x to the discriminant surface in the

area of relevant class. Let us also introduce the function

g(y
B
, x)5max

f0, 12 y
B
s(x)g

2
,

where yB 2 {1,21} is a label in the binary classification

problem. This function characterizes the loss when

classifying the sample x (the binary loss). Thus for

s(x) $ 1 we have zero binary loss. For the correctly

classified samples, the binary loss does not exceed 0.5.

The classification algorithm described above can be

formulated in themore general form (Escalera et al. 2010).

On the coding stage, we calculate the classification scores

sj(x) for each of the L binary learners defined by coding-

designmatrixC and binary losses g[cij, sj(x)] for each of the

classes yi considered in the initial multiclass problem. The

decoding stage can be expressed by the formula

a(x)5 argmin
yi

�
L

j51

jc
ij
jgf[c

ij
, s

j
(x)]g

�
L

j51

jc
ij
j

,

where the minimum search is performed on the class

index i and the class label yi is the output. Thus, the al-

gorithm selects the class corresponding to the minimum

average loss.

c. Bayesian classification, QDA and PRW

The use of BC implies that features can be regarded as

random variables. In this paper, we consider the con-

tinuous distribution of features. The general form of the

BC algorithm is

a(x)5 argmax
y2Y

P
y
p
y
(x) ,

where Py is the prior probability of class y and py(x) is the

probability density function (PDF) of features of this class.

In the case in which Py and py(x) are known exactly, the

general formofBC is optimal because the solution obtained

has theminimum total probability of the classification error.

The training ofBCconsists in the estimation of distributions

of features (and optionally prior probabilities) for all con-

sidered classes using the data from the training set.

QDA (or normal BC) (Hastie et al. 2008) is the

parametric approach implying that PDFs belong to the

family of normal distributions py(x) 2 N(my, Sy), where

my is the expectation vector and Sy is the covariance

matrix of features of the class y. Estimates m̂y and Ŝy of

the parameters my and Sy can be obtained from the

principle of maximum likelihood and theQDA classifier

takes on the form

a(x)5 argmax
y2Y

�
ln(P

y
)2

1

2
(x2 m̂

y
)TŜ21

y (x2 m̂
y
)

2
1

2
ln[det(Ŝ

y
)]

�
.

Toprovide a stable classificationwith thepredictable error, it

is necessary to control positive definiteness and well condi-

tioningof Ŝy. It is important also to checkpossible significant

disagreementswith themultivariate normality of features for

all classes. In this paper, we have used the Mardia test (see

Mardia 1970) based on skewness and kurtosis measures.

Discriminant surfaces are all kinds of second-degree

hypersurfaces in this case. In the cases of paraboloid and

hyperboloid, we have extrapolation; that is, features

located far from training samples correspondmost likely

to some other unknown group of objects. To use only

closed surfaces restricting some finite area in the feature

space, we supplemented the additional constraint

max(p
y
).P

min
,

which allows us to introduce the special class of ‘‘un-

recognized objects.’’ In this case, all discriminant sur-

faces of the quadratic normal BC will delineate limited

areas of feature space.

In practice, very often the multivariate Gaussian does

not fit the true PDFs of features of one or several classes.

In this case we can suppose that the family of distribu-

tions is not defined and construct empirical estimates

of PDFs. A well-known nonparametric approximation

of PDF is the kernel density estimation or Parzen–

Rosenblatt window method that is a natural general-

ization of the normalized histogram. This estimate in the

multidimensional case can be written as follows:

p̂
h
(x)5

1

N
�
N

i51
P
M

j51

1

h
j

K

 
xj 2 x

j
i

h
j

!
,

where K is the kernel function (see Hastie et al. 2008)

and hj is the width of the window for the dimension j. In

the general case, the choice of K does not essentially

affect the classification accuracy. The estimated PDF

has the same smoothness as the kernel function, thus

smoother kernels should be used in case if correspond-

ing smoothness of PDF is supposed.

On the contrary, the choice of hj strongly affects the

quality of the classification. Too small of a window width

leads to overfitting PDF estimates and consequently to

728 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 11/22/23 02:19 PM UTC



unstable classification working well only for training data.

If the window is too large, PDF estimates become ex-

cessively smoothed and do not fit the true PDFs, leading

to high classification errors. In this paper, the optimum

window widths for each dimension of the feature space

were found automatically from training data by using the

leave-one-out cross-validation method.

5. Estimation of errors and regularization
techniques

The performance of classification algorithms should be

measured, adjusted and compared based on definite pa-

rameters calculated from the available dataset. The param-

eters used in this paper for the estimation of classification

quality are represented in Table 2. The notation for the

variables and parameters used is as follows: N is number of

samples, K is number of classes, i is the index of the

sample, j and k are the indices of classes, y are the ref-

erence (known) class names, and ŷ are the predicted class

names. All of the performance parameters are calculated

from elements of y (known classes) and corresponding

elements of ŷ (predicted classes).

The total classification error (TE), which is also known

as the overall error, is defined as the amount of incor-

rectly classified samples over the total number of samples.

TE is the parameter that characterizes the quality of the

classification on the whole without taking into account

separate classes. The total classification accuracy (TA) is the

amount of correctly classified samples over the total number

of samples, and it can be calculated directly from TE.

The confusion matrix (CM) is the basic classification

quality characteristics allowing a comprehensive visual

analysis of different aspects of theused classificationmethod.

In this paper, we use the definition as follows: each row of

CM represents a reference class; each column represents a

predicted class. The vice versa definition is sometimes also

introduced by some authors. CM is the basis for the calcu-

lation of a number of classwise quality parameters.

The omission error (OE) is defined as the probability of

the false classification of features corresponding to some

selected class. It can be calculated as the amount of false

classified samples of the selected class over all samples of

this class. TheOE is referred to as a type-I error when taking

the target class as a hypothesis.Theproducer’s accuracy (PA)

is the classwise accuracy from the point of view of the pro-

ducer of reference classification (for instance, the expertise of

in situ measurements). The PA is a complement of OE. The

total omission error (TOE) is the mean OE over all classes

considered. It is referred also as the classification error.

The commission error (CE) can be considered as the

false alarm error for some selected class. It is defined as

the probability of false classification for each possible

classification result. The user’s accuracy (UA) is the

TABLE 2. Parameters used for the estimation of classification quality.

Name of the characteristic Abbreviation Definition

Total classification error (overall error) TE TE5 (1/N)�
N

i51

(yi 6¼ ŷi)

Total classification accuracy (overall accuracy) TA TE5 12TA5 (1/N)�
N

i51

(yi 5 ŷi)

Confusion matrix CM CMk,k 5�
N

i51

[(yi 5k)& (ŷi 5k)],

CMk,j 5�
N

i51

[(yi 5 k)(ŷi 5 j)], (k 6¼ j)

Omission error OE OEk 5OEk 5 �
K

j5 1
ðj 6¼ kÞ

CMk,j

Producer’s accuracy PA PAk 5 1 2 OEk

Total omission error TOE TOE5 (1/K)�
K

k51

OEk

Commission error CE CEj 5 �
K

k5 1
ðk 6¼ jÞ

CMk,j

User’s accuracy UA UAj 5 1 2 CEj

Total commission error TCE TCE5 (1/K)�
K

j51

CEj

Kappa k k 5 (Po 2 Pe)/(1 2 Pe), where Po 5 (1/K)�
K

k51

CMk,k,

Pe 5 (1/K)�
K

k51

SCT
k � SRk, SCj(1/K)�

K

k51

CMk,j,

and SRk 5 (1/K)�
K

j51

CMk,j
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accuracy from the point of view of the user, the person

performing classification who would like to know the

accuracy expected for each response of the classifier.

The UA is a complement of CE. The total commission

error (TCE) is the mean CE over all possible responses

of the classifier used.

The kappa coefficient k proposes to quantify the in-

tensity of the actual agreement between the expert

and automated classification results; k can take values

from21 to 1. The zero value corresponds to completely

random classification. It is considered that k value can be

classified as follows: k 2 [1, 0.8) is excellent, [0.8, 0.6) is

good, [0.6, 0.4) is moderate, [0.4, 0.2) is poor, [0.2, 0.0) is

bad, and [0.0, 21] is very bad.

To calculate the presented above estimates, the block

k-fold cross-validation technique was applied. Note that

the standard random k-fold or hold-out cross validation

with completely random sampling measurements is not

enough objective test in the considered case. It should be

noted that the random selection of training set leads to a

large number of very similar samples of features in the

testing set as the measurement frequency is 15min.

Thus, corresponding cross-validation estimates would be

obtained in a dependent manner. For this reason, we used

the block k-fold cross validation, which provides the in-

dependence of data in training and testing. The number of

folds should not be too small because we have a risk in this

case to exclude the whole season, which is the most im-

portant for the considered local events. Taking into ac-

count the number of measurements (see Table 3) and the

duration of the campaign, we decided that the cross vali-

dation with 10 block folds is applicable in our case.

The cross-validation technique was used for estimation

of classification quality is closely connected with one of the

basic properties of learning classification algorithms—the

generalization ability (GA). This concept means that prior,

leave-one-out cross validation (Hastie et al. 2008) and in-

dependent estimates of the classification error do not have

statistically significant differences. The GA of a learning

algorithm indicates the important property of predictability

of the accuracy, that is, when real classification errors are in

agreement with their estimates.

The GA deals with the concepts of overtraining and

curse of dimensionality. Overtraining is the undesirable

phenomenon of the learning classification, when the

discriminant surface depends on the high number of

parameters that cannot be estimated well enough by

training data. As the result, the discriminant surface well

separates only the available training samples, but not the

independent (test) samples. Thus, we have to use the most

exact classifier providing the hypothesis of the equality of

prior and cross-validation errors of classification.

The curse-of-dimensionality problem arises when by the

increasing the dimensionality of the feature space we can

TABLE 3. Number of measurements available for calibration and

validation of algorithms and corresponding number of days.

Total Others Breezes Fogs HWEs

Samples 42 431 40 556 1127 564 184

Days 442 441 43 20 10

FIG. 2. Scheme of regularized greedy feature selection.
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achieve the exact classification of training samples; how-

ever, the classifier fails on the test set. In our case, the di-

mensionality of the predictor vector is up to 34. One of the

solutions of this problem consists in the effective reduction

of the feature space by selecting the most informative

features. The greedy algorithm of stepwise forward selec-

tion is the standard and frequently used method of reduc-

tion of the feature space. It can be formulated as follows.

The features are divided into two groups—accepted in

the classification model and remaining, for which an

estimate of the possibility of acceptance into the model

is checked. Features from the set of ‘‘remains’’ are

consecutively added to the model and corresponding

estimations of the classification error are calculated.

We consider the TOE as the classification error, and

not the TCE, because it is assumed that an expert will

further process the data obtained from automated

classification and it is more important not to omit the

analyzed local events than to misclassify an ‘‘others’’

event (described below).

From the received set of errors, the minimum is cho-

sen and compared with the error of the previous model.

If a significant reduction of the error occurred, then the

corresponding feature is accepted into the model, if not

then the process stops. The disadvantage of this method

consists in the instability of the obtained sequence of

features. In practice, the selected features can signifi-

cantly differ with small changes in the training set.

In this paper, we used the regularized greedy feature

selection (Fig. 2). This method allows finding the more

stable optimal sequence of features. Randompartitioning

of the learning dataset using the holdout cross validation

is repeated many times. Then the stepwise forward se-

lection is launched for each pair of the training and testing

sets obtained. As a result, we have a set of locally optimal

sequences of features. The sequences obtained as a rule

are different in composition and length. The unique

regularized solution of the feature selection problem can

be obtained as the most probable sequence.

The algorithm of finding the most probable sequence

of features consists in finding the mode on different

levels (between firsts, seconds and the following mem-

bers of sequences). In other words, we form a subset of

the sequences corresponding to the mode (level 1) and

TABLE 4. Results of the regularized feature selection for different classification methods: optimized sequences of features and total

omission errors for METEO experiments. Here, (P) signifies the possible set of features, when decreasing of TOE is finished and (O)

signifies the feature corresponding to the last significant decreasing of TOE (optimal set).

KNN, N 5 49 SVM QDA PRW

Name Error Name Error Name Error Name Error

1 HorWind 0.362 HorWind 0.359 HorWind 0.335 VWind 0.331

2 Hum 0.231 DirWind 0.252 (O) Hum 0.22 UWind 0.249 (O) (P)

3 DirWind 0.164 (O) Hum 0.224 (P) VWind 0.165 (O) DirWind 0.278

4 SolarRad 0.160 Rain 0.229 SigW 0.160 (P) HorWind 0.310

5 SigW 0.159 (P) SolarRad 0.259 Ustar 0.162 SigW 0.362

6 Rain 0.160 Ustar 0.314 MF 0.168 MF 0.413

7 T 0.163 MF 0.332 UWind 0.175 Ustar 0.456

8 HF 0.161 HF 0.349 HF 0.187 HF 0.505

9 Pres 0.169 SigW 0.355 SolarRad 0.202 Pres 0.641

10 MF 0.164 VWind 0.372 DirWind 0.214 Hum 0.703

TABLE 5. Interval estimates of main classification quality parameters for METEO experiments.

Method Quality parameter

Classification error with confidence

intervals; possible set of features (P)

Classification error with confidence

intervals; first two features

KNN TOE 0.152 , 0.159 , 0.182 0.217 , 0.234 , 0.261

TCE 0.158 , 0.169 , 0.181 0.220 , 0.238 , 0.258

k 0.707 , 0.723 , 0.737 0.545 , 0.571 , 0.596

SVM TOE 0.200 , 0.232 , 0.302 0.245 , 0.256 , 0.270

TCE 0.162 , 0.176 , 0.196 0.217 , 0.228 , 0.241

k 0.666 , 0.702 , 0.724 0.601 , 0.617 , 0.631

QDA TOE 0.153 , 0.161 , 0.169 0.213 , 0.221 , 0.229

TCE 0.163 , 0.175 , 0.187 0.257 , 0.267 , 0.278

k 0.704 , 0.719 , 0.734 0.553 , 0.569 , 0.585

PRW TOE 0.232 , 0.249 , 0.295 0.232 , 0.249 , 0.295

TCE 0.258 , 0.278 , 0.304 0.258 , 0.278 , 0.304

k 0.551 , 0.581 , 0.597 0.551 , 0.581 , 0.597

APRIL 2020 SOKOLOV ET AL . 731

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 11/22/23 02:19 PM UTC



repeat the process with the next members. The process

continues (levels 2, 3, and 4) up to selecting a unique

sequence. In the case of a few equivalent sequences, the

random choice is used. As a result, we can obtain the

sequence of most informative features, which are robust

to small changes in the training set.

Four classes were introduced for the dataset and ex-

pert classification described in sections 2 and 3: sea

breezes, fogs, HWEs and other meteorological phe-

nomena (hereinafter this class is called others). The

classes are unbalanced as the number of measurements

corresponding to the events classified is significantly

different for the available dataset (see Table 3). This fact

must be taken into account when training KNN and

SVM classifiers, because it may affect the likelihood of

recognizing the corresponding classes. In particular, as

we can see, the total amount of breeze/fog/HWE events

is relatively small, about 5%, in comparison with the

others class. In the case of use of all of the available data

for training, KNN and SVM classifiers will fail to cor-

rectly recognize the most part of local events, preferring

to call them the prevailing others class.

To overcome this problem we used a reduced set of

features corresponding to the others class with the number

of samples approximately equal to the number of samples

for breeze/fog/HWE events. Thus, for each classification

method, we obtained a set of sequences of optimal features

using random independent resampling of the others class

and define the most probable optimal sequence using the

method described in the previous section (see Fig. 2). This

kind of optimization is also indispensable for the compu-

tationally expensive PRW method, as it diminishes the

FIG. 3. Discriminant surfaces for the considered classifiers in HorWind–Hum feature space; 1000 samples of the

others class are used. Here, 0 is others, 1 is breezes, 2 is fogs, and 3 is HWEs.
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time of calculation dramatically. In numerical experiments

forKNN, SVM, andQDAweused 49 different resampling

of the others class. For PRW the choice of 11 resampling

iterations is a reasonable compromise between the stability

and the computational time.

To compare the performance of supervised ML al-

gorithms we estimated confidence intervals for TOE,

TCE, and k, in addition to the point estimates of these

parameters. Let ae and be be point estimates of TOE,

TCE, or k, calculated for any two classifiers to be com-

pared. Letal, ae, au andbl, be, bu be corresponding

confidence intervals. The difference between ae and be is

not significant if ae2 (bl; bu) orbe2 (al; au); otherwise the

difference is significant. The confidence intervals and the

elements of confusion matrices are estimated using a ran-

dom resampling of the others class with 100 samples.

6. Results and discussion

Four algorithms of supervised classification described

above were applied to the local meteorological data (the

ultrasonic anemometer and the weather station) to

recognize four types of local atmospheric events. The

most probable optimal sequences were defined and

classification errors were estimated.

a. Classification using meteorological dataset

In this set of numerical experiences (METEO), we

used anemometer and meteorological station data for

the classification. Parameters of the available dataset are

presented in Table 3. Sequences of the most informative

features (notations are presented in Table 1) selected for

different ML algorithms are shown in Table 4. This se-

quence and corresponding classification errors are ob-

tained using at the third step of the algorithm presented

in the end of the introduction section.

Classification errors have similar behavior depending on

the number of features used for all considered classifiers:

the error decreases first, then stabilizes and further in-

creases with some fluctuations. Lengths of decreasing

sequences are different depending on classification

method. However, the composition of first most infor-

mative components is very similar. For each classifica-

tion method, we have fixed the components on which

the error keep decreasing. This sequence is called the

‘‘possible’’ set of features, and the last element of the

sequences ismarkedwith (P) in Table 4. The possible set

characterizes the most important parameters to archive

the minimum of classification error on our dataset.

For such sets of features, we performed additional

numerical experiments corresponding to the fourth step

of algorithm indicated in the introduction section.

Additional classification quality parameters TOE, TCE,

k, and corresponding confidence intervals were esti-

mated, as described in section 5 and in Table 2. The

results obtained for the possible set and for couples of

the most informative predictors are shown in Table 5.

Another sequence of features, corresponding to the

last significant decreasing of TOE, is called the ‘‘opti-

mal’’ set, with the last element marked with (O). The

FIG. 4. Confusion matrices for KNN and QDA classifications using the HorWind and Hum predictors. Resampling was applied

100 times; 1000 samples of the others class are used. Corresponding omission errors and producer’s accuracies are on the right side;

commission errors and user’s accuracies are on the bottom.
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optimal set is a subset of the possible set; we select the

features until the decreasing TOE estimate enters into

the confidence interval for TOE of the possible set

presented in third column of Table 5. The optimal set of

features takes into consideration only the parameters

giving a significant decrease in TOE.

Possible (P) and optimal (O) sets of features were

obtained in a similar way for all considered classification

methods. The longest sequence of features (possible set)

corresponds to KNN and consists of the five features

(see Table 4). The TOE (classification error) is minimal

for this method. Errors corresponding to first–second–

third, first–second–third–fourth, and first–second–third–

fourth–fifth features (calculated up to the DirWind,

SolarRad, and SigW predictors in Table 4) are similar,

and the difference between them is not significant, be-

cause they are inside the confidence interval of SigW

TOE (0.152, 0.182) for a possible set (see TOE for

KNN in Table 5, column 3). It means that the optimal

set consist of three predictors: HorWind, Hum, and

DirWind; we stop at third feature, because the DirWind

TOE (0.164) is inside the confidence interval for a pos-

sible set (0.152, 0.182).

The interval estimates of TCE and k for the optimal

sequence are 0.158, 0.169, 0.181 and 0.707, 0.723,
0.737. As we can see from comparison of the third and

the fourth columns of the Table 5, decreasing TCE and

increasing k are also significant for KNN between the

two-predictor set and the possible set. The difference

between TOE and TCE is not significant for the possible

FIG. 5. KNN classification with different number of samples of the others class. Discriminant surfaces are con-

structed for 500, 1000, 3000, and 10 000 samples of others. Here, 0 is others, 1 is breezes, 2 is fogs, and 3 is HWEs.
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sequence for this classification method, as the estimate

of TOE, 0.159 is in the interval for TCE, (0.158, 0.181),

and, vice versa, estimation of TCE, 0.169, is in the in-

terval for TOE, (0.152, 1.182). The value of k reflects the

good quality of the agreement of reference classes and

classification results.

TheQDA errors are similar to KNN.We can see from

Table 5 that the difference is not significant.

Accuracy of the more sophisticated SVM and PRW

methods is lower than that for KNN and QDA for both

possible and optimal sequences. This is primarily due to

the curse-of-dimensionality problem. As we can see

fromTable 4, TOE stops decreasing at the third element

of sequences for SVM and at the second element for

PRW. We can see from the Table 5, that the optimal

sequence of PRW also contains two features. For the

SVM method the difference between TOE and TCE is

significant, as intervals for TOE and TCE in the third

column of Table 5 do not intersect. Then, as we can see

from the comparison of third and fourth columns of

Table 5 for SVM, adding just one feature in the optimal

sequence of SVM leads to a very strong expansion of the

confidence interval of TOE from (0.245; 0.270) to (0.200;

0.302), so that it completely covers the previous interval.

On the other hand, the difference between TCE for two-

component (optimal) and possible sequences (fourth

and third columns of Table 5) for SVM is significant;

thus it is possible that these sequences coincide for SVM.

Discriminate surfaces for different classification

methods are presented at Fig. 3 for HorWind and

Hum. These surfaces divide two-dimensional predictor

space to a few subspaces corresponding to classes. It

FIG. 6. As in Fig. 5, but for the SVM classification.
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allows visualizing the classification by four supervised

ML algorithms. The light-blue subspace is breezes, yel-

low are fogs, red are HWEs and the dark blue corre-

sponds to the others class. The discriminant surfaces are

defined at the learning step. Then, the classification of a

new event by its predictor (HorWindNew, HumNew)

could be done visually. It is enough to see to which

subspace the point belongs (HorWindNew, HumNew).

KNN and PRW methods give the most complicated

discriminant surfaces (see Fig. 3). Optimal sequences

presented in Table 4 have the same length for KNN and

QDA; the first two most informative predictors are also

coincided: HorWind and Hum. The difference starts

from the third parameter; however, it should be noted

that in conjunction with the HorWind feature, VWind

allows calculating DirWind; thus this difference in the

third parameter is not very important.

Confusion matrices are presented in Fig. 4 for KNN

and QDA methods using two features: HorWind and

Hum. Through this couple of predictors the HWE class

could be perfectly separated from the breeze and fog

classes by both algorithms. In turn, the breeze and fog

classes can also be discriminated well from each other,

and corresponding errors are much less for KNN. The

most significant errors appear for classification of other

and breeze. In general, QDA classifier reveals better

accuracy for these two features.

To illustrate the importance of the selection of the rea-

sonable number of others events we plotted the discrimi-

nate surfaces for KNN and SVMclassifiers at Figs. 5 and 6,

respectively. We can observe for both methods the varia-

tion of areas corresponding to each class connected with

the number of others events. The probability of classes 1–3

diminishes and the probability of class 0 (others) increases

when the number of others samples increases. Note that

the breeze class disappears for the SVM algorithm when

the number of others events exceeds 10000 samples (see

Fig. 6). We considered 1000 others events to be a reason-

able compromise to have comparable probabilities of each

class. BayesianQDAandPRWclassifiers are less sensitive

to the number of others events.

b. Classification using meteorological and averaged
meteorological parameters

The analysis of misclassified events shows that ML algo-

rithms fail for outliers of predictor occurring during a long-

lasting event. For example, during aHWE, a decrease in the

wind during a small period leads to misclassification of the

event. To overcome this problem we suggested using mov-

ing average values of measured meteorological parameters

as supplementary predictors. In addition, a contrast between

measured and averaged parameters could bring some in-

formation about fluctuations of atmosphericmeasurements.

We added, then, 2-h moving averages to predictor vectors.

We use here abbreviation METEO1Avg2h to denote the

second set of numerical experiments that uses anemometer

data (see Table 1) and averaged values of meteorological

parameters. The following 2-h-averaged parameters were

added to the vector of predictors:

d mean horizontal wind HorWind2h,
d mean wind direction DirWind2h,
d mean wind west–east component UWind2h,
d mean wind south–north component VWInd2h,
d mean pressure Pres2h,
d mean rainfall Rain2h,
d mean solar radiation SolarRad2h
d mean temperature Temp2h, and
d mean relative humidity Hum2h.

Results of METEO1Avg2h numerical experiments

are presented in Table 6. The decrease of classification

error is observed with respect to previous experiment

METEO (without averaged measurements; see Table 4)

for KNN and QDA methods. Nevertheless, the analysis

of confidence intervals (see Table 7) does not allow con-

firming that this decrease of classification error is signifi-

cant. SVM and PRW methods do not take advantage of

the availability of averaged values. Nevertheless, we note

TABLE 6. As in Table 4, but for METEO1Avg2h experiments.

KNN, N 5 49 SVM QDA PRW

Name Error Name Error Name Error Name Error

1 HorWind2h 0.353 HorWind2h 0.347 HorWind 0.344 VWind 0.329

2 Hum2h 0.230 DirWind2h 0.253 (O) Hum2h 0.219 UWind 0.249 (O) (P)

3 DirWind2h 0.159 (O) Hum2h 0.235 (P) VWind 0.163 (O) VWind2h 0.271

4 Rain2h 0.156 Rain 0.240 SigW 0.159 (P) DirWind 0.307

5 MF 0.154 (P) HorWind 0.246 VWind2h 0.159 HorWind 0.347

6 Rain 0.154 Rain2h 0.268 Hum 0.161 DirWind2h 0.371

7 HorWind 0.167 DirWind 0.289 MF 0.166 UWind2h 0.402

8 Hum 0.156 SolarRad 0.318 Ustar 0.168 HorWind2h 0.446

9 SolarRad2h 0.155 SolarRad2h 0.326 Rain2h 0.170 SigW 0.479

10 Pres 0.144 VWind 0.356 RH 0.177 MF 0.542
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that a few 2-h-averaged features are selected as important

predictors in KNN, SVM, and QDA algorithms.

Confusion matrices for KNN and QDA algorithms are

calculated (see Fig. 7) with a ‘‘possible’’ set of predictors

(see Table 6). The analysis of Table 7 and Fig. 7 shows that

these two algorithms have comparable performances and

ensure the correct classification of 70%–80% of events.

The comparison with the confusion matrix represented in

Fig. 4 shows that the use of additional features changes the

structure of the confusion matrix and improves the classi-

fication results. In this case, classification ofHWEs remains

the best besides classification errors have moved from

others to fog. The accuracy of classification of breezes and

fogs is slightly reduced; however, this is fully offset by an

increase of classification accuracy of others events. The

statistical estimates in the Table 7 show that the TOE

difference between KNN and QDA is not significant.

c. Computational aspects

As classifications could often be executed indepen-

dently, the algorithms were optimized for parallel cal-

culations. Estimates of the overall calculation time for

each classification method on a modern 4-core worksta-

tion are presented in Table 8. All numerical experiments

were computed using parallel MATLAB software code

on typical PCs/notebook computers except for PRW,

which were executed on the ‘‘CALCUCLO’’ computa-

tional cluster.We reduced the number of samples from 49

FIG. 7. As in Fig. 4, but for the METEO1Avg2h experiments.

TABLE 7. Interval estimates of main classification quality parameters for possible and optimal set of features for METEO1Avg2h

experiments.

Method Quality parameter

Classification error with confidence

intervals; possible set of features (P)

Classification error with confidence

intervals; optimal set of features (O)

KNN TOE 0.144 , 0.163 , 0.208 0.149 , 0.158 , 0.169

TCE 0.148 , 0.166 , 0.187 0.151 , 0.163 , 0.175

k 0.708 , 0.730 , 0.749 0.718 , 0.734 , 0.750

SVM TOE 0.209 , 0.245 , 0.341 0.240 , 0.259 , 0.288

TCE 0.157 , 0.175 , 0.203 0.211 , 0.224 , 0.240

k 0.645 , 0.691 , 0.721 0.592 , 0.615 , 0.636

QDA TOE 0.151 , 0.158 , 0.167 0.156 , 0.163 , 0.172

TCE 0.159 , 0.171 , 0.182 0.180 , 0.189 , 0.205

k 0.710 , 0.724 , 0.739 0.696 , 0.713 , 0.727

PRW TOE 0.232 , 0.249 , 0.295 0.232 , 0.249 , 0.295

TCE 0.258 , 0.278 , 0.304 0.258 , 0.278 , 0.304

k 0.551 , 0.581 , 0.597 0.551 , 0.581 , 0.597
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to 11 to decrease the computation time for optimal feature

selection of the PRW method. The most computationally

complicated step is step 3 of the algorithm: the definition of

the most informative predictor’s sequence.

7. Conclusions and perspectives

Supervised machine learning algorithms allow one to

correctly classify about 70%–80% of meteorological

events.With the in situ anemometer data used to classify

events, the most important predictors are the horizontal

wind and humidity, then the wind direction, north–south

wind component, and the solar radiation.

Among four supervised ML techniques, KNN and

QDA algorithms have the best classification scores.

SVM classifier has more important classification errors

and PRW algorithm starts overlearning right after the

selection of the second predictor.

The addition of averaged values of meteorological

parameters to a feature vector allows the increasing of

the KNN and QDA algorithms’ precision, but the sig-

nificance of this modification could not be shown yet.

To get better results, an expert should perform more

mathematically accurate classification at the learning

step. The latter classification corresponds to a larger

scale and could categorize a meteorological event as

HWE, even though it is a situation with a moder-

ate wind.

Another important problem is that unlike a meteorolo-

gist, applied algorithms do not take into consideration the

time dependence of meteorological parameters. For ex-

ample, a specific evolution of a meteorological parameters

combination (wind speed, humidity, temperature) is ob-

served by ameteorologist for breeze detection. Thus, a time

dimension of meteorological events should be taken into

account by a more sophisticated technique than averaging.

An important limitation of the suggested algorithm is

the absence of the visibility measurement for the fog

detection. This kind of data could be available from

Automated Weather Observing Systems or Automated

Surface Observing Systems installed in local airports.

We expect that this method could also be applied to

classify events by climatological in situ data or by out-

puts of meteorological or climate models. It would allow

the estimation of meteorological events’ frequencies in

the perspective of climate change.
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