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Abstract. Medium-to-large fluctuations and coherent struc-
tures (mlf-cs’s) can be observed using horizontal scans from
single Doppler lidar or radar systems. Despite the ability
to detect the structures visually on the images, this method
would be time-consuming on large datasets, thus limiting
the possibilities to perform studies of the structures prop-
erties over more than a few days. In order to overcome
this problem, an automated classification method was de-
veloped, based on the observations recorded by a scanning
Doppler lidar (Leosphere WLS100) installed atop a 75 m
tower in Paris’s city centre (France) during a 2-month cam-
paign (September–October 2014). The mlf-cs’s of the radial
wind speed are estimated using the velocity–azimuth dis-
play method over 4577 quasi-horizontal scans. Three struc-
ture types were identified by visual examination of the wind
fields: unaligned thermals, rolls and streaks. A learning en-
semble of 150 mlf-cs patterns was classified manually re-
lying on in situ and satellite data. The differences between
the three types of structures were highlighted by enhanc-
ing the contrast of the images and computing four texture
parameters (correlation, contrast, homogeneity and energy)
that were provided to the supervised machine-learning algo-
rithm, namely the quadratic discriminant analysis. The al-
gorithm was able to classify successfully about 91 % of the
cases based solely on the texture analysis parameters. The al-
gorithm performed best for the streak structures with a clas-
sification error equivalent to 3.3 %. The trained algorithm
applied to the whole scan ensemble detected structures on
54 % of the scans, among which 34 % were coherent struc-
tures (rolls and streaks).

1 Introduction

Turbulent flows are motions characterized by high unpre-
dictability. Nevertheless, coherent structures are developed
in these flows (Tur and Levich, 1992). The principal aspect
that determines a coherent structure is the maintenance of
the phase-averaged vorticity of the turbulent fluid mass over
the spatial extent of the flow structure (Hussain, 1983). The
most typical types of coherent structures are presented in the
review of Young et al. (2002), who classified structures into
three characteristic types: turbulent streaks, convective rolls
and gravity waves. Several studies have been carried out to
examine the effect of the coherent turbulent structures in the
dispersion of pollutants by utilizing boundary layer simula-
tions. The results of these studies indicate that the coherent
structures can play a significant role in the pollutants’ con-
centrations (Aouizerats et al., 2011; Soldati, 2005). Further-
more, Sandeepan et al. (2013) have demonstrated via simu-
lations that the pollutants’ concentrations can alternate from
low to high during coherent-structure events. It is therefore
important to be able to identify structures in the atmosphere
and observe them in an efficient and consistent way. The term
coherent structures in the aforementioned studies refers ex-
clusively in the atmospheric flow, and it is the main focus in
this study. This term is also encountered in studies at the lab-
oratory scale described as hairpins or packets (Adrian, 2007;
Hutchins and Marusic, 2007), but these are out of the scope
of this study.

Turbulent streaks are structures aligned with the horizon-
tal wind with alternating stripes of stronger horizontal wind
associated with a subsidence and stripes of weaker horizontal
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wind associated with an ascendance (Khanna and Brasseur,
1998). The high wind shear between the surface layer and the
lower planetary boundary layer (PBL) can lead to the forma-
tion of the turbulent streaks in the surface layer that may ex-
tend to the mixed layer. Neutral or near-neutral stratification
favours the formation of streaks, though they may also form
during stable and unstable conditions (Khanna and Brasseur,
1998). The physics behind their formation differs as the con-
tribution of buoyancy varies in relation to the atmospheric
conditions (Moeng and Sullivan, 1994). Formation, evolution
and decay of streaks are rather short, equivalent to several
tens of minutes, before they regenerate. The average streak
spacing is usually hundreds of metres (Drobinski and Fos-
ter, 2003). In the mixed layer, horizontal roll vortices, also
known as convective rolls, develop roughly aligned with the
mean wind (LeMone, 1972). Favourable conditions for the
development and maintenance of convective rolls are the spa-
tial variations of surface-layer heat flux, the low-level wind
shear and the relatively homogeneous surface characteristics
(Weckwerth and Parsons, 2006). As the rolls rotate in the
vertical plane, they generate ascending and descending mo-
tions. These motions under convective conditions can form
clouds in rows separated by clear-sky areas known as cloud
streets, which is a characteristic visual feature used to iden-
tify rolls (Lohou et al., 1998). The rolls usually extend from
the surface to the capping inversion with a large variety of
horizontal sizes from a few kilometres to few tens of kilo-
metres. They are characterized by a long lifespan of hours
or even days as opposed to the short lifespan of the streaks
(Drobinski and Foster, 2003). Young et al. (2002) distinguish
rolls in narrow mixed-layer rolls, where the ascending air
masses are one thermal wide (Weckwerth et al., 1999), and
wide mixed-layer rolls, where multiple thermals are grouped
within each ascending area (Brümmer, 1999). As Young et
al. (2002) stated, both types of rolls can be distinguished vi-
sually, with the narrow rolls having the form of a “string of
pearls”, whereas the wide rolls look like a “band of froth”.

Remote sensors are exceptionally useful for the identifica-
tion of coherent structures. Their ability to scan large areas in
a short period is advantageous compared to in situ measure-
ments (Kunkel et al., 1980). Lhermitte (1962) and Browning
and Wexler (1968) were the first to implement the velocity–
azimuth display (VAD) technique, also known as the plan
position indicator (PPI) method, using Doppler radars. The
PPI technique provides conical scans or even horizontal sur-
face scans with the appropriate combination of elevation
and azimuth angles. Kropfli and Kohn in 1978 were able
to study horizontal roll structures by using a dual-Doppler
radar in order to observe the wind field in the three dimen-
sions. Several studies followed for different types of radars
with more efficient configurations (Kelly, 1982; Lohou et al.,
1998; Reinking et al., 1981). Weckwerth et al. (1999) were
able to study the evolution of horizontal convective rolls by
combining Doppler radar observations with meteorological
measurements, radiosondes, flight measurements and satel-

lite images. In recent years, various studies have been car-
ried out by using lidars only. It has been well established that
the PPI method can also be applied to Doppler lidars (Car-
iou et al., 2007; Vasiljević et al., 2016) with the possibility
to compute the mean wind profile by using a modified ver-
sion of the VAD method as has been demonstrated in the
studies of Banta et al. (2002) and Chai et al. (2004). Depend-
ing on the selected scanning method of the Doppler lidar, it
is possible to observe coherent structures in the atmospheric
surface layer (Drobinski et al., 2004) as well as in the mixed
layer (Drobinski et al., 1998). Newsom et al. (2008) and Iwai
et al. (2008) introduced the dual-Doppler lidar method and
revealed its benefits in the observation of coherent structures.
This method was further improved by Träumner et al. (2015)
using an optimized dual-Doppler technique. They were able
to identify different type of structures including elongated
areas resembling turbulent streaks. They combined quanti-
tative characteristics of the coherence such as the integral
scales and the anisotropy coefficients, obtained by a two-
dimensional autocorrelation algorithm, with the visual ob-
servation of the scans. However, the subjective classification
by observing the images is a time-consuming approach and
non-systematic. Furthermore, the use of two Doppler lidars
is limited to the institutes that can afford such a high cost
and collaborations on short-term campaigns. A much less ex-
pensive approach, and suitable for long periods, is to detect
the passage of the structures on sonic anemometer time se-
ries. For instance, Barthlott et al. (2007) analysed 10 months
of data from a meteorological tower located in the surface
layer 20 km south of Paris, France, and they observed coher-
ent structures for 36 % of the cases. However, their study is
limited to point measurements instead of a larger wind field
that it is possible to observe via a lidar.

This study aims to identify the medium-to-large fluctua-
tions and coherent structures (mlf-cs’s) on single Doppler
lidar horizontal scans and develop an automatic classifica-
tion process based on the combination of texture analysis
and a supervised machine-learning technique, namely the
quadratic discriminant analysis (QDA), in order to handle
large datasets. Texture analysis is an effective way to eval-
uate the distribution of the values within an image (Castel-
lano et al., 2004). It is widely used in various scientific fields
in order to classify images, covering meteorology (Alparone
et al., 1990), medical studies (Holli et al., 2010) and forestry
(Kayitakire et al., 2006). There is a lack of long-term stud-
ies of structures based on lidar observations, and the afore-
mentioned automatic classification process can stimulate the
interest in this research field. More particularly, it could fa-
cilitate the statistical analysis of the physical parameters of
the structures, e.g. the structure size as a function of the
height of the planetary boundary layer (PBL). Furthermore, it
will enable us to study the transitions between structures and
how these are associated with the atmospheric conditions.
Finally, the impact of the structures on pollutants’ concentra-
tions could be examined for long-term studies under stable
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Figure 1. (a) The Doppler lidar installed on the tower roof during the VEGILOT campaign and (b) the measurement site in Paris with inside
a circle with a 10 km diameter demonstrating the maximum range of the PPI surface scan (© Google Earth satellite image).

Table 1. Properties of the lidar used for the observation of mlf-cs’s.

Doppler lidar (Leosphere WLS100)

Altitude of lidar 75 ma.g.l.
Minimum range 100 m
Radial-wind-speed range −30 to 30 ms−1

Laser wavelength 1.543 µm
Radial wind accuracy ± 0.1 ms−1

Accumulation time 1 sbeam−1

and unstable conditions. The classification method relies on
the observations of radial wind speed recorded using a scan-
ning Doppler lidar settled atop a 75 m high tower in the centre
of Paris, during a 2-month period in late summer and early
fall. Section 2 presents the experimental setup of the study.
The methodology for the identification and classification of
the mlf-cs’s is demonstrated in Sect. 3. Subsequently, the re-
sults of the classification for the training ensemble as well as
for the whole dataset are displayed in Sect. 4. Finally, the key
points of the paper are summarized in Sect. 5.

2 Experimental setup

A 2-month measurement campaign (4 September–6 Novem-
ber 2014) was carried out in order to study the exchange pro-
cesses of ozone and aerosols in the area in the framework of
the VEGILOT (VEGétation et ILOT de chaleur urbain; vege-
tation and urban heat island) project in the urban area of Paris
(Klein et al., 2019). The Leosphere WLS100 Doppler lidar
(https://www.leosphere.com, last access: 2 December 2020)
with a minimum range of observations at 100 m (Fig. 1a) was
installed atop a 75 m building on the Jussieu campus, located
in Paris’s city centre (Fig. 1b), and was used for wind mea-
surements. Table 1 shows the significant lidar properties dur-
ing the VEGILOT campaign.

Figure 2. Ground altitude map above sea level with 75 m spatial
resolution for the scanning area in Paris (credit: Institut National de
l’Information Géographique et Forestière, https://www.data.gouv.
fr/fr/datasets/bd-alti-r-75-m-250-m-1-000-m/, last access: 2 De-
cember 2020).

The Doppler shift frequency between the emitted laser
beam and the light backscattered by the aerosols is mea-
sured by heterodyne detection associated with fast Fourier
transform as explained analytically by Cariou et al. (2007).
A wind lidar measures the radial wind speed, i.e. the wind
projection along the light beam (counted positive when go-
ing away from the lidar). Table 2 showcases the implemented
scanning methods during the VEGILOT campaign. For the
classification of the mlf-cs’s, we focused in the current study
on the almost horizontal PPI scans (1◦ elevation angle). Dur-
ing those scans, the lidar emitted beams in azimuth angles
from 0 to 360◦ with a 2◦ resolution. This scenario was re-
peated every 18 min hence providing 4577 PPI scans dur-
ing the whole campaign. The duration of each scan was
3 min, which is sufficiently fast for the observation of coher-
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Table 2. Scanning methods selected during VEGILOT.

Scanning area Purpose Elevation and azimuth
angle

Scan duration

Plan position indicator
(PPI)

Almost horizontal
scans near surface

Identification of structures Elevation 1◦, azimuth 0
to 360◦ with 2◦ resolu-
tion

3 min

Doppler beam swinging
(DBS)

Combination of
line-of-sight beams

Identification of low-level
jet cases

Elevation 75◦, azimuth
0, 90, 180 and 270◦

2× 15 s

Figure 3. Observations recorded during a quasi-horizontal PPI scan on 8 September 2014 at the Jussieu site, Paris, at 09:26 UTC. (a) Radial
wind speed along with the mean wind direction (black line) and the transverse direction perpendicular to it (black dotted line). (b) Radial
wind speed (blue dots) as a function of the azimuth angle at a fixed 2 km distance from the lidar (black circle on a) along with the cosine fit
function (red line). (c) Mean wind speed projected on the beam direction. (d) The mlf-cs field.

ent structures with a lifespan of several minutes. The max-
imum range of the scans reached 5 km (see white circle of
Fig. 1b) with a spatial resolution of 50 m. It is noteworthy
that the scanning area covers almost exclusively the urban
area of Paris, a city famous for regulating the height of the
buildings to not exceed 50 m in its centre (Saint-Pierre et al.,
2010). The ground altitude enclosed by the scanning area
mostly ranges between 30 and 60 m with the exception of
some hills near the boundaries of the scanning range as can
be seen in Fig. 2. It is fundamental for this study to assume
that the wind field within the scanning area is homogeneous
(see Sect. 3.1). Due to the 1◦ elevation, the beam was risen
by about 87 m between the central point and the point at
5 km. It was also important for this study to retrieve observa-

tions regarding the vertical wind shear. For this purpose, the
Doppler beam-swinging (DBS) scanning method was imple-
mented. This method consisted of four line-of-sight beams at
azimuth angles of 0, 90, 180 and 270◦ with an elevation an-
gle of 75◦, and it was applied twice. The duration of the four
beams emission was approximately 15 s.

3 Preparation of the dataset for the classification

3.1 Turbulent radial wind fields

Assuming a homogeneous wind field for horizontal PPI
scans, the radial-wind measurements ur taken for the differ-
ent beams at a given distance from the lidar should follow a
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Figure 4. A case when the VAD method cannot be applied: (a) radial wind field on 25 September 2014 at 23:42 UTC and (b) radial wind
speed (blue dots) as a function of the azimuth angle at a fixed 2 km distance from the lidar (black circle on a).

cosine function of the azimuth angle, due to the projection
of the wind along the beam direction (Eberhard et al., 1989).
For instance, the observations at 2 km from the lidar (black
ring in Fig. 3a) are displayed in Fig. 3b and can be fitted by
a cosine function in the form of Eq. (1):

ur = a+ bcos(θ − θmax), (1)

where b is the mean wind speed, θmax is the wind direction,
θ is the azimuth angle of the beam and a is the offset (Brown-
ing and Wexler, 1968; Lhermitte, 1962). It is noteworthy that
the value of a is much smaller than b for our data. It is pos-
sible to retrieve the mean wind from all the “rings” and sub-
sequently calculate the mean wind projected on the beam
direction which is displayed in Fig. 3c. The difference be-
tween the radial wind field ur (Fig. 3a) and the mean wind
projected on the beam direction (Fig. 3c) is the mlf-cs of
the radial wind field u′r (Fig. 3d), a parameter that indicates
the existence of a turbulent atmosphere. For this study, the
radial-wind-speed values for which the carrier-to-noise ra-
tio is lower than−27 dB (CNR<−27 dB) were disregarded,
since they were anomalously high, exceeding the values of
the rest of the radial wind field by 2 times or more. Therefore
the effective scanning range showcased in Fig. 3 is approx-
imately 3 km. For a better visual representation of the pat-
terns, the sign of the u′r in the current study is positive when
the radial wind speed is stronger than the mean wind speed
and negative when it is weaker as is illustrated in the sign
convention of Fig. 3b, and it was computed by the following
expression:

u′r = |ur(θ)| − |f (θ)|, (2)

where f is the fitted curve.
The Jussieu site is located in an urban area near hills;

hence the surface roughness or the orography can affect the
regional wind flow. Troude et al. (2002) and Lemonsu and
Masson (2002) have performed numerical weather simula-
tions in the area of Paris and have observed that during low-
wind conditions (below 3 ms−1) the orographic effect and

the urban heat island effect could be the main drivers for
the local wind speed. As a result, in some cases the radial
wind field does not follow a cosine function, and therefore
the VAD method cannot be applied. This is apparent espe-
cially at night when low winds (below 2 ms−1) do not have
a defined direction (Wilson et al., 1976). Figure 4 presents
a case where the radial wind field is not homogeneous. The
radial-wind-speed values e.g. at 2 km did not follow a cosine
function (Fig. 4b).

The visual examination of the mlf-cs fields led to the iden-
tification of three types of remarkable mlf-cs patterns. The
first type was represented by large elongated areas of posi-
tive mlf-cs’s accompanied by large elongated areas of nega-
tive mlf-cs’s aligned with the mean wind (Fig. 5a) during the
day. In the atmosphere, these types of patterns are encoun-
tered concurrently with the existence of rolls, where strong
descending motions enhance the horizontal wind speed and
ascending motions reduce it. The second type of pattern was
characterized by large enclosed areas of a positive mlf-cs
field attached to large enclosed areas of a negative mlf-cs
field (Fig. 5b) during the day. The convergence zones formed
between the positive and negative mlf-cs fields during un-
stable conditions (e.g. high solar radiation) are able to form
strong unaligned thermals. Finally, the third type of pat-
tern consisted of narrow elongated areas alternating between
positive and negative mlf-cs’s aligned with the mean wind
(Fig. 5c). These patterns resemble turbulent streaks as de-
scribed in Sect. 1.

In order to train the classification algorithm (Sect. 4.1),
it was necessary to build an ensemble of cases for which
the presence of rolls, unaligned thermals or streaks was con-
firmed by observations other than the lidar measurements.
Moderate Resolution Imaging Spectroradiometer (MODIS)
true-colour images were used to detect the presence of cloud
streets over Paris (Fig. 5d), which confirmed the existence of
rolls as stated in Sect. 1. Close to the moment when the cloud
streets were present, rolls patterns were observed at the tur-
bulent radial fields (Fig. 5a). It is noteworthy to mention that,
for the training ensemble, we selected only cases of rolls oc-
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Figure 5. The upper part shows the three types of mlf-cs fields to classify: (a) rolls observed on 13 October 2014 at 12:52 UTC, (b) unaligned
thermals observed on 16 September 2014 at 12:52 UTC and (c) streaks observed on 9 September 2014 at 20:49 UTC. The lower part shows
the ancillary observations used to ascertain the structure type: (d) and (e) are true-colour images recorded by MODIS Aqua on the same day
as (a) and (b) at 12:50 UTC, and (f) is the horizontal wind speed profile recorded by the Doppler lidar using the DBS technique on the same
day as (c) at 20:51 UTC.

curring around the satellite overpass time to ensure the pres-
ence of cloud streets and thus the existence of rolls. How-
ever, for this classification we are interested in all the cases of
rolls, with or without the formation of cloud streets. It is im-
portant to note that we observed the occurring patterns near
the surface, hence near the lower part of the rolls. Regarding
unaligned thermals, solar-radiation measurements from the
meteorological station of Paris-Montsouris indicated the oc-
casions when the hourly values were higher than the monthly
average hourly values according to the Photovoltaic Geo-
graphical Information System (Huld et al., 2012), signify-

ing fair-weather cumulus conditions. For approximately the
same time of the day, we observe the unaligned thermals pat-
terns. Figure 5b showcases an example of a turbulent radial
wind field with unaligned thermals along with fair-weather
cumuli over Paris as observed on MODIS true-colour images
at approximately the same time (Fig. 5e).

Finally concerning streaks, a driving factor for their for-
mation is the existence of a strong wind shear near the sur-
face. The observation of the horizontal wind profiles from the
DBS scans revealed when the local maxima horizontal wind
speed was higher than 2 ms−1 compared to the local minima
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Figure 6. The mlf-cs field (a) before and (b) after image pre-processing with the arrow representing the mean wind direction on 10 September
2014 at 19:57 UTC.

Table 3. Co-occurrence matrix after the image pre-processing
(Fig. 6b) for the first neighbour (n= 1) and for a cell pair aligned
with the mean wind and oriented in the same direction (azimuth
ϕ = 0◦).

1 2 3 4 5 6 7 8
1 3065 226 164 118 113 57 35 94
2 255 67 77 58 36 26 23 48
3 181 81 59 61 44 51 35 72
4 133 58 63 91 71 50 40 92
5 98 51 59 65 67 63 58 154
6 58 36 50 53 75 72 78 169
7 46 30 38 53 60 61 55 231
8 73 45 78 104 151 201 246 3402

above it, which is defined as the threshold for nocturnal low-
level jet events (Stull, 1988) (Fig. 5f). It is important to note
that the location of the local maxima and minima of the hor-
izontal wind speed were consistent during the study period,
ranging from 200 to 300 and 400 to 500 m, respectively. The
horizontal wind speed Uhor was estimated by the zonal u and
meridional v winds via the expression

Uhor =
√
u2+ v2. (3)

For the training ensemble, only night cases when streaks
patterns (Fig. 5c) were accompanied by differences in local
maxima and minima of the Uhor higher than 2 ms−1 were se-
lected. In total, 30 cases of each structure type were selected
for the training ensemble with an extra category represent-
ing all the patterns that are not classified in the other three
categories, such as chaotic patterns or cases when the VAD
method cannot be applied (Fig. 4). Regarding rolls, streaks
and thermals, only cases with symmetric radial wind fields
were selected in order to ensure that the VAD method was
applicable. The selection of symmetric radial wind fields was
based on the visual examinations of the radial wind fields and
the individual cosine function fits.

3.2 Computation of the co-occurrence matrices

In order to retrieve comparable texture analysis parameters
from the mlf-cs field of the scans, the mlf-cs field was rotated
so that the mean wind direction was aligned to the vertical
(0◦ corresponds to a wind blowing from the north). Then,
the coordinates were converted from polar to Cartesian. It
was also important to adjust the contrast of the image so
that the difference between the areas of positive and nega-
tive turbulent wind speed became more prominent. For this
purpose, the contrast of the images was increased by map-
ping the turbulent-wind-speed values into eight levels. One
bin included all the negative values below −0.5 ms−1; six
bins were equally distributed between −0.5; and +0.5 ms−1

and one bin included all the positive values above+0.5 ms−1

(Fig. 6b).
For the automated classification of patterns, we need to

map them to a space of corresponding numerical parameters.
Each reconstructed mlf-cs field is represented by a matrix
(cells corresponds to pixels) from which 8× 8 co-occurrence
matrices (CMs) can be constructed (Haralick et al., 1973).
The rows and columns of the CM represent the wind lev-
els from 1 to 8, whereas the cells contain the frequency of
the combination of two neighbour pixels in the image. More
specifically, the element at line i and column j contains the
number of pixels with value i which are neighboured by pix-
els with value j . The first neighbour can be searched at dif-
ferent direction (e.g. left to right, top to bottom or diago-
nally) defining the cell pair orientation. In the same way a
second, third, etc. neighbour can be selected. Thus, the CMs
can be calculated for any cell pair orientations and neighbour
order. CM were computed for various distances, i.e. neigh-
bour orders n from 1 to 30 (distance from 50 m to 1.5 km),
and all possible cell pair orientations, i.e. azimuth angles ϕ
from −90◦ (transverse direction from the mean wind in the
anticlockwise direction) to +90◦ (transverse direction in the
clockwise direction). Table 3 shows the cell values of the CM
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Table 4. Co-occurrence matrix after the image pre-processing
(Fig. 6b) for the third neighbour (n= 3) and for the transverse di-
rection in the clockwise direction (azimuth ϕ = +90◦).

1 2 3 4 5 6 7 8
1 1497 231 203 182 165 168 170 1149
2 185 19 25 43 27 27 25 200
3 183 29 26 29 33 31 21 207
4 195 32 37 39 29 31 28 185
5 203 29 38 31 36 31 26 208
6 201 26 25 25 26 39 29 198
7 175 27 23 26 32 21 37 212
8 1063 179 187 196 243 206 217 1719

built from the image of Fig. 6b for the first neighbour (n= 1)
and for a cell pair aligned with the mean wind and oriented
in the same direction (azimuth ϕ = 0◦). It is apparent that the
vast majority of the occurrences are concentrated in the cells
[1,1] and [8,8], as the structures are elongated and aligned
with the mean wind direction.

On the other hand, Table 4 shows the CM of Fig. 6b for
the third neighbour (n= 3) and for a cell pair oriented per-
pendicularly to the mean wind (transverse direction) with a
clockwise rotation (azimuth angle ϕ = +90◦). In this case,
the occurrences have been distributed to the cells [1,1] and
[8,8], as well as to the cells [1,8] and [8,1]. As we can see in
Fig. 6b, the structures alternate between positive and nega-
tive values in the direction transverse to the mean wind, thus
creating this difference in the CM compared to Table 3.

3.3 Texture analysis parameters for the classification of
the turbulent structures

It is possible to compute several texture analysis parameters
from each CM. Srivastava et al. (2018) were able to distin-
guish different synthetic patterns by using four texture anal-
ysis parameters: correlation, contrast, homogeneity and en-
ergy. Correlation indicates the existence of linear structures
in the image, with high values associated with a large amount
of linear structure in the image. Contrast reveals the local
variations in an image, where a large amount of variations
leads to high values. Homogeneity is self-explanatory, and
the high values represent a homogeneous image. Finally, en-
ergy measures the uniformity of an image with the highest
values corresponding to constant or periodic forms (Haralick
et al., 1973; Yang et al., 2012). In the study of Srivastava et al.
(2018), the striped patterns resemble the elongated patterns
of streaks and rolls that we observe in the turbulent radial
wind field. Therefore, the same texture analysis parameters
were selected for calculation in our dataset. More particu-
larly, the following parameters were computed by Eqs. (4)–
(7).

Homogeneity: Hom(ϕ,n)=
∑
i,j

p(i,j)

1+ |i− j |
, (4)

Contrast: Con(ϕ,n)=
∑
i,j

p(i,j)|i− j |2, (5)

Correlation: Cor(ϕ,n)=
∑
i,j

(i−µi)(j −µj )p(i,j)

σiσj
, (6)

Energy: En(ϕ,n)=
∑
i,j

p(i,j)2, (7)

where p(i,j)= CM(i,j)∑
i,j

CM(i,j) for the i,j position in the CM,

marginal expectations µi =
∑
i

∑
j

i ·p(i,j), µj =
∑
i

∑
j

j ·

p(i,j), and the marginal SDs σi =
√∑

i

∑
j

(i−µi)2 ·p(i,j)

and σj =
√∑

i

∑
j

(j −µj )2 ·p(i,j).

At a given neighbour order n, it is then possible to study
the dependence of the texture parameters to the azimuth an-
gle ϕ (see an example of such a dependence in Fig. 7). The
streaks and rolls have a more prominent peak in the longitu-
dinal direction (ϕ = 0◦) compared to the unaligned thermals
and patterns of “others”. As streaks and rolls are aligned with
the mean wind (azimuth ϕ = 0◦), those peaks result from the
elongated shapes of these patterns.

Three parameters of the curve in Fig. 7 were selected in
order to distinguish the different types of structures. For in-
stance, for the homogeneity curves, these parameters are de-
fined as follows in Eqs. (8)–(10).

Amplitude: Hom.Amp(n)= max
ϕ
(Hom(ϕ,n))

−min
ϕ
(Hom(ϕ,n)) (8)

Integral: Hom.Int(n)=
∑
ϕ

Hom(ϕ,n) (9)

Symmetry: Hom.Sym(n)=
∑
ϕ

|Hom(ϕ,n)

−Hom(−ϕ,n)| (10)

These three curve parameters were calculated for the 4 tex-
ture analysis parameters and for each of the 30 neighbour
orders, which gives 360 parameters. In addition to these pa-
rameters, the time in UTC (close to solar time in Paris),
the average mean wind speed and the root-mean-square er-
ror (RMSE) of the cosine fit (Fig. 3b) were included in the
classification parameters. The total number of classification
parameters associated with each scan was therefore 363.
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Figure 7. Third-neighbour homogeneity as a function of azimuth for one selected scan of each type.

4 Classification using supervised machine learning

4.1 Algorithm training and classification error

In order to classify the mlf-cs’s according to the aforemen-
tioned texture analysis parameters, the supervised machine-
learning methodology was applied (Bonamente, 2017; James
et al., 2000; Kubat, 2017). The QDA algorithm was used,
which minimizes the total probability of misclassification,
assuming that features of each class have a multidimensional
Gaussian distribution. QDA or normal Bayesian classifica-
tion (Hastie et al., 2009) is the parametric approach imply-
ing that probability density functions (PDFs) belong to the
family of normal distributions. It is a classical algorithm of
supervised machine learning, based on the principle of max-
imum likelihood. The general idea is to estimate the PDF for
each class and then select the most probable class (Kubat,
2017).

The greedy algorithm of stepwise forward selection was
used in the article, which is the standard and frequently used
method of reduction of the feature space. As indicated in
Sokolov et al. (2020), it can be formulated as follows. The
features are divided into two groups: accepted in the classi-
fication model and remaining, for which an estimate of the
possibility of acceptance into the model is checked. Fea-
tures from the set of “remains” are consecutively added to
the model, and corresponding estimations of the classifica-
tion error are calculated. From the received set of errors, the
minimum is chosen and compared with the error of the pre-
vious model. If a significant reduction of the error occurred,
then the corresponding feature is accepted into the model; if
this is not true, then the process stops. The QDA was trained
(Hastie et al., 2009; Sokolov et al., 2020) with the 150-case
ensemble described in Sect. 3.1: 30 cases of streaks, 30 cases
of rolls, 30 cases of unaligned thermals and 60 cases of oth-
ers. The category of others was represented by twice as many
cases, since it is expected to be the dominant category in
the classification, as it includes the chaotic mlf-cs fields and

the cases where the mlf-cs field was not computed success-
fully by the VAD method. The algorithm can be sensitive to
an unbalanced training ensemble. Therefore, the selection of
a training ensemble based on the expected results was pre-
ferred (Kubat, 2017).

The total omission error (see Sokolov et al., 2020) of the
classification based on the QDA technique could be esti-
mated for the training ensemble by means of 10-fold cross
validation. This error is referred further as the classification
error. In this method, the algorithm is trained using 90 % of
the training ensemble (135 cases); it is then applied to the
remaining 10 % (15 cases), and the resulting (output) classes
are compared to the expected (target) classes. The process is
repeated 10 times, each time extracting a different 10 % sam-
ple for testing, until the entire training ensemble has been
tested.

As the number of dimensions of the feature space (363)
was significantly higher than the number of patterns of the
training ensemble (150), the application of all the features
leads to the curse of the dimensionality problem, when the
classification works well only for the training data and fails
for the test set. In order to deal with this problem, we re-
duced the feature space by selecting the most informative
components using the stepwise forward-selection algorithm
(Sokolov et al., 2020). The resulting sequence of these com-
ponents and the decrease of the 10-fold cross-validation clas-
sification error are presented in Fig. 8. The classification er-
ror reached a minimum of about 9.2 % when five parameters
were used; taking more into account increased the classifica-
tion error.

Analytically, these parameters are the amplitude of the
2nd-neighbour homogeneity curve, the integral of the 18th-
neighbour contrast curve, the amplitude of the 4th-neighbour
contrast curve, the integral of the 8th-neighbour correlation
curve and the symmetry of the 2nd-neighbour homogeneity
curve. These results show that the prominent peaks are a dis-
tinctive characteristic for the elongated patterns, as the am-
plitude of the homogeneity and contrast curves are two of the
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Figure 8. Parameters selected to minimize the classification error of the training ensemble by the QDA method. From left to right: amplitude
of the homogeneity for the 2nd neighbour, integral of the contrast for the 18th neighbour, amplitude of the contrast for the 4th neighbour,
integral of the correlation of the 8th neighbour and symmetry of the homogeneity for the 2nd neighbour.

significant parameters. Furthermore, the integral or more pre-
cisely the sum of the points of the curves for the contrast and
for the correlation curves are significant parameters as well.
This is important especially for the distinction between the
categories thermals and others, as their amplitude may not
differ substantially, since the patterns are not towards a spe-
cific direction, yet a chaotic area will have higher values of
contrast and lower values of correlation compared to an en-
closed homogeneous area. Finally, the symmetry of the ho-
mogeneity curve as a classifier reveals the urgency to align
the turbulent radial wind fields to the mean wind direction
and thus align the structures such as streaks and rolls with the
mean wind direction in order to be distinguishable from the
random positions of the enclosed structures of the thermals or
the chaotic structures of others. It is also crucial to note that
the parameters cover various distances, from the 2nd neigh-
bour, which in grid points is 100 m, to the 18th neighbour,
which is 900 m. This is necessary for our classification, since
streaks and rolls are both elongated patterns, but their trans-
verse horizontal sizes differ. Furthermore, it demonstrates the
ability of the algorithm to distinguish structures with differ-
ent sizes. It is noteworthy that the curve parameters play a
more significant role in the classification of the structures in
comparison to time, mean wind field and cosine fit RMSE.

The detailed results of the cross validation of the QDA
classification for the algorithm with five predictors are dis-
played in Table 5. The algorithm allowed for classifying cor-
rectly about 91 % of the training ensemble. The algorithm
performs the most precise classification for the streaks with
a classification error of only 3.3 %, as one case was misclas-
sified as rolls. Regarding the category of others, the results
are equivalently accurate with a classification error of 3.3 %,
as two cases were misclassified as thermals. Moreover, the
performance of the algorithm for rolls was good with a clas-
sification error of 10 % with three cases being misclassified
as thermals. Thermals were the most troublesome type for

Figure 9. Classification of the whole ensemble using the QDA
method according to the parameters of Fig. 8.

classification by the algorithm; the algorithm classified cor-
rectly 24 cases. Four cases were misclassified as rolls, and
two cases were misclassified as others, showing a classifica-
tion error of 20 %.

4.2 Results of the trained algorithm over the 2-month
dataset

The whole dataset, consisting of 4577 scans, was classified
according to the five parameters showcased in Fig. 8. The
results are displayed in Fig. 9.

The algorithm classifies 54 % of the 2-month dataset as
containing mlf-cs’s and 34 % in particular as coherent struc-
tures (streaks and rolls). The most frequent cases of mlf-cs’s
were streaks (25 %), and the least frequent cases were rolls
(9 %). It is important to note that, in our classification, we
considered only thermals and rolls during daytime. Figure 10
illustrates the number of occurrences for each type of struc-
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Table 5. Confusion matrix calculated for the training dataset. The “target class” corresponds to the visual classification, while the “output
class” corresponds to the class attributed by the algorithm. Therefore, the cells in the “roll” column, for instance, give the number of roll
cases that were classified properly (roll line) or improperly (other lines) in the different categories.

Target class

Output class Others Streaks Rolls Thermals

Others 58 0 0 2 96.7 %
38.7 % 0.0 % 0.0 % 1.3 % 3.3 %

Streaks 0 29 0 0 100.0 %
0.0 % 19.3 % 0.0 % 0.0 % 0.0 %

Rolls 0 1 27 4 84.4 %
0.0 % 0.7 % 18.0 % 2.7 % 15.6 %

Thermals 2 0 3 24 82.8 %
1.3 % 0.0 % 2.0 % 16.0 % 17.2 %

96.7 % 96.7 % 90.0 % 80.0 % 92.0 %
3.3 % 3.3 % 10.0 % 20.0 % 8.0 %

Figure 10. Histogram of the number of occurrences of the different types of structures with respect to time in UTC.

ture at a particular time of the day during the 2 months of
the campaign. It is evident that despite time not being one
of the selected classifiers, the number of occurrences of the
structures shows a distribution that can be associated with the
atmospheric conditions. More particularly, rolls and thermals
were mainly classified during the day. This result is notewor-
thy, as these structures are linked to a well-developed atmo-
spheric boundary layer during the day. On the contrary, there
were scarcely any roll cases observed at night, and a few un-
aligned thermals were classified at night. This stems from the
training process, where some cases of thermal were improp-
erly classified as others and the reverse. Regarding the cases
of others, these were mostly observed during the night. This
was expected, since the cases of low winds with no defined
direction – when the VAD method cannot be applied – oc-
cur mainly during the night. We also see that streaks were
observed more frequently during the night, when mechani-
cal turbulence becomes dominant. This was also expected as

the nocturnal low-level jets are a main driving force for the
formation of streaks, and we observed the occurrence of the
local maxima of the horizontal wind speed near the surface
higher than 2 ms−1 compared to the local minima over Paris
for 20 out of the 62 nights during the VEGILOT campaign.

5 Conclusions

The current study showcases that it is possible to identify and
classify mlf-cs’s such as streaks, rolls and unaligned thermals
with horizontal scans from a single Doppler lidar by com-
bining texture analysis parameters and the QDA supervised
machine-learning technique. By applying the VAD method
to the radial-wind observations, it is possible to identify mlf-
cs’s that can be distinguished as narrow elongated (streaks),
wide elongated (rolls), large enclosed (thermals) and chaotic
(others) patterns. The diversity of the patterns was also de-
picted in the curves of the texture analysis parameters with
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the elongated patterns (streaks and rolls) showing a promi-
nent peak compared to more chaotic or enclosed patterns (un-
aligned thermals).

A training ensemble of 150 cases was selected by combin-
ing visual examination of the patterns and studying charac-
teristic physical properties corresponding to streaks, rolls and
unaligned thermals. Subsequently, the QDA algorithm with
stepwise forward selection of the features was applied to the
training ensemble, and its performance was estimated using
the cross-validation technique. The results showed a success-
ful classification for 91 % of the training ensemble using five
texture analysis parameters as predictors. More particularly,
these parameters were the amplitude of the 2nd-neighbour
homogeneity curve and the amplitude of the 4th-neighbour
contrast curve which were associated with the prominent
peaks of the elongated patterns (streaks and rolls). Further-
more, the integral of the 18th-neighbour contrast curve and
the integral of the 8th-neighbour correlation curve which
could distinguish, for example, chaotic patterns (others) with
high contrast and lower values of correlation between neigh-
bour points compared to an enclosed homogeneous type
(thermals). Finally, the symmetry of the 2nd-neighbour ho-
mogeneity curve revealed the importance to align the mlf-cs
fields to the mean wind direction. Another striking outcome
of the QDA classification was the variety of the classifiers in
terms of distance between the grid points. The 2nd neighbour
translates in a distance between two grid points equivalent to
100 m, and for the 18th neighbour this is 900 m. This is es-
sential for the classification between patterns with different
sizes such as streaks and rolls. The algorithm performed best
for the category of streaks with a classification error of only
3.3 %. Time, mean wind speed and the cosine fit RMSE of
the VAD method were not selected by the algorithm for the
classification.

The whole ensemble of the 4577 scans was classified by
the trained QDA algorithm using the five selected texture
analysis parameters. The results showed that 54 % of cases
were classified as mlf-cs’s, among which 34 % were coher-
ent structures (streaks and rolls). The streaks were mostly
observed during night, whereas the thermals and rolls were
almost exclusively observed during the day, with only a few
cases classified between sunset and sunrise. The classified
ensemble can be used for statistical studies of the mlf-cs
physical parameters, such as structure size, as a function of
weather conditions (PBL height, temperature, wind speed,
radiation, etc.). Moreover, the development of the structures
can be analysed and comprehended.

Data availability. All lidar data used in the study are property
of the Laboratoire de Physico-Chimie de l’Atmosphere (LPCA),
Dunkirk, France, and are not publicly available.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-13-6579-2020-supplement.

Author contributions. IC, EDE, HD and AS conceptualized this
study and developed the methodology. HD, PA and MF installed
and monitored the instrument on the field. IC processed the data
and analysed the results for all parts of the study, with the help of
HD, AS and EDM for Sect. 4. IC wrote the original draft of the
paper, with contributions from HD, EDE and AS. All authors par-
ticipated in the review and editing of the paper and agreed to this
version.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors thank François Ravetta,
Jacques Pelon, Gilles Plattner and Amelie Klein of the LAT-
MOS, Sorbonne University, Paris, for organizing and carrying out
the VEGILOT campaign.

We acknowledge the use of imagery from the NASA World-
view application (https://worldview.earthdata.nasa.gov/, last access:
2 December 2020), part of the NASA Earth Observing System Data
and Information System (EOSDIS).

Experiments presented in this paper were carried out using
the CALCULCO computing platform, supported by SCoSI ULCO
(Service COmmun du Système d’Information de l’Université du
Littoral Côte d’Opale).

Financial support. This work is a contribution to the CPER (Con-
trat de Plan Etat-Région) research project IRenE (Innovation et
Recherche en Environnement) and Climibio. The work is sup-
ported by the French Ministère de l’Enseignement Supérieur, de
la Recherche et de l’Innovation, the region Hauts-de-France and
the European Regional Development Fund. The work is also sup-
ported by the CaPPA project. The CaPPA project (Chemical and
Physical Properties of the Atmosphere) is funded by the French
National Research Agency (ANR) through the PIA (Programme
d’Investissement d’Avenir; contract no. ANR-11-LABX-0005-01)
and by the regional council of Nord-Pas-de-Calais and the Euro-
pean Regional Development Fund. This study was funded by the
RFBR (Russian Foundation for Basic Research; project no. 20-07-
00370) and Moscow Center for Fundamental and Applied Mathe-
matics (Agreement 075-15-2019-1624 with the Ministry of Educa-
tion and Science of the Russian Federation; MESRF).

Review statement. This paper was edited by Marcos Portabella and
reviewed by two anonymous referees.

Atmos. Meas. Tech., 13, 6579–6592, 2020 https://doi.org/10.5194/amt-13-6579-2020

https://doi.org/10.5194/amt-13-6579-2020-supplement
https://worldview.earthdata.nasa.gov/


I. Cheliotis et al.: An automated classification method for turbulent structures 6591

References

Adrian, R. J.: Hairpin vortex organization in wall turbulence, Phys.
Fluids, 19, 41301, https://doi.org/10.1063/1.2717527, 2007.

Alparone, L., Benelli, G., and Vagniluca, A.: Texture-based analy-
sis techniques for the classification of radar images, IET Digital
Library, IEE Proc. F, 137, 276–282, https://doi.org/10.1049/ip-f-
2.1990.0041, 1990.

Aouizerats, B., Tulet, P., Pigeon, G., Masson, V., and Gomes,
L.: High resolution modelling of aerosol dispersion regimes
during the CAPITOUL field experiment: from regional to lo-
cal scale interactions, Atmos. Chem. Phys., 11, 7547–7560,
https://doi.org/10.5194/acp-11-7547-2011, 2011.

Banta, R. M., Newsom, R. K., Lundquist, J. K., Pichugina, Y. L.,
Coulter, R. L., and Mahrt, L.: Nocturnal low-level jet character-
istics over Kansas during cases-99, Bound.-Lay. Meteorol., 105,
221–252, https://doi.org/10.1023/A:1019992330866, 2002.

Barthlott, C., Drobinski, P., Fesquet, C., Dubos, T., and Pietras,
C.: Long-term study of coherent structures in the atmo-
spheric surface layer, Bound.-Lay. Meteorol., 125, 1–24,
https://doi.org/10.1007/s10546-007-9190-9, 2007.

Bonamente, M.: Functions of random variables and error
propagation, in: Statistics and Analysis of Scientific Data,
Grad. Texts Phys., Springer, New York, USA, 55–83,
https://doi.org/10.1007/978-1-4939-6572-4, 2017.

Browning, K. A. and Wexler, R.: The determination of kine-
matic properties of a wind field using Doppler radar, J.
Appl. Meteorol., 7, 105–113, https://doi.org/10.1175/1520-
0450(1968)007<0105:tdokpo>2.0.co;2, 1968.

Brümmer, B.: Roll and cell convection in win-
tertime Arctic cold-air outbreaks, J. Atmos.
Sci., 56, 2613–2636, https://doi.org/10.1175/1520-
0469(1999)056<2613:RACCIW>2.0.CO;2, 1999.

Cariou, J. P., Parmentier, R., Valla, M., Sauvage, L., Antoniou, I.,
and Courtney, M.: An innovative and autonomous 1.5 µm Co-
herent lidar for PBL wind profiling, in: Proceedings of the 14th
Coherent Laser Radar Conference, Snowmass, Colorado, USA,
8–13 July 2007, 35–38, 2007.

Castellano, G., Bonilha, L., Li, L. M., and Cendes, F.: Tex-
ture analysis of medical images, Clin. Radiol., 59, 1061–1069,
https://doi.org/10.1016/j.crad.2004.07.008, 12, 2004.

Chai, T., Lin, C.-L., and Newsom, R. K.: Retrieval
of microscale flow structures from high-resolution
Doppler lidar data using an adjoint model, J. At-
mos. Sci., 13, 1500–1520, https://doi.org/10.1175/1520-
0469(2004)061<1500:ROMFSF>2.0.CO;2, 2004.

Drobinski, P. and Foster, R. C.: On the origin of near-
surface streaks in the neutrally-stratified planetary
boundary layer, Bound.-Lay. Meteorol., 108, 247–256,
https://doi.org/10.1023/A:1024100125735, 2003.

Drobinski, P., Brown, R. A., Flamant, P. H., and Pelon, J.: Evi-
dence of organized large eddies by ground-based Doppler lidar,
sonic anemometer and sodar, Bound.-Lay. Meteorol., 88, 343–
361, https://doi.org/10.1023/A:1001167212584, 1998.

Drobinski, P., Carlotti, P., Newsom, R. K., Banta, R.
M., Foster, R. C., and Redelsperger, J.-L.: The struc-
ture of the near-neutral atmospheric surface layer, J.
Atmos. Sci., 61, 699–714, https://doi.org/10.1175/1520-
0469(2004)061<0699:TSOTNA>2.0.CO;2, 2004.

Eberhard, W. L., Cupp, R. E., and Healy, K. R.: Doppler lidar
measurement of profiles of turbulence and momentum flux, J.
Atmos. Ocean. Tech., 6, 809–819, https://doi.org/10.1175/1520-
0426(1989)006<0809:dlmopo>2.0.co;2, 1989.

Haralick, R. M., Dinstein, I., and Shanmugam, K.: Textural features
for image classification, IEEE T. Syst. Man. Cyb., 6, 610–621,
https://doi.org/10.1109/TSMC.1973.4309314, 1973.

Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statis-
tical learning: Data mining, inference, and prediction, Springer
Series in Statistics, Springer, New York, USA, 2009.

Holli, K., Lääperi, A. L., Harrison, L., Luukkaala, T., Toivo-
nen, T., Ryymin, P., Dastidar, P., Soimakallio, S., and Eskola,
H.: Characterization of breast cancer types by texture analy-
sis of magnetic resonance images, Acad. Radiol., 17, 135–141,
https://doi.org/10.1016/j.acra.2009.08.012, 2010.

Huld, T., Müller, R., and Gambardella, A.: A new so-
lar radiation database for estimating PV performance
in Europe and Africa, Sol. Energy, 86, 1803–1815,
https://doi.org/10.1016/j.solener.2012.03.006, 2012.

Hussain, A. K. M. F.: Coherent structures – Reality and myth, Phys.
Fluids, 26, 2816–2850, https://doi.org/10.1063/1.864048, 1983.

Hutchins, N. and Marusic, I.: Evidence of very long me-
andering features in the logarithmic region of tur-
bulent boundary layers, J. Fluid Mech., 579, 1–28,
https://doi.org/10.1017/S0022112006003946, 2007.

Iwai, H., Ishii, S., Tsunematsu, N., Mizutani, K., Murayama, Y.,
Itabe, T., Yamada, I., Matayoshi, N., Matsushima, D., Weiming,
S., Yamazaki, T., and Iwasaki, T.: Dual-Doppler lidar observation
of horizontal convective rolls and near-surface streaks, Geophys.
Res. Lett., 35, L14808, https://doi.org/10.1029/2008GL034571,
2008.

James, G., Witten, D., Hastie, T., and Tibshirani, R.: An in-
troduction to statistical learning, Springer Texts in Statistics,
Springer, New York, USA, https://doi.org/10.1007/978-1-4614-
7138-7, 2000.

Kayitakire, F., Hamel, C., and Defourny, P.: Retrieving for-
est structure variables based on image texture analysis and
IKONOS-2 imagery, Remote Sens. Environ., 102, 390–401,
https://doi.org/10.1016/j.rse.2006.02.022, 2006.

Kelly, R. D.: A single Doppler radar study of horizontal-
roll convection in a lake-effect snow storm (Lake-Michigan),
J. Atmos. Sci., 39, 1521–1531, https://doi.org/10.1175/1520-
0469(1982)039<1521:ASDRSO>2.0.CO;2, 1982.

Khanna, S. and Brasseur, J. G.: Three-dimensional buoyancy
and shear-induced local structure of the atmospheric boundary
layer, J. Atmos. Sci., 55, 710–743, https://doi.org/10.1175/1520-
0469(1998)055<0710:TDBASI>2.0.CO;2, 1998.

Klein, A., Ravetta, F., Thomas, J. L., Ancellet, G., Augustin, P.,
Wilson, R., Dieudonné, E., Fourmentin, M., Delbarre, H., and
Pelon, J.: Influence of vertical mixing and nighttime trans-
port on surface ozone variability in the morning in Paris
and the surrounding region, Atmos. Environ., 197, 92–102,
https://doi.org/10.1016/j.atmosenv.2018.10.009, 2019.

Kropfli, R. A. and Kohn, N. M.: Persistent horizontal rolls in
the urban mixed layer as revealed by dual-Doppler radar,
J. Appl. Meteorol., 17, 669–676, https://doi.org/10.1175/1520-
0450(1978)017<0669:phritu>2.0.co;2, 1978.

https://doi.org/10.5194/amt-13-6579-2020 Atmos. Meas. Tech., 13, 6579–6592, 2020

https://doi.org/10.1063/1.2717527
https://doi.org/10.1049/ip-f-2.1990.0041
https://doi.org/10.1049/ip-f-2.1990.0041
https://doi.org/10.5194/acp-11-7547-2011
https://doi.org/10.1023/A:1019992330866
https://doi.org/10.1007/s10546-007-9190-9
https://doi.org/10.1007/978-1-4939-6572-4
https://doi.org/10.1175/1520-0450(1968)007<0105:tdokpo>2.0.co;2
https://doi.org/10.1175/1520-0450(1968)007<0105:tdokpo>2.0.co;2
https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2
https://doi.org/10.1016/j.crad.2004.07.008
https://doi.org/10.1175/1520-0469(2004)061<1500:ROMFSF>2.0.CO;2
https://doi.org/10.1175/1520-0469(2004)061<1500:ROMFSF>2.0.CO;2
https://doi.org/10.1023/A:1024100125735
https://doi.org/10.1023/A:1001167212584
https://doi.org/10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2
https://doi.org/10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2
https://doi.org/10.1175/1520-0426(1989)006<0809:dlmopo>2.0.co;2
https://doi.org/10.1175/1520-0426(1989)006<0809:dlmopo>2.0.co;2
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.acra.2009.08.012
https://doi.org/10.1016/j.solener.2012.03.006
https://doi.org/10.1063/1.864048
https://doi.org/10.1017/S0022112006003946
https://doi.org/10.1029/2008GL034571
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1016/j.rse.2006.02.022
https://doi.org/10.1175/1520-0469(1982)039<1521:ASDRSO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<1521:ASDRSO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2
https://doi.org/10.1016/j.atmosenv.2018.10.009
https://doi.org/10.1175/1520-0450(1978)017<0669:phritu>2.0.co;2
https://doi.org/10.1175/1520-0450(1978)017<0669:phritu>2.0.co;2


6592 I. Cheliotis et al.: An automated classification method for turbulent structures

Kubat, M.: An introduction to machine learning, Springer
International Publishing, Springer, New York, USA,
https://doi.org/10.1007/978-3-319-63913-0, 2017.

Kunkel, K. E., Eloranta, E. W., and Weinman, J. A.: Remote
determination of winds, turbulence spectra and energy dissi-
pation rates in the boundary layer from lidar measurements,
J. Atmos. Sci., 37, 978–985, https://doi.org/10.1175/1520-
0469(1980)037<0978:rdowts>2.0.co;2, 1980.

LeMone, M.: The structure and dynamics of the horizon-
tal roll vortices in the planetary boundary layer, J. At-
mos. Sci., 30, 1077–1091, https://doi.org/10.1175/1520-
0469(1973)030<1077:tsadoh>2.0.co;2, 1972.

Lemonsu, A. and Masson, V.: Simulation of a summer ur-
ban breeze over Paris, Bound.-Lay. Meteorol., 104, 463–490,
https://doi.org/10.1023/A:1016509614936, 2002.

Lhermitte, R. M.: Note on wind variability with Doppler radar,
J. Atmos. Sci., 19, 343–346, https://doi.org/10.1175/1520-
0469(1962)019%3C0343:NOWVWD%3E2.0.CO;2, 1962.

Lohou, F., Druilhet, A., and Campistron, B.: Spatial and
temporal characteristics of horizontal rolls and cells in
the atmospheric boundary layer based on radar and in
situ observations, Bound.-Lay. Meteorol., 89, 407–444,
https://doi.org/10.1023/A:1001791408470, 1998.

Moeng, C.-H. and Sullivan, P. P.: A comparison of shear
and buoyancy-driven planetary boundary layer flows, J.
Atmos. Sci., 51, 999–1022, https://doi.org/10.1175/1520-
0469(1994)051<0999:acosab>2.0.co;2, 1994.

Newsom, R., Calhoun, R., Ligon, D., and Allwine, J.: Linearly
organized turbulence structures observed over a suburban area
by Dual-Doppler lidar, Bound.-Lay. Meteorol., 127, 111–130,
https://doi.org/10.1007/s10546-007-9243-0, 2008.

Reinking, R. F., Doviak, R. J., and Gilmer, R. O.: Clear-
air roll vortices and turbulent motions as detected with
an airborne gust probe and dual-Doppler radar, J. Appl.
Meteorol., 20, 678–685, https://doi.org/10.1175/1520-
0450(1981)020<0678:CARVAT>2.0.CO;2, 1981.

Saint-Pierre, C., Becue, V., Diab, Y., and Teller, J.: Case
study of mixed-use high-rise location at the Greater
Paris scale, WIT Trans. Ecol. Envir., 129, 251–262,
https://doi.org/10.2495/SC100221, 2010.

Sandeepan, B. S., Rakesh, P. T., and Venkatesan, R.: Observation
and simulation of boundary layer coherent roll structures and
their effect on pollution dispersion, Atmos. Res., 120, 181–191,
https://doi.org/10.1016/j.atmosres.2012.08.016, 2013.

Sokolov, A., Dmitriev, E., Gengembre, C., and Delbarre, H.:
Automated classification of regional meteorological events
in a coastal area using in-situ measurements, J. Atmos.
Ocean. Tech., 37, 723–739, https://doi.org/10.1175/JTECH-D-
19-0120.1, 2020.

Soldati, A.: Particles turbulence interactions in bound-
ary layers, ZAMM J. Appl. Math. Mech., 85, 683–699,
https://doi.org/10.1002/zamm.200410213, 2005.

Srivastava, D., Rajitha, B., Agarwal, S., and Singh, S.: Pattern-based
image retrieval using GLCM, Neural Comput. Appl., 32, 1–14,
https://doi.org/10.1007/s00521-018-3611-1, 2018.

Stull, R. B.: An introduction to boundary layer meteorology,
Kluwer Academic Publishers, Springer, Dordrecht, Germany,
https://doi.org/10.1007/978-94-009-3027-8, 1988.

Träumner, K., Damian, T., Stawiarski, C., and Wieser,
A.: Turbulent structures and coherence in the atmo-
spheric surface layer, Bound.-Lay. Meteorol., 154, 1–25,
https://doi.org/10.1007/s10546-014-9967-6, 2015.

Troude, F., Dupont, E., Carissimo, B., and Flossmann, A. I.: Rela-
tive influence of urban and orographic effects for low wind con-
ditions in the Paris area, Bound.-Lay. Meteorol., 103, 493–505,
https://doi.org/10.1023/A:1014903627803, 2002.

Tur, A. V. and Levich, E.: The origin of organized motion in turbu-
lence, Fluid Dyn. Res., 10, 75–90, https://doi.org/10.1016/0169-
5983(92)90009-L, 1992.
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