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Abstract 
Nitrate from the application of nitrogen-based fertilizers in intensive agricul-
ture is a notorious waste product, though it lacks cost-effective solutions for 
its removal from potential drinking water resources. Catalytic reduction ap-
pears to be a promising technique for converting nitrates to benign nitrogen 
gas. Mesoporous silica SBA-15 is a frequently used catalyst support that has 
large surface areas and highly ordered nanopores. In this work, mesoporous 
silica SBA-15 bimetallic catalysts for nitrate reduction were investigated. The 
catalyst was optimized for the selection of promoter metal (Sn and Cu), noble 
metal (Pd and Pt) and loading ratios of these metals at different temperatures 
and reduction conditions. The catalysts prepared were characterized by 
FT-IR, N2 physisorption, XRD, SEM, and ICP. All catalysts showed the pres-
ence of cylindrical mesoporous channels and uniform pore structures that 
remained even after metals loading. In the presence of a CO2 buffer, the cata-
lysts 4Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15 reduced at 100˚C under H2 and 
1Pd-1Cu/SBA-15 reduced at 200˚C under H2 demonstrated very high nitrate 
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conversion. Furthermore, the forementioned Pd catalysts had higher N2 se-
lectivity (88% - 87%) compared to Pt catalyst (80%). Nitrate conversion by 
the 4Pd-1Cu/SBA-15 catalyst was significantly decreased to 81% in the ab-
sence of CO2. 
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1. Introduction 

Water quality has been and will continue to be a key global-scale environmental 
issue, threatening human health, limiting food production, and hindering eco-
nomic growth  [1]  [2]. This issue will become more pressing as the world’s popu-
lation continues to grow, the effects of climate change intensify, and the pollu-
tion of freshwater resources worsens  [3]. Recently, nitrate has emerged as one of 
the most widespread pollutants in freshwater in many countries  [4]. The sources 
of nitrate contamination originate mainly from the excessive use of fertilizers 
and uncontrolled land discharges of treated wastewater  [5]. Nitrate is highly so-
luble and stable in water and exposure to elevated levels (>50 mg/L 3NO−  in the 
EU) causes methemoglobinemia in newborns and alimentary canal cancer; no 
other group of carcinogens produces such a broad type of tumors  [6]  [7]  [8]. 

Removing nitrate from drinking water is carried out mainly by biological, and 
physicochemical such as electrodialysis (ED)  [9], reverse osmosis (RO)  [10] or 
ion exchange (IE)  [11], and electro-reduction technologies  [6]. The use of bio-
logical denitrification  [12], which reduces the nitrates to nitrogen using micro-
organisms in a biological reactor, is generally preferred to physicochemical me-
thods as it completely removes nitrate by converting it into nitrogen gas; how-
ever bacterial contamination and sludge formed limits the wide application of 
this method  [13]. While physicochemical technologies offer high removal effi-
ciency of nitrates, they suffer from low nitrate selectivity. Therefore, the concen-
trated brine produced by these methods must be post-treated at a high cost. 
Electro-reduction is another technique to convert nitrates into nitrogen, but ni-
trite and ammonia are two possible undesired byproducts. So, to make up for the 
deficiency of the treatment methods developed in the past, nitrate reduction 
technology using catalysts has appeared  [14]. 

Compared with other methods, the catalyst treatment method showed a high-
er nitrate reduction rate under relatively different reaction conditions and was 
evaluated as a cost-effective treatment method  [15]. 

Nitrate reduction reaction using a catalyst is presented as the following for-
mulas (1), (2), and (3). 

1) 3 2 2 2NO H NO H O− −+ → +  
2) –

2 2 2 22NO 3H N 2H O 2OH− + → + +  
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3) 2 4NO 3H NH 2OH− + −+ → +  
After nitrate is reduced to nitrite as an intermediate, it is eventually converted 

into ammonium and nitrogen. 
Conversion of nitrates and selectivity towards nitrogen depends mainly on the 

metal loadings, pH, and catalyst support identity and structure. Several metal 
loadings and ratios of noble metals (Pd, Pt, Ir, Rh, Ru) and promoter metals (Cu, 
Sn, In, Ag, Au, Ni) have been used to optimize nitrate reduction into nitrogen 
gas selectively. However, Pd and Pt as noble metals and Cu and Sn as promoter 
metals were mainly used with different supports  [6]. 

Recently, several studies highlighted the relevance of the structure and geo-
metry of the support to the catalyst performance reported that supports with 
high surface area brought about high catalytic activity for nitrate 
tion  [16]  [17]. Also, the noble/promoter metals ratio can differ according to the 
support used and thus affect both the activity and selectivity of the catalyst  [18]. 
Yoshinaga et al. showed that the stability of the metals on the surface of the 
support at different pH levels depends on the support type  [19]. Certain sup-
ports have been extensively used in the literature, such as alumina, as it provides 
a high surface area and stability of metallic particles, while silica offers high se-
lectivity towards nitrogen  [20]  [21]  [22]  [23]. Also, carbon-based supports show 
special surface properties that promote high metal loading and control of poros-
ity  [24]. Other supports such as resin  [16], Niobium oxide (Nb2O5)  [25], tita-
nium oxide (TiO2)  [26], calcined alumina  [27], silica  [28], titania-ceria  [26], hy-
drotalcite  [27], and zeolites  [28] were explored as well. However, few studies  [21] 
were published on medium-sized porous silica supports, which have advantages 
in terms of smooth mass transfer of reactants and products, large surface area, 
chemical resistance, and high chemical and thermal stability. Therefore, more 
research into medium-sized porous silica supports is required to improve their 
catalyst performance.  

The present study aims to investigate the efficiency of SBA-15 as a support for 
bimetallic catalysts to reduce nitrate. SBA-15 catalysts were prepared with dif-
ferent noble and promoter metals at different conditions. The prepared bimetal-
lic-SBA-15 catalysts were characterized using several techniques. The perfor-
mance of bimetallic-SBA-15 catalysts was examined for the conversion of nitrate 
in water and nitrogen selectivity. 

2. Experimental  
2.1. Materials 

Palladium chloride (99%), copper nitrate (99%), platinum (II) chloride (99%), 
tin (II) chloride (99%), sodium nitrate (≥99%), and sodium borohydride 
(≥96%), obtained from Sigma-Aldrich, were used in the preparation of the bi-
metallic supported catalysts. Acetone (99.5%), obtained from Scharlau was used 
for the washing. While chloroform (99.0% - 99.4%), potassiumsodiumtartratete-
trahydrate (99%), sodiumsalicylate (99.5%), sulfuric acid (98%), purchased from 
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Sigma-Aldrich, and sodium hydroxide (99%), purchased from Riedel-deHaën, 
were used in the nitratecoloration for the analysis by UV-Vis spectroscopy, hy-
droxide pellets originated from UNI-CHEM, ammonium chloride, sodium ni-
troprusside and phenol purchased from Sigma-Aldrich for the ammonia colora-
tion. 

2.2. SBA-15 Synthesis 

In an open container, 500 ml of ultrapure water is acidified with 79.36 ml of HCl 
(37%). Then 16.69 grams of the precursor “P123” which is a tri-block polymer 
(PEOPPO-PEO) was dissolved in the acidic solution. The thermostat attached to 
the reactor was set at 35˚C and the solution was kept under mechanical stirring 
until a clear solution was obtained. Then 39 ml of “TEOS” silica source was 
added slowly to the solution using a graduated burette. 

Immediately after the addition of TEOS, stirring was stopped and the temper-
ature was maintained at 35˚C for 24 hours. After that, the solution was trans-
ferred to a sealed polypropylene container, hydrothermally treated at 130˚C for 
33 hours, and then cooled to room temperature. The solid material was recov-
ered by Buchner filtration, washed 3 times with ultrapure water, and dried 24 
hours at room temperature, then recovered and stored. The resulting white 
powder was then calcined at 500˚C in an oven at a heating rate of 2˚C/min for 6 
hours  [29]. 

2.3. Catalyst Preparation 

The bimetallic catalysts with different loadings (1% Pd - 1% Cu, 4% Pd - 1% Cu, 
2% Pd - 0.6% Cu, 1% Pd - 1% Sn or 1% Pt - 1% Cu), were prepared according to 
Li et al. method  [30]. Typically, the solution of the appropriate metal precursors 
[PdCl2; Cu(NO3)2, PtCl2; Cu(NO3)2 or PdCl2; SnCl2] is prepared with the re-
quired amount. Then, the pH value of the solution was adjusted to a value be-
tween 11 and 12 by the addition of ammonium hydroxide. Thereafter, 0.2 g of 
the synthesized SBA-15 was slowly added to the precursor solution, and the 
mixture was sonicated until it became homogeneous. After stirring for an addi-
tional 24 hours, the resulting solid was carefully isolated by filtration, washed 
with ultrapure water and acetone, dried undervacuum at 65˚C for 12 h, the re-
sultant catalyst was reduced with either one of the following two methods: 

Method 1: Excess 0.12 g of NaBH4dissolved in 20 ml ultrapurewater, was 
added dropwise to the heterogeneous solution (x mg Pd or Pt + y mg Cu or Sn + 
200 mg SBA-15 + 250 ml ultrapure water). After sonication at 65˚C for 1 h, the 
mixture was filtered and washed several times with ultrapure water to remove 
the unreacted reducing agent. Finally, the filtrate was dried under vacuum at 
room temperature for 5 days. 

Method 2: Reduction of the catalyst at 100˚C or 200˚C for 3 h under an H2 gas 
flow after being calcinated for 1 h under an N2 gas flow  [31]  [32]. Table 1 sum-
marizes the prepared catalysts based on their reduction method with its used 
temperature.  
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Table 1. The prepared catalysts and their preparation conditions. 

Catalyst Reduction method Reduction temperature 

4Pd-1Cu/SBA-15 NaBH4 ------- 

4Pd-1Cu/SBA-15 H2 100˚C 

1Pd-1Cu/SBA-15 H2 100˚C 

1Pd-1Cu/SBA-15 H2 200˚C 

1Pt-1Cu/SBA-15 H2 100˚C 

1Pd-1Sn/SBA-15 H2 100˚C 

2Pd-0.6Cu/SBA-15 H2 100˚C 

2.4. Catalyst Characterization 

The XRD diffractometer small angle (SAXS) was adjusted to identify pores dis-
tribution at the surface of SBA-15 used as support for metals. XRD patterns were 
recorded using a Bruker D8 Advance diffractometer operating in reflection 
mode at wavelength (λ = 0.154056 nm) Cu Kα (35 Kv, 30 mA) radiation in the 
2θ range from 0.8˚ to 5˚ in 0.02˚ steps and a count time of 2 seconds/step. Sur-
face area and isotherms of the supports with or without metals were measured 
by N2 adsorption at −196˚C, on a Micromeritics ASAP 2420 analyzer using the 
multipoint BET method. The morphology and particle size of the supports used 
were characterized by FEG-TSEM electron microscopy using a JEOL JSM7100F 
instrument. The Jasco FT/IR-6300 was used to analyze chemical bonds and 
functional groups of SBA-15. Metal loading for some catalysts was measured by 
ICP-OES (ICAP 6300DUO, Thermo). 

2.5. Nitrate Reduction  

To evaluate the catalytic activity of the nitrate-nitrogen reduction reaction in 
water, a glass reactor equipped with a magnetic stirrer and gaseous hydrogen 
(flow rate: 90 ml/min) and carbon dioxide inlet (flow rate: 30 ml/min), capable 
of generating a reducing atmosphere at 5.5 buffer pH, at room temperature. In a 
typical run, 25 mg of catalyst was charged into a reactor with magnetic stirrer, 
containing 50 mL of NaNO3 solution (30 mg/L 3NO− ) inultrapure water. Some 
reduction experiments were performed in absence of CO2 flow. After 0.45 µm 
microfiltration, the concentration of the unreduced nitrate  [33], and ammo-
nium  [34] determination respectively, and analyzed with a U-2900 diode array 
UV-Vis spectrophotometer, where the nitrite is determined using IC chromato-
graphy Hitachi Elite Lachrom, auto sampler 2200. 

The selectivities for nitrite, ammonium and nitrogen are calculated as follows: 

2

2
3i 3

NO

NO
NO NO

n
S

n n
−

−

− −

=
−

                         (1) 

4

4
3i 3

NH

NH
NO NO

n
S

n n
+

+

− −

=
−

                         (2) 
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3i 3

N
N

NO NO

n
S

n n− −

=
−

                         (3) 

where 
3iNO

n −  is the initial amount of nitrate and 
3NO

n − , 
2NO

n − , and 
4NH

n +  are  

the amount of each species at the end of the reaction. The measures of nitrogen 
(

2Nn ) were determined by a mole balance. 

3. Results and Discussion 
3.1. Catalyst Characterization 

The XRD small angle pattern (0˚ - 4˚ 2θ) of the calcined SBA-15 sample is 
shown in Figure 1. The typical XRD pattern of SBA-15 has three characteristic 
peaks relative to the (100), (110), and (200) planes at 2θ of 0.96˚, 1.6˚, and 1.9˚. 
These peaks characterize the two-dimensional hexagonal structure of SBA-15, 
which is consistent with the previously prepared SBA-15 using TEOS as the sili-
ca source  [35]. 

Figure 2 shows the FT-IR spectrum of the calcined SBA-15 sample prepared  
 

 
Figure 1. XRD pattern of SBA-15. 

 

 
Figure 2. FT-IR spectra of SBA-15. 
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in this study. The absorption bands of 1082 and 800 cm−1 belong to the asymme-
tric and symmetric extension of the Si-O-Si framework, respectively. The strong 
band at 3456 cm−1 and the weak band at 965 cm−1 represent, the stretching and 
bending vibrations of Si-OH respectively  [35]  [36]. The presence of small ab-
sorption peaks corresponding to the C–H stretching mode (2852 and 2926 cm−1) 
and bending mode (1384 cm−1) of the tri-block copolymer was also ob-
served  [37]. The band at 1636 cm−1 is assigned to the stretching vibration of the 
carbonyl group (C=O) due to the presence of a small amount of surfactant in the 
sample after calcination. 

Table 2 lays out the specific surface area (BET), and average pore size (V to-
tal) of the SBA-15 and all of the prepared catalysts. We can notice that the im-
pregnation of metals has not changed the textural characteristics of SBA-15, only 
slight specific surface area changes are caused by metals impregnation  [38]. The 
specific surface area increases in the case of Sn metal about 4%. The difference 
between the different values of the specific surface area is due to the role of the 
various metals used in this study. Table 2 shows that the temperature does not 
have any effect on the specific surface area. It seems that SBA-15 imposes its 
specific surface area and is not very affected by the metal impregnation. In addi-
tion, Figure 3 shows the results of nitrogen adsorption-desorption analysis for  
 
Table 2. BET properties of SBA-15 before and after co-impregnation of metals. 

Sample 
Reduction 

temperature 
BET surface 
area (m2/g) 

Vmicro 
(cm3/g) 

Vtotal 
(cm3/g) 

SBA-15 ------- 699 0.027 0.985 

4Pd-1Cu/SBA-15 100˚C 686 0.022 1.09 

1Pd-1Cu/SBA-15 200˚C 684 0.062 1.07 

1Pt-1Cu/SBA-15 100˚C 673 0.086 1.03 

1Pd-1Sn/SBA-15 100˚C 710 0.016 1.018 

 

 
Figure 3. Nitrogen adsorption-desorption isotherm of: (a) SBA-15; (b) 1Pd-1Cu/SBA-15; 
(c) 1Pt-1Cu/SBA-15. 
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SBA-15, 1Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15. All samples revealed type-IV 
isotherms with an H1 hysteresis loop at relative pressures (p/p0) of 0.7 to 1, con-
firming the presence of cylindrical mesoporous channels  [39] and showings 
uniform pore structure that remains even after metals loading  [40].  

Table 3 summarizes the measured ICP results of active metal loading for cat-
alysts reduced by NaBH4 or under H2 at 100˚C and 200˚C. The results show that 
4Pd-1Cu/SBA-15 reduced by NaBH4 and 1Pd-1Cu/SBA-15 reduced at 100˚C 
and 200˚C have a measured percentage of both metals close to the nominal val-
ues. For 2Pd-0.6Cu/SBA-15 and 1Pd-1Sn/SBA-15, only 1 wt% and 0.87 wt% of 
Pd are loaded on the support, respectively, while Cu and Sn promoters are not 
detected (<0.05) in both cases. The difference between nominal percentage and 
obtained values can be attributed to the interaction between ion metals and the 
support  [41]. According to FTIR results, SBA-15 is highly hydroxylated which 
results in a high interaction between copper and oxygen surface groups presents 
on SBA-15, avoiding the close contact of copper with palladium  [42]  [43]  [44]. 
As a result, active sites could not be completely formed at low reduction temper-
ature (100˚C) on hydroxylated surface  [42] so the reduction should be displaced 
at higher temperatures as observed in the work of Soares et al.  [45]. It is impor-
tant to notice that the reduction of copper oxide is promoted by the presence of 
Pd  [45]  [46]  [47]. Herein we report, the enhancement of active metal loading 
when 1Pd-1Cu/SBA-15 is reduced at a higher temperature (200˚C).  

SEM of SBA-15 and 1Pd-1Cu/SBA-15 are carried out, and the representative 
photos are shown in Figure 4. SEM image of SBA-15 show spherical particles of 
micrometric size whereas the image of Pd-Cu/SBA-15 shows clearly well dis-
persed nanosized particles on the surface of SBA-15 that are referred to the sup-
ported active metals.  

3.2. Catalytic Reduction of Nitrate 
3.2.1. Effect of the Reduction Method and the Temperature 
Hydrogen gas, commonly used as a reducing agent in bimetallic catalyst prepa-
ration, is a highly flammable gas. In an attempt to find an alternative reducing  
 
Table 3. ICP results of the prepared catalysts. 

Prepared catalysts 
Palladium  

content (wt %) 
Copper  

content (wt %) 
Tin content 

(wt %) 

4% Pd-1% Cu/SBA-15 
(NaBH4) 

3.96 0.9  

2% Pd-0.6% Cu/SBA-15 
(100˚C) 

0.93 <0.05  

1% Pd-1% Sn/SBA-15 
(100˚C) 

0.87  <0.05 

1% Pd-1% Cu/SBA-15 
(100˚C) 

1.07 0.93  

1% Pd-1% Cu/SBA-15 (200˚C) 0.85 0.89  
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agent, NaBH4 was used. The nitrate conversion percent for the two catalysts 
(4Pd-1Cu/SBA-15), prepared under H2 (at 100˚C) and NaBH4 (at 65˚C), is 
shown in Figure 5. The catalyst 4Pd-1Cu/SBA-15 reduced by H2 converted 81% 
of nitrate, while the catalyst reduced by NaBH4 converted only 4.3%. This might 
be due to the fact that SBA-15 has high amount of hydroxyl groups that interact 
with copper which decreases the reduction power. Thus, thermal reduction un-
der hydrogen is more effective in reducing precursor metals since H2 reduces 
CuO at higher temperatures  [42]. To further investigate the effect of the reduc-
tion temperature on the activity of the supported SBA-15 catalyst, 
1Pd-1Cu/SBA-15 was reduced under H2 at 100˚C and 200˚C. The results of the 
nitrate conversion are shown in Figure 6. 1Pd-1Cu/SBA-15 reduced at 200˚C 
shows a very high nitrate conversion (96%) compared to 1Pd-1Cu/SBA-15 re-
duced at 100˚C (13%). This result can be explained by the fact that changing the 
reduction temperature can modify the metal-metal and metal-support interac-
tions that affect the catalytic behavior in nitrate reduction experiments  [48]- [52],  
 

 
Figure 4. Scanning Electron Microscopy (SEM) images: (a) SBA-15; (b) Pd-Cu/SBA-15. 
 

 
Figure 5. Nitrates conversion (%) analyzed by UV-Vis after 5 h of catalytic reduction us-
ing 4Pd-1Cu as a catalyst reduced by two methods. (

3NO
30 ppmC − = , catalyst 0.5 g LC = , 

Absence of CO2). 
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Figure 6. Nitrates conversion (%) analyzed by UV-Vis after 5 h of catalytic 
reduction using 1Pd-1Cu/SBA-15 as a catalyst reduced with H2 one time at 
100˚C and the other time at 200˚C. (

3NO
30 ppmC − = , catalyst 0.5 g LC = , pH = 

5.5). 
 
and according to the TPR results already done, it can be noticed that the reduc-
tion range of Pd-Cu metals is closer to 200˚C where CuO formation in the pres-
ence of an oxygenated surface requires a higher temperature to be reduced, as 
previously demonstrated for Pd-Cu and Pt-Cu supported catalysts  [48]. 

3.2.2. Effect of CO2 
Figure 7 shows the effect of CO2 buffering on the catalytic activity of supported 
catalyst (4Pd-1Cu/SBA-15) reduced under H2 at 100˚C and investigated after 5 h  
of reaction, other parameters were kept constant: 

3NO
30 ppmC − =  and  

catalyst 0.5 g LC = . 
The catalyst 4Pd-1Cu/SBA-15 showed 100% conversion at pH 5.5 adjusted 

with CO2 buffer. In the absence of CO2, the nitrate conversion significantly de-
creased to 81% and pH increased from 6.5 to 8 by the end of the reaction. 

The basic medium might have a negative effect on the nitrate conversion due 
the anionic generated groups which repeals ion nitrates from the support  [48]. 
As such, we have set the pH to 5.5 by supplying CO2 for the following catalytic 
tests. 

3.2.3. Effect of the Type of Metal-Supported on Conversion  
and Selectivity 

Nitrate reduction by SBA-15 supported catalysts prepared with different 
noble/promoter metals and ratios (1Pd-1Cu, 1Pt-1Cu, 1Pd-1Sn, 2Pd-0.6Cu, and 
4Pd-1Cu) is shown in Figure 8. Catalyst 1Pt-1Cu/SBA-15 exhibited a total con-
version of nitrates (100%) after 5 h of reaction while this conversion did not ex-
ceed 13% and 6.3% after 5 h for 1Pd-1Cu/SBA-15 and 1Pd-1Sn/SBA-15 catalysts  
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Figure 7. Nitrates conversion (%) analyzed by UV-Vis after 5 h of catalytic 
reduction using 4Pd-1Cu reduced with H2 at 100˚C as a catalyst, with CO2 flow 
(5.5 pH buffer) and without CO2 flow. (

3NO
30 ppmC − = , catalyst 0.5 g LC = ). 

 

 
Figure 8. Nitrates conversion (%) analyzed by UV-Vis after 5 h of catalytic 
reduction using the supported catalysts: 1Pd-1Cu/SBA-15, 1Pd-1Sn/SBA-15, 
1Pt-1Cu/SBA-15, 4Pd-1Cu/SBA-15, and 2Pd-0.6Cu/SBA-15 reduced with H2 
at 100˚C. (

3NO
30 ppmC − = , catalyst 0.5 g LC = , pH = 5.5). 

 
respectively. However, as the weight ratio of Pd was increased by a factor of 2 
and 4 the conversion was enhanced vastly. Where 4Pd-1Cu/SBA-15 and 
2Pd-0.6Cu/SBA-15 showed a 100% and 52% conversion respectively, compared 
to 13% for 1Pd-1Cu/SBA-15. Thus, the optimum Pd:Cu ratio for efficient nitrate 
conversion is 4:1. Such a result was also observed by Hörold et al. but with other 
supports  [10]. The improved catalytic activity might be caused by the increase in 
metal loading inside the pores  [50]. The selectivity towards nitrate, nitrite, and 
ammonium is studied for the catalyst that showed almost complete conversion  
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Table 4. Nitrate conversions (
3NO

X − ) and nitrite, ammonium and nitrogen selectivities 

(
2NO

S − , 
4NH

S + , 
2NS ) of the prepared supported catalysts after 5 h of reaction with CO2 

flow (fixed pH = 5.5). 

t = 300 min 

Catalyst 
3NO

X −  
2NO

S −  
4NH

S +  
2NS  

4Pd-1Cu/SBA-15 1.00 0.00 0.12 0.88 

1Pd-1Cu/SBA-15 
(200˚C) 

0.96 0.00 0.13 0.87 

1Pt-1Cu/SBA-15 1.00 0.00 0.15 0.80 

 
of nitrate after 5 h of reaction (4Pd-1Cu/SBA-15-100˚C, 1Pd-1Cu/SBA-15-200˚C, 
and 1Pt-1Cu/SBA-15-100˚C). Table 4 shows that the selectivity of Pd:Cu bime-
tallic catalysts towards nitrogen is very high and the selectivity towards ammo-
nium is very low. While the Pt-Cu bimetallic catalyst has lower selectivity to-
wards nitrogen (80%) due to nitrite and ammonium formation, these results are 
repeated in previous works as in the works of Soares et al.  [48]  [53], and Zhao et 
al.  [27] for example where the selectivity towards nitrogen is decreased in the 
case of Pt-Cu/AC, Pt-Cu/CNT and Pt-Cu/Al comparing it with that in the case 
of Pd-Cu/AC, Pd-Cu/CNT and Pd-Cu/Al respectively. We can conclude that 
4Pd-1Cu-100˚C and 1Pd-1Cu-200˚C are the optimized catalysts with SBA-15 
support for nitrate removal from water in terms of catalytic activity and selectiv-
ity to nitrogen at the same time, which is rarely found in previous studied sup-
ports. 

4. Conclusion 

In this study, experiments were carried out on catalysts supported by SBA-15 
with changing parameters to show their effect on the catalytic activity. The ob-
tained results showed that SBA-15 is a suitable support catalyst for the nitrate 
reduction, where a full nitrate conversion is achieved for 4Pd-1Cu/SBA-15 and 
1Pt-1Cu/SBA-15 reduced with H2 at 100˚C and 1Pd-1Cu/SBA-15 reduced with 
H2 at 200˚C. In general, the catalytic activity and the selectivity towards nitrogen 
or ammonium depend on the method of preparation, the reduction temperature 
of catalysts, and the experimental conditions of the nitrate reduction. It was ob-
served that the preparation of catalysts with H2 at high temperatures achieves the 
formation of active metals and thus improves the efficiency of these supported 
catalysts in the nitrate conversion. The catalytic activity and the selectivity also 
depend on the type of metal and the reduction temperature. These parameters 
affect the metal-support and metal-metal interactions. Nitrogen selectivity is 
highest for catalysts 4Pd-1Cu/SBA-15 reduced at 100˚C and 1Pd-1Cu/SBA-15 
reduced at 200˚C. SBA-15 is a promising catalyst support for nitrate reduction. 
This opens new possibilities in the development of novel supported catalysts to 
improve the catalytic activity and nitrogen selectivity in the remediation of ni-
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trate. Further studies on improved nitrate conversion and N2 selectivity have to 
be conducted concurrently with tests on catalyst stability. All things considered, 
testing should be done in natural waters that frequently contain various ions and 
contaminants that have been shown to provoke deactivation of the catalysts. 
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