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Abstract. Fitness functions fail to differentiate between different solu-
tions with the same fitness, and this lack of ability to distinguish be-
tween solutions can have a detrimental effect on the search process. We
investigate, for the Travelling Salesman Problem (TSP), the impact of
using a hash function to differentiate solutions during the search pro-
cess. Whereas this work is not intended to improve the state-of-the-art
of the TSP solvers, it nevertheless reveals a positive effect when the hash
function is used.

Keywords: Hash functions · Combinatorial Problems · Travelling Sales-
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1 Introduction

The way a solution of a Combinatorial Optimisation Problem (COP) can be
represented is a key issue to design an efficient search algorithm to solve it. A
representation associates an encoding, that can be easily evaluated during the
search algorithm. For example, if we consider the Travelling Salesman Problem
(TSP), a solution to this problem is a tour in which all the cities are listed in the
order they are visited, and each city is visited only once. This solution can be
represented using different encodings [8, 16]: binary, graphs, permutations etc.
In the permutation representation of the TSP, this is interpreted as a sequence
of cities in which the first and the last elements are connected. The cost of a
sequence depends on the order of the cities in the permutation.

The permutation is used as a solution encoding in many other COPs. They
can be found in various application areas such as assignment problems [11, 14,
17], scheduling problems [2], routing problems [17], etc.
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An evaluation function, that associates a fitness measure to each solution,
should be defined in order to (i) distinguish two solutions based on their quality
and (ii) guide the search process. Often these two purposes are expected to be
met by a single function [1].

The mapping from solutions space to fitness values may belong to one of the
following cases:

– 1-to-1 mapping: each fitness value is associated to only one solution
– n-to-1 mapping: several different solutions have the same fitness value

While a canonical form was proposed in genetic programming by Woodward
[21], it still not evident to find it for many COPs. It is common for a fitness
function to map different solutions to the same fitness value. This means the
metaheuristic cannot distinguish solutions based solely on their fitness values,
and this loss of information may impede the search ability of the metaheuritics.

When the search space, i.e. the set of all the feasible solutions for a given
instance, has many solutions with the same fitness value, this often results in
large regions containing plateaus. A metaheuristic may repeatedly return to re-
cently visited solutions as it wanders around the plateau as the fitness function
does not provide any helpful information. We say a cycle occurs when the search
process returns to an already visited solution again. This term is mentioned in
the literature [3, 9] to describe the same phenomena. The problem of cycling may
lead the metaheuristic to be confined to a particular area of the search space.

Another issue arising with population-based search techniques, such as Ge-
netic Algorithms, is the premature convergence of the metaheuristic when differ-
ent solutions have the same fitness in the last generations. Indeed, convergence
measures are mainly based on population diversity to terminate the evolution.
Usually, the diversity of the population is measured by assessing the similarity
among solutions based on their fitness. One of the definitions of convergence in
an evolutionary process is when a certain percentage of the population has the
same fitness, thus indicating that the evolutionary process has stagnated [12].

Differentiating solutions by the mean of their respective fitness values is moti-
vated by the low complexity induced by the comparison. It can even be constant
(O(1)) for some COPs, such as the TSP. On the other hand, differentiating solu-
tions by their respective encoding (permutations, binary strings, etc.) is entirely
accurate but more expensive. Comparing two permutations, for example, is lin-
ear (O(n)), which can likely increase the complexity of the whole metaheuristic
from O(nk) to O(nk+1).

We introduced in a previous short paper [5] a new hash function for the
TSP. In this study, we show its positive effect to provide relevant information
during the search process. Experiments are conducted on the TSP but point to
possible use on other COPs. Three metaheuristics are analysed: Iterated Local
Search (ILS), Genetic Algorithms (GAs) and Memetic Algorithms (MAs). In
this paper, we refer to solutions comparison as the differentiation mechanism to
distinguish between two solutions.

The remainder of this paper is organised as follows. A formal definition of
TSP is provided in the next section, with an analysis of the fitness values distri-
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bution of some TSP instances over the search space. Section 3 introduces a new
hash function designed for TSP permutations and gives a comparative study
based on the number of collisions. Computational results are then presented in
Section 4 to show the effect of the hash function on three metaheuristics. Finally,
Section 5 presents our conclusions and our plans for future work.

2 Collision analysis of the fitness function on the TSP

The TSP is frequently used as a test-bed for designing effective methods to solve
general sequencing permutation problems. The problem is modelled with a graph
G = (V,A) where V = {v1, ..., vn} is the vertex set, and A = {(vi, vj)|vi, vj ∈
V, i 6= j} is the edge set. A non-negative cost (or distance) matrix C = (cij) is
associated with A. This paper focuses on the most widely studied form of the
problem in which costs are assumed to be symmetric cij = cji and satisfy the
triangle inequality (cij + cjk > cik). A feasible TSP solution is a sequence of
nodes/cities arranged in a permutation π of size n. Its cost is the sum of the
distances of each couple of adjacent cities in the permutation. We define a fitness
function to evaluate a TSP permutation π as follows:

ffit(π) =

n−1∑
i=1

cπiπi+1
+ cπnπ1

(1)

It is common practice in evolutionary computation to use the fitness function,
ffit, to compare solutions. It is well-known that many solutions may map to the
same fitness value, but, to the best of our knowledge, no prior work sheds light
on how much the fitness values are repeated over a search space nor how they
are distributed over its solutions. To do so, we chose 39 instances from the TSP
benchmark TSPLIB [18] (sizes n range from 51 to 575). We then explore the
search space in two different ways. Firstly, a set SLO is composed of n2 local
optima obtained with an ILS framework to get as many neighbouring solutions
as possible. Secondly, a set Srand is built, containing 10× n2 random solutions.
These samples were generated in such a way that all the solutions are distinct.
This means that they do not contain two identical permutations. We compute
in the first part of this section the number of collisions occurring in each sample
for each instance.

We say that we have a collision between two solution s1, s2 if f(s1) = f(s2),
where the function f outputs a numeric value. We then examine how these
collisions are distributed over the fitness values in Section 3.2. As an exam-
ple, if 4 solutions s1, s2, s3, s4 map to the same value, we count 4 repetitions
(f(s1) = f(s2) = f(s3) = f(s4)), and 6 collisions ((s1, s2), (s1, s3), (s1, s4)
, (s2, s3), (s2, s4), (s3, s4)). Thus the number of collisions may exceed the sam-
ple size.



4 M. El Krari et al.

2.1 Too many collisions for the fitness function

To determine if the fitness function as a comparison tool can affect a metaheuris-
tic, we measure the collisions over the above-mentioned samples and list them in
table 1. For each instance, we expose the sample size, |SLO| and |Srand|, and the
number of collisions, CLO and Crand, computed by comparing all the solution
pairs (these values are rounded at 1E3 — precise values are displayed in table
2); then the number of the different fitness values, FitLO and Fitrand, retrieved
in each sample.

Getting collisions from large samples of solutions is not surprising, especially
when it comes to local optima that share common edges between them. But the
number of collisions we have in table 1 exceeds our expectations. Indeed, a very
high number of collisions is observed in almost all samples, with up to millions
of collisions for the smallest ones. Moreover, according to FitLO and Fitrand, we
notice very small sets of fitness values to whom the solutions of SLO and Srand

are mapping. In other words, the large set of solutions is distributed over a small
set of fitness values, making some fitness values very repetitive.

Table 1: Collision analysis of the fitness function on the TSP

Instance
|SLO|
1E3

CLO

1E3
FitLO

|Srand|
1E3

Crand

1E3
Fitrand Instance

|SLO|
1E3

CLO

1E3
FitLO

|Srand|
1E3

Crand

1E3
Fitrand

eil51 3 127 53 26 1,069 577 pr144 21 59 5,889 207 200 98,182
berlin52 3 5 799 27 65 6,833 ch150 23 478 893 225 3,921 10,792
st70 5 230 99 49 1,877 1,170 kroA150 23 129 2,807 225 707 46,224
eil76 6 456 72 58 4,140 766 kroB150 23 136 2,708 225 680 47,674
pr76 6 3 3,788 58 18 43,331 pr152 23 73 4,750 231 197 117,041
gr96 9 11 3,872 92 71 49,124 u159 25 71 5,647 253 530 70,958
rat99 10 457 189 98 3,317 2,613 rat195 38 4,736 310 380 25,839 5,329
kroA100 10 31 2,163 100 170 32,619 d198 39 1,338 1,047 392 3,001 38,231
kroB100 10 33 2,028 100 173 32,317 gr202 41 405 3,256 408 3,439 36,831
kroC100 10 30 2,168 100 169 32,881 ts225 51 128 12,854 506 825 170,884
kroD100 10 31 2,034 100 186 30,723 gr229 52 178 10,401 524 922 167,730
kroE100 10 34 1,970 100 168 33,161 gil262 69 16,165 308 686 96,690 4,930
rd100 10 71 1,025 100 599 12,060 a280 79 14,369 414 784 90,807 6,746
eil101 10 1,376 80 102 10,622 975 lin318 101 2,219 3,951 1,011 10,188 78,223
lin105 11 59 1,443 110 289 26,055 rd400 160 18,439 1,398 1,600 81,554 29,261
pr107 11 41 2,549 114 58 73,334 fl417 174 28,258 1,424 1,739 31,432 80,618
pr124 15 37 4,028 154 116 82,802 gr431 186 2,027 15,233 1,954 34,979 91,416
bier127 16 18 7,199 161 187 68,143 pcb442 196 7,548 4,649 1,858 7,753 303,216
ch130 17 351 734 169 2,419 9,609 rat575 331 234,671 592 3,306 676,190 16,898
gr137 19 37 5,593 188 179 89,176
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2.2 Distribution of collisions over fitness values

We count for each fitness value in each sample SLO how many times it appears.
We observed from the different gathered data a high similarity of distribution
of repetitions between the different instances. For a better observation of these
distributions, we draw for each instance a scatter plot with ascendant and linear
scale axes, where each dot depicts the number of repetitions (Y-axis) of one
fitness value (X-axis). The latter is illustrated by its gap (δ) from the optimal
solution’s fitness, calculated with the formula 2.

δ =
ffit(solution)− ffit(optimal)

ffit(optimal)
× 100(%) (2)

As expected, the similarity of distributions induces similarly shaped plots. It
allowed us to classify them into two main distributions, represented in figure 1.
Below each exposed plot in the figure, we provide (i) the instance name; (ii) the
maximal value of the abscissa axis, i.e. the gap between the highest fitness value
existing in SLO and the optimal solution (xmax); (iii) the maximal value of the
ordinate axis, which is the most important repetition observed in SLO (ymax).

In 19 instances (from the 39 studied), we observed the distribution of rep-
etitions with a bell curve. The first row of plots in Figure 1 shows 3 examples
of these instances where we can notice a distribution close to normality. While
the different xmax values are in a fairly narrow range and don’t depend on the
collisions caused by ffit, there is a strong correlation between the density of the
plots and their respective ymax value: the larger the value of ymax, the smaller
the thickness of the curve will be and vice versa. To illustrate this correlation
better, we put in our examples a pair of instances with approximately equal
sizes (rat195 and gr202), where the scatter plot becomes more sparse when ymax
decreases.

For instances with a low ymax (which doesn’t mean a low number of colli-
sions), the repetitions become more sparse on the plot until we move away from
the normal distribution. The second row of the figure exposes 3 examples of the
17 instances where the repetitions form an area with a shape close to a bell.
Unlike the first class of instances, the number of distinct fitness values is more
important but each one appears in the sample less frequently.

Inspecting the collisions occurring in large samples of solutions reveals a
high number of repetitions of the fitness values. This can mislead metaheuristics
when the fitness function is used for comparing solutions. The analysis of the
distribution of fitness repetitions unveils two major classes of distribution. A first
one where instances have a few (distinct) fitness values but with high repetition.
Then a second one with a reversed tendency. Such information can be exploited
to predict how a trajectory-based metaheuristic can be influenced. For example,
in a tabu search context, a high number of repetitions of fitness values may lead
to short cycles when the algorithm considers each visited solution by its fitness
value. These hypotheses are verified and validated in Section 4.
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(a) rat195; xmax=18%; ymax=399 (b) gr202; xmax=14%; ymax=46

(c) rat575; xmax=14%; ymax=2,138 (d) pr124; xmax=16%; ymax=15

(e) kroC100; xmax=17%; ymax=19 (f) gr229; xmax=18%; ymax=22

Fig. 1: Distribution of fitness repetitions and their gaps from the optimal solution

3 Hash functions for a reliable comparison

The analysis shown in the previous section is a strong motivation to search for
an efficient alternative to the objective-based fitness function to compare solu-
tions. Hash functions for COPs (specifically permutation-based ones) have been
proposed to yield a lower number of collisions than the given fitness function.

3.1 Existing hash functions

Woodruff and Zemel introduced three hash functions in [20] . The first function,
h1, is based on multiplying pseudo-random integers ρi with each element of
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the solution vector πi. The maximum integer value MAXINT is used to avoid
overflow. The second function, h2, makes use of a matrix P of a pre-computed
random weight, while the last function, h3, replaces an entry P (i, j) with P (i)×
P (j) which is equivalent to replacing the matrix P with a long vector of pre-
computed random weights. Since the authors claimed h3 is better than h2, the
latter will not appear in our comparative study.

h1 = (

n∑
i=1

ρiπi)%(MAXINT + 1) (3)

h2 =

n∑
i=1

P (πi, πi+1) (4)

h3 = (
n∑
i=1

P (πi)P (πi+1))%(MAXINT + 1) (5)

The three hash functions were designed taking into account the following
properties:

1. Computation and update of the hash value should be as fast as possible,
and in any case as fast as the fitness function. The hash value update after
applying a move on a candidate solution should preferably be computed in
O(1) time.

2. The hash values should be in a range that results in reasonable storage
requirements and comparison effort.

3. The function should guarantee a low collision probability to minimise the
risk of two permutations having identical hashes.

Toffolo et al. [19] employed the two hash functions defined in Eq. 6 and Eq.
7 to rapidly evaluate a newly explored route of the CVRP. The function hp is
a multiplicative hash which depends on the visited permutation. The second
function, hs, is an additive hash that depends on the set of visited customers.
These hash functions were used with two different values of ρ. It is set to the
prime number 31, or to the smallest prime number greater than the number of
customers. To prevent overflow during multiplication, the values ρi were bounded
taking the rest of the integer division by a large number. While a solution in a
CVRP instance uses a subset of customers, it is not the case for the TSP. Using
all the customers/nodes for any solution of the latter makes hs have the same
value for a given instance and thus cannot be used as a hash function for the
TSP.

hp(π) =

n∑
i=1

ρiπi (6)

hs(π) =

n∑
i=1

ρπi (7)
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3.2 The proposed function

In addition to the three properties (previously mentioned in Section 3.1) that
a hash function should acquire, we propose in this paper to implement a hash
function with an added characteristic.

While the existing functions are based on vectors of large random values, we
want to design our hash function (η) with only the solution and the instance
data already stored by the heuristic. This is more challenging since random
values help to reduce the number of collisions considerably. Conversely, solution
data can increase collisions due to the correlation and similarities we may observe
between a pair of solutions. The fitness function, based on the distance matrix,
is a concrete example.

To make sure η obeys the property n◦ 1, we define a (sub-)hash function
ηe for one edge of the permutation. η can be formulated then as described in
formula 8. It also ensures to get the same hash value when a permutation is
shifted since the solution stays the same in the TSP case.

η = ηe(1, n) +

n−1∑
i=1

ηe(i, i+ 1) (8)

The operands we chose for our hash function are the distance matrix and the
set of node identifiers which are n distinct integers in the range [1;n]. In addition
to the mathematical operators, we define a new operator mod in Formula 9. This
definition is an adjustment of the classical modulo operator to ensure having
the same hash value when the permutation is symmetrical and prevent the ηe
function from returning a zero value ((a < b)⇒ (a%b = 0)).

mod(a, b) = max(a, b)%min(a, b) (9)

To lower the number of collisions, we favoured multiplication over addition
since it gives more diverse values. The division is dismissed to avoid dealing with
precision issues. We decided to involve more the node identifiers rather than the
distance matrix. Values of the latter are larger and will quickly lead to memory
overflows.

Following all the guidelines mentioned above, we designed the function ηe as
shown in formula 10. πi is the identifier of the ith node in the permutation π.
C = (cij) is the distance matrix of the studied instance. Formula 11 defines our
hash function η.

ηe(i, j) = mod(πi, πj)× (πi + πj)× (πi × πj)× cπi,πj
(10)
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η = ηe(1, n) +

n−1∑
i=1

ηe(i, i+ 1)

= mod(π1, πn)× (π1 + πn)× (π1 × πn)× cπ1,πn
+

n−1∑
i=1

mod(πi, πi+1)× (πi + πi+1)× (πi × πi+1)× cπi,πi+1

(11)

3.3 Comparative study

Table 2 below compares the fitness function ffit and the hash functions η and h3

(which was chosen as the best of the functions in Section 3.1 after a preliminary
comparison 4).

For each instance sample (SLO and Srand), the number of collisions resulting
from each function is printed on the table.

The first remark is the significant reduction of collisions made between ffit

and the hash functions, which can’t be with no effect on the search process.
The second observation is the excellent results obtained by η compared with h3,
especially for large instances. Our designed hash function succeeded in getting
zero collisions on 36 (resp. 32) instances for SLO (resp. Srand), against only 29
(resp. 10) instances for h3. The overall average for η is less than one collision in
each set of samples, while it is much higher for h3 in Srand.

This shows that it is possible to design a hash function with fewer collisions
than those proposed in the literature.

η can then be embedded in a metaheuristic, with a constant time cost, as
a reasonable alternative to fitness evaluation in order to compare solutions. In
addition to the three properties listed in Section 3.1, this hash function only uses
solution data and does not need large vectors of random values, thus reducing
its memory footprint. Note that we did not encounter any overflow with our
proposed hash function on our set of instances and samples. Nonetheless, in the
event of overflow, one could use standard strategies, such as clipping values with
a modulo operator (see also [19]).

The following section shows the multiple effects of using the hash functions.

4 Revisiting some metaheuristics with hash functions

Let’s consider fcomp the comparison function to check the equality between a pair
of solutions. The results of each test/run performed in this section are obtained
with fcomp = ffit, then fcomp = η. We provide the same input in each case. Fifty
runs are assigned to each instance/test.

4 The comparison between all the functions is available at
https://elkrari.com/hashfunctions/
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Table 2: A comparison of the number of collisions between ffit, h3 and η obtaines
on the samples Srand and SLO

Instance
SLO Srand Instance

SLO Srand

ffit η h3 ffit η h3 ffit η h3 ffit η h3

eil51 126,875 0 0 1,068,752 2 0 pr144 59,098 0 0 199,699 0 0
berlin52 5,495 0 0 64,662 0 0 ch150 477,971 0 0 3,921,003 0 4
st70 229,647 0 0 1,876,506 0 0 kroA150 128,766 0 0 707,170 0 4
eil76 456,422 1 0 4,140,456 2 1 kroB150 135,785 0 1 680,086 0 3
pr76 2,838 0 0 18,107 0 0 pr152 72,564 0 0 196,547 0 1
gr96 10,633 0 0 71,134 1 0 u159 70,763 0 0 529,831 0 2
rat99 457,303 0 0 3,317,137 2 0 rat195 4,736,380 0 0 25,838,895 1 5
kroA100 30,902 0 0 170,251 1 0 d198 1,337,616 0 0 3,001,233 0 10
kroB100 32,978 0 1 172,655 0 1 gr202 404,695 0 0 3,439,300 0 13
kroC100 30,277 0 0 169,127 0 1 ts225 128,149 0 0 824,742 0 19
kroD100 30,805 0 0 185,716 0 2 gr229 177,592 0 1 921,695 0 15
kroE100 33,600 0 0 167,732 0 1 gil262 16,165,285 0 0 96,690,038 0 26
rd100 71,443 0 0 598,845 0 1 a280 14,368,564 0 2 90,806,864 0 31
eil101 1,376,150 0 0 10,621,646 1 0 lin318 2,219,290 0 1 10,188,376 0 45
lin105 59,275 0 0 288,911 0 1 rd400 18,439,021 0 2 81,553,529 0 99
pr107 41,307 0 0 58,422 0 1 fl417 28,258,436 1 3 31,432,278 0 97
pr124 36,773 0 0 116,389 0 0 gr431 2,026,980 0 2 34,978,940 0 127
bier127 17,641 7 0 187,417 0 5 pcb442 7,548,302 0 3 34,978,940 0 138
ch130 350,821 0 1 2,419,326 0 4 rat575 234,671,318 0 4 676,190,119 0 382
gr137 37,181 0 0 179,311 0 3 average 8,586,280.54 0.23 0.54 28,794,148.38 0.26 26.72

This section doesn’t aim to improve the state-of-the-art. The objective is to
provide a comparison of the two scenarios of fcomp in the same environment.
For each metaheuristic, we implement a basic version with known operators and
strategies.

4.1 Cycling Analysis

One of the limitations of ILS is cycling. A cycle occurs when the search returns
to an already visited local optimum, which means the algorithm is stuck in a
limited region of the search space. To inspect the effect of using hash functions
to identify cyclings, we ran an ILS with a stochastic local search [10] by the 2-
Opt neighbourhood function [4, 7] and a perturbation of n 2-Opt random moves.
Each run stops when the first cycle occurs or when the algorithm reaches 50×n
iterations.

Table 3 shows the average number of visited solutions before a cycle arises.
For each instance, we note the maximum number of iterations (Maxiter), which
is also the maximum number of local optima we can visit in each run. For each
case of fcomp, we record how many times a cycle happened (C), and the average
number of visited local optima before ILS stops (or the history size |H|). We
note zero when no cycle appears during the 50 runs. The last column of the
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table compares the two cases of fcomp with the Mann Whitney U Test (also
called Wilcoxon Rank Sum Test) [15, 6] The test measures the separation level
between the number of iterations made in each case with a p−value.

Table 3: Cycling analysis of the ILS framework when using η then ffit to differ-
entiate solutions.

Instance Maxiter
fcomp = η fcomp = ffit p−value Instance Maxiter

fcomp = η fcomp = ffit p−value
C |H| C |H| C |H| C |H|

eil51 2550 22 1463.18 50 7.78 6.86E-18 pr144 7200 50 608.22 50 100.1 2.77E-16
berlin52 2600 50 401.8 50 39.96 6.86E-18 ch150 7500 0 50 35.54 6.86E-18
st70 3500 10 1946.5 50 11.98 6.86E-18 kroA150 7500 0 50 56.74 6.86E-18
eil76 3800 1 3733 50 8.32 6.86E-18 kroB150 7500 0 50 58.72 6.86E-18
pr76 3800 41 1990.22 50 110.32 6.86E-18 pr152 7600 4 6042.25 50 106.12 6.86E-18
gr96 4800 0 50 97.72 6.86E-18 u159 7950 0 50 95.2 6.86E-18
rat99 4950 2 3054.5 50 11.56 6.86E-18 rat195 9750 0 50 15.6 6.86E-18
kroA100 5000 14 3115.64 50 58.24 6.86E-18 d198 9900 0 50 35.74 6.86E-18
kroB100 5000 0 50 57.1 6.86E-18 gr202 10100 0 50 63.26 6.86E-18
kroC100 5000 12 2866 50 65.74 6.86E-18 ts225 11250 0 50 136.72 6.86E-18
kroD100 5000 0 50 66.94 6.86E-18 gr229 11450 0 50 143.68 6.86E-18
kroE100 5000 0 50 60.4 6.86E-18 gil262 13100 0 50 16.98 6.86E-18
rd100 5000 0 50 39.88 6.86E-18 a280 14000 0 50 19.8 6.86E-18
eil101 5050 1 4093 50 7.64 6.86E-18 lin318 15900 0 50 69.88 6.86E-18
lin105 5250 20 3209.9 50 50.9 6.86E-18 rd400 20000 0 50 41.54 6.86E-18
pr107 5350 0 50 85.18 6.86E-18 fl417 20850 0 50 38.26 6.86E-18
pr124 6200 50 521.26 50 95.34 1.15E-14 gr431 21550 0 50 152.64 6.86E-18
bier127 6350 0 50 141 6.86E-18 pcb442 22100 0 50 70.88 6.86E-18
ch130 6500 1 1624 50 33.3 6.86E-18 rat575 28750 0 28 20.54 6.86E-18
gr137 6850 0 50 91.02 6.86E-18

At first sight of table 3, the difference between the two scenarios seems to
be broad. ILS cycles prematurely when comparing solutions with their fitness
values, with only a few visited local optima. On the other hand, the hash function
enables the algorithm to explore extensively, having to make a decision (restart,
strong perturbation,. . . ) when the cycle arises. With a p−value almost equal to
zero, the Mann Whitney U Test confirms that the ILS algorithm always detects
cycles earlier with the fitness function.

4.2 Convergence Speed

Population-based algorithms can also be exposed to misleading information pro-
vided by the fitness function. One of the stopping criteria in these metaheuristics
is the convergence rate [12], i.e. the similarity of solutions within a population.
We now analyse the convergence speed of two population-based algorithms.

The first one is a GA [13] implemented with a tournament selection, one-
point crossover and an elitist replacement strategy. The second one is a memetic
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algorithm with the same genetic operators and the steepest descent applied to
each new individual with 2-Opt.

For each scenario of fcomp, figure 2a (resp. 2b) displays the average (of the 39
studied instances) evolution of the convergence rate in the 5×n first generations
for our genetic (resp. memetic) algorithm. The evolution is represented with
dashed curves for fcomp = ffit and solid ones for fcomp = η.

(a) Genetic Algorithm

(b) Memetic

Fig. 2: Evolution of the convergence rate for population-based metaheuristics
during 5× n generations

The two figures reveal the incorrect information given by the fitness func-
tion regarding the convergence rates. The difference is tight between the two
cases of fcomp for the GA. In contrast, the memetic shows a wider gap between
the two curves. This means population-based metaheuristics can run for more
generations to explore new solutions and regions of the search space.
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4.3 Applying hash function on metaheuristics

The previous results of this section warn us of the misguided analysis caused
by the fitness function as a comparison function. A hash function can then be
more effective in providing the algorithm with better results. Table 4 lists the
results of three metaheuristics using η and ffit, respectively, and implemented
as follows: (i) An ILS with the steepest descent and perturbations with different
strengths depending on the state of the search, run with 10×n iterations. (ii) A
genetic, and (iii) memetic algorithms run with the same operators used earlier,
with a stopping criterion of 90% on the convergence rate and a strictly equal
number of evaluations for each variant of fcomp. The table shows the average gap
from the optimal solution (formula 2) to the best solution found in each scenario
of fcomp.

Table 4: Iterated Local Search, Genetic and Memetic Algorithms run with η,
then ffit as a differentiating function.

Instance
ILS GA Memetic

Instance
ILS GA Memetic

η ffit η ffit η ffit η ffit η ffit η ffit

eil51 0.81 0.58 187.76 190.95 0.53 0.70 pr144 0.01 0.01 920.35 929.78 0.00 0.01
berlin52 0.00 0.00 193.64 192.26 0.00 0.00 ch150 1.88 1.74 522.68 527.60 0.37 0.47
st70 0.29 0.21 296.54 296.98 0.09 0.18 kroA150 1.56 1.54 604.99 612.51 0.28 0.33
eil76 2.19 2.23 246.20 253.87 0.38 0.85 kroB150 1.28 1.26 601.41 614.83 0.19 0.25
pr76 0.09 0.13 291.06 297.99 0.04 0.05 pr152 0.21 0.22 942.39 949.39 0.11 0.10
gr96 0.64 0.58 389.74 391.14 0.22 0.23 u159 0.99 1.02 674.87 681.97 0.05 0.01
rat99 1.59 1.76 393.90 399.59 0.27 0.34 rat195 3.99 4.51 619.70 622.17 0.83 1.09
kroA100 0.25 0.26 473.64 476.42 0.04 0.06 d198 1.03 1.07 729.34 732.31 0.16 0.18
kroB100 0.56 0.57 442.16 444.14 0.14 0.11 gr202 2.34 2.43 421.79 426.32 0.29 0.30
kroC100 0.32 0.32 482.51 490.31 0.07 0.08 ts225 0.35 0.35 871.65 873.22 0.01 0.03
kroD100 0.77 0.70 444.51 450.29 0.15 0.24 gr229 2.26 2.31 658.88 673.00 0.34 0.39
kroE100 0.66 0.75 461.56 464.54 0.21 0.19 gil262 3.01 3.22 765.70 775.37 0.25 0.64
rd100 0.65 0.62 423.15 424.12 0.20 0.25 a280 2.94 3.69 890.03 897.99 0.26 0.71
eil101 2.91 2.98 303.01 311.78 0.48 1.34 lin318 2.53 2.65 979.80 991.38 0.36 0.41
lin105 0.18 0.13 508.88 516.17 0.02 0.03 rd400 3.91 4.37 983.71 994.41 0.57 0.66
pr107 0.34 0.29 761.09 772.48 0.09 0.11 fl417 0.88 1.05 2,897 2,927 0.22 0.45
pr124 0.03 0.01 745.45 749.41 0.02 0.01 gr431 3.02 3.12 965.36 971.80 0.54 0.60
bier127 0.86 0.92 313.17 320.58 0.20 0.19 pcb442 3.59 3.99 1,095 1,102 0.64 0.71
ch130 1.31 1.30 471.45 478.66 0.31 0.40 rat575 5.44 6.52 1,204 1,205 0.89 1.92
gr137 1.18 1.04 559.23 564.66 0.13 0.16 average 1.46 1.55 659.97 666.57 0.25 0.38

The exposed results confirm the positive effect of using a hash function in dif-
ferent metaheuristic classes, especially for large instances. These improvements
are achieved by non-biased runs of the above-mentioned algorithms. While the
fitness function led to wrong cycles and premature convergence, the hash func-
tion allows the algorithm to make fairer differentiations and then make the right
decisions at the right moments.
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5 Discussion and conclusion

Using the fitness function to compare solutions can be harmful to many meta-
heuristics. This is due to the high number of collisions caused by the fitness
function and the significant repetitions in its values. This paper proposes a new
effective hash function with respect to the existing ones in the literature. The
number of collisions caused by our function η is zero on almost all the generated
samples and can be improved by comparing the pair (ffit, η) of values. An anal-
ysis of different state-of-the-art heuristics unveiled the positive effect of using
a hash function as a comparison tool. While the fitness function misleads the
search process to short cycles, we observed longer explorations when using a hash
function. A similar effect was noticed on population-based algorithms where the
convergence rate increases more slowly with hash values. These improvements
were reflected on their respective metaheuristics by reaching better solutions.

While this paper tackled the TSP as one of the most used COP, others can
also take advantage of the proposed hash function or by designing new ones. We
envisage then for our future works to explore new problems with different solu-
tion representations (permutations or binary strings). Genetic programming can
be used to produce unbiased, and possibly problem-independent, hash functions.
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