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Abstract. Combinatorial optimization problems can involve computa-
tionaly expensive fitness function, making their resolution challenging.
Surrogate models are one of the effective techniques used to solve such
black-box problems by guiding the search towards potentially good solu-
tions. In this paper, we focus on the use of surrogate based on multino-
mial approaches, particularly based on Walsh functions, to tackle pseudo-
Boolean problems. Although this approach can be effective, a poten-
tial drawback is the growth of the polynomial expansion with problem
dimension. We introduce a method for analyzing real-world combina-
torial black-box problems defined through numerical simulation. This
method combines Walsh spectral analysis and polynomial regression.
Consequently, we propose a sparse surrogate model that incorporates
selected, relevant terms and is simpler to optimize. To demonstrate our
approach, we apply it to the bus stop spacing problem, an exemplary
combinatorial pseudo-Boolean challenge.

Keywords: Surrogate · Sparse model · Mobility problem · Walsh basis.

1 Introduction

In industry 4.0 or in academic research such as in chemistry science, ocean sci-
ence, energy system or transportation system [30], digital twins have evolved
into tools for modeling systems and analyzing them through numerical simula-
tions. This evolution gave birth to Simulation-Based Optimization (SBO) [16]
which aims to solve optimization problems based on numerical simulation. How-
ever, SBO leads to additional challenges. Mainly, evaluating a candidate solution
may be highly time-consuming ranging from a few seconds to hours [8, 2]. Fur-
thermore, the optimization problems are often considered as black-box problems
where no algebraic definition is available. To address this problem, three main
strategies can be used. Parallel approaches benefit from larger computational
resources to reduce evaluation time. As the number of evaluated candidate solu-
tions is limited, researchers also define optimization algorithms to increase the
convergence rate toward the most promising solutions [24]. Lastly, Surrogate-
Assisted Optimization (SAO) builds an algebraic model from evaluated solutions,
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substituting the original optimization function with the surrogate to guide the
search.

Although most research dealing with surrogate focus on numerical optimiza-
tion [7], this article emphasizes on surrogate model in the case of pseudo-boolean
optimization. Several surrogate models (see Section 2.1) such as neural net-
work [15], random forest [17], kernel-based methods [42] and multinomial ap-
proaches are used, the latter being the most efficient [25]. The multinomial ap-
proaches decompose the original function into a multivariate polynomial. How-
ever, a significant limitation of multinomial approaches is the exponential in-
crease in polynomial terms with order, which is a crucial parameter of the sur-
rogate. Usually, this parameter is tuned by an expert based on the knowledge
of interactions between variables. As the ”shape”, i.e. the algebraic structure of
the model, of combinatorial real-world problems remains elusive, adding more
knowledge into a multinomial surrogate model remains challenging even for an
expert. Moreover, the primary goal of SAO is not to propose the most accurate
machine learning model to approximate the original function, but to guide the
search toward better candidate solutions. Thus, the surrogate model should be
easy to optimize, and the optimal solution of the surrogate should guide the
search to the optimal solutions of the original function.

The first objective of this paper is to propose a sparse surrogate model based
on Fourier (Walsh) expansion, built with expert knowledge and easy to opti-
mize using dynamic programming approach. The model is applied to the bus
stop spacing problem, an optimization challenge involving selecting optimal bus
stop positions in a city (see Section 2.3). This problem is defined using open
source data, and the open source simulator MATSim for reproducibility. The
second objective is to demonstrate how spectral Fourier/Walsh analysis of the
real-world problem can be used to support hypothesis proposed by an expert in
the application domain. To the best of our knowledge, this is the first spectral
analysis of a real-world combinatorial optimization problem used to explore the
algebraic properties of the fitness function. This work is a first step in turn-
ing a black-box optimization problem into a more transparent white/gray-box
optimization problem [10].

The remainder paper is organized as follows. Section 2 reviews main works
for combinatorial surrogate model, spectral analysis, and presents the bus stop
spacing problem. Section 3 defines the sparse Walsh model. Section 4 presents the
main experimental results on the spectral analysis, and the potential benefits of
the proposed sparse model for optimization. The final section opens discussion,
and perspectives of this work.

2 Related work

This section outlines the main elements of our work. Starting from the definition
of surrogate models and their application in combinatorial optimization, we then
presents the use of spectral analysis in a context of explaining a surrogate Walsh



Surrogate Model for Bus Stops Spacing Problem 3

model. Finally, we describe the bus stops spacing problem which serves as an
illustration of our work.

2.1 Surrogate model for combinatorial optimization

Surrogate-Assisted Optimization (SAO) uses a surrogate model to approximate
the original, computationally expensive fitness function. In its most basic form,
an offline version builds a surrogate model from an initial sample of solutions
and optimizes an acquisition function to generate promising solutions. This ac-
quisition function could be the surrogate function itself or a criterion such as
expected improvement, etc. that is guiding the search by selecting a new can-
didate solution according to the surrogate model. The online SAO algorithm is
based on the two same main components (learning a surrogate model and opti-
mizing the acquisition function) but updates the surrogate model with generated
solutions to refine it over iterations. (See Algorithm. 1).

Algorithm 1 Surrogate-Assisted Algorithm.

X ← initial sample
repeat
M ← Learn surrogate model of f from X
x? ← Optimize w.r.t. an acquisition function based on M
y? ← f(x?) using the numerical simulation
X ← X ∪ {(x?, y?)}

until stopping criterium

Surrogate models for combinatorial optimization have gained more and more
attention [7] in recent years due to the progress of supervised machine learning
techniques for learning heterogeneous data. Besides classical approaches from
continuous optimization that replace the Euclidean distance by Hamming or
other discrete distances in Krigging method [41] or kernel-based methods (Ra-
dial basis function) [27], advanced schemes use dedicated combinatorial struc-
tures. The BOCS method [6] uses multivariate polynomial of Boolean vari-
ables, estimated via Bayesian regression. This technique has been improved in
COMBO [29] which uses a Cartesian product of graphs to represent discrete
categorical variable in the framework of Bayesian optimization. More recently,
to reduce the computation time of the parameters estimation of the multilin-
ear polynomial model used for example in BOCS method, COMEX method [12]
uses exponential weight updates from reinforcement learning. This approach,
initially developed for pseudo-Boolean functions, has been extended to include
categorical variables. [11].

Surrogate model based on Walsh functions [38], building multivariate poly-
nomial models (see next Section 2.2), have proven to be effective in various
contexts including interpolation where precise learning of Walsh coefficients is
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necessary [14], numerical simulations with some noise [25], and in multiobjective
combinatorial optimization [13].

However, the surrogate part of BOCS, COMBO, or COMEX shows accuracy
for combinatorial optimization for problem dimensions up to 50 and is usually
optimized by a basic Simulated Annealing algorithm. In contrast, models based
on Walsh functions take care of the optimization part and the properties of Walsh
functions through efficient local search or evolutionary computation algorithms.

2.2 Spectral analysis of Walsh model

The Walsh basis, sometime also called Fourier basis, of pseudo-boolean functions
space is an orthogonal, normal, and finite basis [28]. Any pseudo-boolean function
f : {0, 1}n → R can be uniquely represented as a linear combination of Walsh
functions:

∀x ∈ {0, 1}n, f(x) =
∑
I⊂[n]

βIϕI(x) with ϕI(x) =
∏
i∈I

(−1)xi

βI ∈ R is the coefficient associated to the Walsh function ϕI . Each Walsh
function can be indexed by the subset of variables I ⊂ [n]. The order of a
Walsh function ϕI is the size of the set I, i.e. the number of binary variables. As
such, the Walsh expression can be written as a multilinear polynomial expression
ranked by the order of terms from the constant term to the highest order which
is the degree of the Walsh expansion:

f(σ) = β∅ +
∑
i∈[n]

βiσi +
∑

i<j∈[n]

βi,jσiσj +
∑

i<j<k∈[n]

βi,j,kσiσjσk + . . .

Here σi ∈ {−1, 1} corresponds to the binary variable xi such that σi = (−1)xi .
The constant term β∅ represents the average value of f across all solutions

in {0, 1}n: Ex[f ] = β∅. The orthogonal and normal properties of the basis imply
that the total variance of f is equal to the sum of square of its non-constant
terms: Varx[f ] =

∑
J 6=∅ β

2
J . As a consequence, each term can be easily under-

stood. Each term βI
∏
i∈I σi indicates the interaction between the binary vari-

ables xi for i ∈ I. The sign of βI shows the sign of this interaction, while β2
I

represents the part of f total variance of f explained by this interaction(i.e. the
strength of interaction).

For instance, the linear terms βi give the individual contribution of variables
xi to the fitness function, the terms βi,j is the quadratic contribution of variables
xi, and xj , etc. From a geometric perspective, the variance of f is the square
euclidean norm, and each β2

I is the squared length the projection onto the ϕI
axis in the orthonormal Walsh basis. The square value β2

I is also called Fourier
weight and defines the spectral sample of f (def. 1.17, and 1.18 [28]) as the
probability distribution on I ⊂ [n] is proportional to β2

I . Then, we can define
the weighted degree of f which is the average degree weighted by β2

I : degβ(f) =
1∑

I∈[n] β
2
I

∑
I∈[n] β

2
I |I|.
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With the goal of understanding the main interactions between variables which
contributes to fitness function, we use a spectral analysis of pseudo-boolean
functions [28]. Basically, we analyze Walsh coefficients normalized by the total
variance:

β̄I =
βI√∑
J 6=∅ β

2
J

The normalized coefficients explain the importance of the corresponding in-

teraction by the ratio of the total variance explained: β̄
2
I =

β2
I

Varx[f ]
. The coef-

ficient β̄
2
I is also called normalized amplitude spectrum [18]. Notice that the

analysis of the amplitude spectrum has mainly been used to analyze the rugged-
ness of the fitness landscape [18, 35]. Actually, the ruggedness which is linked
to non-linearity of the fitness function can be measured by the autocorrelation
coefficient, and can be deduced from the Walsh coefficients [34]. In this work,
we propose to analyze directly the normalized spectrum. The strength of inter-
action can be compared across different functions, surrogate scenario, etc. and
can be represented according to the order of terms or other special properties
of the terms. The spectrum also helps to understand the ”shape” of a real-
world optimization function which also contribute to design better benchmarks
of combinatorial optimization problems.

2.3 Bus stops spacing problem

The bus stops spacing problem is a challenge in the field of transportation mod-
eling [23, 43, 44, 31, 32, 22]. It involves determining the optimal placement of bus
stops in a public transportation system within a certain area. Many approaches
to this problem exist in order to optimize different criteria of public transporta-
tion such as passengers travel time [23, 43, 44], economic costs [31, 22], or envi-
ronmental impact [32].

Various modeling approaches have been applied to this problem. Some utilize
Thiessen polygons [43], or Voronoi diagrams [44] that use static properties of
sub-divisions of the full road network for identifying optimal bus stop locations.
Another approach uses a static model that incorporates multiple physical and
economic constraints to compute the optimal bus stops spacing [31]. In [22],
a bi-level optimization method aiming to minimize social costs of the transport
system by finding the best positioning of bus stops evenly spaced along the road.

Agent-based simulators have emerged as another approach to design complex
models of transportation systems. In [23] following [1], the authors use MAT-
Sim [21] as a simulation environment to compute bus passengers travel time
according to their artificial scenario of mobility plan called SIALAC [25]. This
method enhances the precision of the evaluation function, at the cost of an ex-
pensive computation time. In contrast to the milliseconds required for algebraic
models, a single simulation of a scenario can take up to 1 minute to compute.

New opportunities have emerged with the introduction of the Eqasim [19]
pipeline that allows to create mobility scenarios for MATSim based on open-
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source publicly available data [20]. This pipeline has brought reproducible ex-
periments in urban mobility context. It has been used to model various cities or
regions such as Ile-de-France [20], Sao Paolo [3], or California [5]. The work-
flow of Eqasim from raw data to simulation is shown in Figure 1. For the
sake of reproducibility, all data and code of this article are available: https:
//gitlab.com/vvendi/offline-wsao. Given the accuracy of such model based
on real-world data, we use this pipeline, and MATSim in the context of bus stops
spacing problem resolution as described in next section 4.

Fig. 1. Eqasim pipeline. Picture from the original article [19].

3 Sparse Walsh model

In Surrogate Assisted Optimization (SAO), a surrogate model is learned from a
sample of evaluated solutions in order to approximate the original fitness func-
tion and to guide the search towards better solutions. Thus, the surrogate model
has to be frugal to estimate using a small sample of solutions, and easy to opti-
mize in order to guide the search efficiently. One main drawback of multi-linear
polynomial surrogate such as Walsh expansion is the increase in the number of
terms with the degree. The number of terms of order k is

(
n
k

)
and the number of

terms of degree d is then:
∑d
k=0

(
n
k

)
. For example, for a degree 3 Walsh expan-

sion, the number of terms is 1 + n+ n(n−1)
2 + n(n−1)(n−2)

6 . Indeed, many works
try to use sparse surrogate models with a low number of terms (see Section 2.1)
in order to increase the accuracy of the surrogate given the small sample size.
Here, in this work we also propose to use a sparse model, but on the contrary to
previous works mainly based on data-guided method, we will use expert knowl-
edge to select the most relevant terms of the surrogate model and consider the
difficulty of optimization of the surrogate model.

The mean square error of a surrogate function f̂(x) =
∑
I β̂IϕI(x) to approx-

imate the fitness function f(x) =
∑
I βIϕI(x) is given by the distance between

functions:

mse(f̂) = Ex[(f̂(x)− f(x))2] =
∑
I⊂[n]

(β̂I − βI)2
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For instance, when the surrogate model is a truncation f̂p of the original function

f with p terms from a set P ⊂ 2[n] where:

{
β̂I = βI ∀I ∈ P
β̂I = 0 ∀I 6∈ P

. Then, the mean

square error of the truncation is: mse(f̂p) =
∑
I 6∈P β

2
I . As a consequence, the

truncation with p terms minimizing the mean square error is composed by the p
terms with the highest β2

I -values. The design of a surrogate by an expert would
push to select the most important variables interactions which influence the ob-
jective function. Heuristically based on knowledge of the optimization problems,
some researchers propose to bound the degree of the Walsh expansion [6, 14, 13],
but the number of terms can still be too large compare to the sample size. In
feature selection machine learning problems [26], where the goal is to select the
most important predictors for a machine learning algorithm, block model [33, 4]
is used which supposes that the features are clustered into families of variables.
In this work, we go in this direction by hypothesizing that the order of variables
in the binary string representation of a solution is not random, and gives useful
information to exploit. We suppose that variables close in the representation
impact the fitness function, and those far in the representation do no interact.
Let’s define the distance between variable xi, and xj in the binary string x as
the distance between indexes: |i− j|, and the diameter of the set of variables I
by: D(I) = max{|i1 − i2| : (i1, i2) ∈ I2}. The sparse surrogate model of degree
d, and lag ` is defined by:

f̂d,`(x) =
∑
I⊂[n]

s.t. |I|6d,D(I)6`

β̂IϕI(x)

The number of terms is reduced compared to a simple full expansion of degree
d. For a degree d, we got (n− `)

(
d−1
`

)
+
∑`−1
k=d−1

(
d−1
k

)
terms. For example, for

a problem dimension n, the sparse model of degree 2 with lag ` has 1 + n +
(n− `)` + 1 terms, which is linear with problem dimension, and not quadratic.
Indeed, in evolutionary computation, this sparse model is known as k-bounded
Walsh model [36], where each sub-function of the model depends only on k others
variables.

Moreover, for k-bounded functions, a dynamic programming approach have
been proposed to find in polynomial time the global minimum [40, 39]. The same
algorithm can be used for the sparse model of degree d and lag `. First, a Walsh
function fn on {0, 1}n can be split in two parts, the terms that do not con-
tain the variable xn, and the terms that contain xn: ∀x ∈ {0, 1}n, fn(x) =
fn−1(x) + Fn(x) with Fn =

∑
I⊂[n] s.t. n∈I βIϕI(x). The lag ` ensures that Fn

depends only on variables xn−`, . . . , xn. So, the common variables between fn−1,
and Fn are the ` variables xn−`, . . . , xn−1:
fn(x1, . . . , xn−`, . . . , xn) = fn−1(x1, . . . , xn−`, . . . , xn−1)+Fn(xn−`, . . . , xn−1, xn)

When those variables are fixed, the two parts fn−1, and Fn are independent,
and the global minimum of fn is the sum of the minima:
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min fn(x1, . . . , xn−`, . . . , xn−1, xn)
x∈{0,1}n s.t. (xn−`,...,xn−1)=s

=

min fn−1(x1, . . . , xn−`, . . . , xn−1)
x∈{0,1}n−1 s.t. (xn−`,...,xn−1)=s

+ min Fn(xn−`, . . . , xn−1, xn)
xn∈{0,1} s.t. (xn−`,...,xn−1)=s

(1)

Defining the state S of the dynamic programming algorithm as the possible
values of the variables xn−`, . . . , xn−1, the Equation 1 defines the recurrence
formula to update the state of the algorithm. The last step of the algorithm
selects the state value with the minimum fitness value. Notice that the state size
is 2`, and the complexity is bounded by Θ(n2`) which is linear with problem
dimension.

4 Experimental analysis

4.1 Bus stop spacing problem design

In this section, we focus on an instance of the bus stops problem in the city
of Calais, France. We make use of the MATSim simulator [21] coupled with
the Eqasim pipeline [19] to run simulations from real-world data [20], which
makes our simulation of the city of Calais very precise and reproducible, but
with the drawback of a very expensive computation time, around 30 minutes
per execution. We treat the bus stops spacing problem as a pseudo-boolean
problem by modeling it as follows: All possible locations for bus stops are defined
and represented as a binary variable representing the state of activation of the
according bus stop. A solution is thus a binary string that represents the bus
stops to activate in the simulation. In our case, we work on the bus line nÂ°2
in Calais, which contains 76 bus stops, and we arbitrarily add 32 additional bus
stops that could be potential candidates to improve the existing route for a total
of 108 bus stops. Notice that this problem dimension is large in comparison with
previous artificial benchmarks for surrogate-based combinatorial optimization [6,
14]. Figure 2 shows the outward route and the return route of bus. A few of these
stops perfectly fit with the original bus route, while others diverge, leading to
detours. The purpose of these off-route stops is to introduce diverse options that
our algorithm must identify and exclude from the final selection of bus stops.
The 108 bus stops are ordered in a binary string solution such that the stop
represented by the next bit is the next stop geographically. Our fitness fitness
function defines a pseudo-Boolean problem: f : {0, 1}n → R with a search space
of binary strings of dimension n = 108, and the fitness function computes the
average travel time of people using bus expressed in seconds. In practice, the
3-steps process to evaluate a candidate solution is the following:

– Edit relevant Eqasim input files, i.e. GTFS files which describe the public
transportation system (schedule), according to the solution to evaluate

– Run Eqasim pipeline to generate MATSim input files
– Run MATSim simulation and get quality criterium i.e. average travel time

of people using bus



Surrogate Model for Bus Stops Spacing Problem 9

Fig. 2. Bus stops on the outward route and on the return route

4.2 Spectral analysis

In this section, the Walsh/Fourier spectral analysis is computed to analyze (i)
the most relevant degree of Walsh expansion which is the main parameter used
in polynomial surrogate models (See Section 2.1), (ii) the relevance of the lag
parameter of the proposed sparse model. The search space dimension of bus stop
spacing problem is too large (n = 108) to compute exactly the Walsh coefficients.
So, we compute the exact value of Walsh coefficients using full enumeration of
solutions from a family of sub-spaces. In our work, we used sub-spaces composed
by 8 contiguous bits in the binary string x which correspond to the 8 contiguous
bus stops: from bit xi to bit xi+7 for i ∈ {1, 5, 9, . . . n − 7}. In each of these
sub-spaces, the bits that were not in the range of xi to xi+7 were set to 1 i.e. the
bus stop associated was turned on. Of course, this choice introduces bias in the
estimation of Walsh coefficients, but it seems to be more meaningful (instead of
a random binary value) for the bus stop problem. A same Walsh coefficient may
appear in several sub-spaces. To estimate the weights, we compute the average

of the normalized Fourier weight β̄
2
I across all sub-spaces which contains the

coefficient I ⊂ [n].
Figure 3 (left side) shows the distribution of the normalized Fourier weights

β̄
2
I according to the order. The values are heterogeneous, so notice the log-scale

of values. The terms of order 1, and 2 are the most important terms in the
expansion. The median of order 1 weights is 17 times larger than order 2, and
the median of order 2 weights is 1.7 times larger than order 3. From order 4 to
8, the ratio is much smaller. The sum of normalized Fourier weights of order 1
is 0.544, so 54.4% of the variance is explained by order 1 coefficients. Similarly,
79% of the variance is explained by order 1 and 2 combined. The weighted degree
of the Walsh expansion (See definition in Section 2.2) is 1.66 between the order 1
and 2. Those first results suggest that a degree 2 Walsh expansion should bring
an relevant surrogate model.

First, we analyze more precisely the linear impact of binary variables. Fig-
ure 4 shows the distribution of the logarithm of the normalized Fourier weights



10 Valentin Vendi et al.

Fig. 3. Normalized Fourier weight. Left: as a function of order. Right: only for order 2
terms as a function of lag. Notice the y-log scale.

Fig. 4. Distribution of the logarithm of normalized Fourier weights β̄
2
I of order 1.

β̄
2
I of order 1. The distribution shapes an unimodal distribution. The median is

around 0.7 × 10−3, and the standard deviation of the log-values is 0.877. The
distribution shows the Fourier weights are highly heterogeneous. Some linear
contributions of bus stop are negligible, and at the opposite, some bus stops
highly impact the fitness function. The 10 most important variables in decreas-
ing rank of importance have identifier 96, 88, 82, 92, 90, 39, 76, 61, 77 and 68.
Most of them match some extrapolated bus stops on the map that we can see
in the Figure 2. Indeed, the Fourier/Walsh analysis is easily explainable on the
map for an expert in mobility transportation. Focusing on Walsh coefficients of
order 2, Figure 3 (right side) shows the distribution using boxplot of normalized
Fourier weights of order 2 coefficients according to the lag parameter which is
the distance |i− j| in binary string between variables i, and j. The weights im-
portance decreases with the lag. The median of the lag 1 weights is 3.24 times
larger than the median of lag 2, and the lag 2 median is 1.67 times larger than
the median of lag 3 coefficients. From lag 4 to 8, the ratio of medians is much
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smaller. Coefficients with lag 1 and 2 explain 51.4% of the order 2 coefficients
variance. Indeed, some very specific coefficients with lag 6 impact the fitness
function as detailed in the next paragraph.

Fig. 5. Fourier spectrum of order 2 coefficients for 4 sub-spaces. The matrix value (i, j)

displays the normalized Fourier weight β̄
2
i,j of the quadratic term which corresponds

to bus stops with ids i, and j. Color is the intensity of β̄
2
i,j-values.

Figure 5 shows the Fourier spectrum of order 2 terms for 4 specific sub-

spaces with variables (xi, . . . , xi+7). The normalized Fourier weight β̄
2
i,j of term

for variables i, j is displays in matrix at position (i, j). Thus, the matrix is
symmetric, and the values on the diagonal are set to zero. All sub-spaces can
not be displayed, so 4 representatives examples are selected. The one on the
top-left shows a generic case, the highest weights are close to the diagonal i.e.
are close to each others, with the highest weight representing the interaction
between two stops at distance 3. The top-right with sub-space (17, . . . , 24) is
another example very similar to the top-left one. Once again, the highest weights
are close to the diagonal with the maximum weight between the two stops 22
and 23 at distance 1. The sub-space with variables (89, . . . , 96) at the bottom-
left is a specific case where the terms with the highest weights are not the ones
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with the smallest lag distance near the diagonal. Indeed, bus stops 90, 92 and
96 are among those with the highest linear importance and also show quadratic
importance even though the lag is equal to 6. These bus stops are displayed on
Figure 2 on the return route. Intuitively, we can make the hypothesis that this
combination of ”side-roads” would have an impact on the travel time, which is
confirmed with the Fourier analysis of the fitness function. The sub-space with
variables (101, . . . , 108) at the bottom-right is an example where all weights are
pretty low leading to an uniform distribution of weights, but the most important
quadratic terms are still close to the diagonal. The spectral analysis explains the
degree of a relevant Walsh expansion, the main interaction between variables,
and highlight the sparsity of an efficient surrogate model that can be used. The
next step is to compare the candidate sparse models with the previous proposed
models in the literature.

4.3 Sparse Walsh model quality

In this section, the quality of the sparse Walsh surrogate models is compared
to the quality of the full Walsh surrogate [25]. We follow the sparse regression
method based on the classical LASSO-LARS algorithm from [25, 23, 13] to esti-
mate the parameters of the Walsh expansion which contains all terms of order
below a given degree k, so called full Walsh expansion of degree k in this article.
Figure 6 (left) compares the R2 coefficient of determination (part of explained
variance) of the different surrogate models: full Walsh expansion of degree 1,
and of degree 2, and the sparse Walsh model with lag ` = 4 of degree 2, and of
degree 3. The R2 coefficient is estimated on an independent random test set of
size 400, and the surrogate is trained on random sample size up to 3, 600 solu-
tions. As in previous studies [38], for small sample size, linear Walsh expansion
with only n + 1 terms is more accurate than quadratic Walsh expansion with
1 + n + n(n − 1)/2 terms, but becomes more accurate for larger sample size
of 2, 000 solutions. However, sparse Walsh model of degree 2 outperforms full
Walsh expansion of degree 1 and 2 for almost any training sample size, but also
the sparse model of degree 3 until the training set reach a size of 2700 solutions
which confirms the previous analysis of Section 4.2 on the importance of low
order terms. Remember that computation time to evaluate a single solution is
about 30 minutes making the maximum training sample size very large com-
pared to typical computation effort of an optimization algorithm (which is often
10n), in this regard, we can say that the sparse model of order 2 is better than
the other tested models. Figure 6 (right) compares the R2 regression quality
of sparse model of degree 2 for different lag parameter values. For small train
sample until size 700, all sparse models have approximately the same quality.
Between sample size 700, and 2, 200, the sparse with lag 2 slightly outperforms
the other ones, and for the largest sample size, sparse model with lag 1 is out-
performed by all the other ones. Overall, the sparse model of degree 2 with lag
` = 2 seems to be efficient according to R2 quality.
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Fig. 6. R2 estimated on a test set according to train sample size for different surrogate
models. Left: comparison of degrees with sparse models of lag ` = 4. Right: comparison
of different lags with degree 2 models.

4.4 Optimization with the sparse surrogate model

The sparse Walsh model is designed to incorporate expert knowledge in the
surrogate model for which the relevance is supported by the previous analysis,
but also to be efficient to optimize. Indeed, in Section 3, we show that the
optimal solution of the sparse surrogate can be found in linear time with problem
dimension. In addition to the regression quality of the sparse surrogate, in this
section we show the ability to find solutions with low fitness value using sparse
surrogate model for the bus stop spacing problem instance.

In this preliminary study, we do not follow the anytime surrogate-assisted
algorithm 1 and only use the offline version. Only the original fitness quality of
the solutions which are the minimum of the surrogate function is analyzed. We
compared two different surrogates models: the first one is a full Walsh model of
degree 2, and the other one is a sparse Walsh model of degree 2 with lag ` = 2
(see Section 4.3). For each surrogate model, we learn 30 surrogate models trained
on independent random samples of medium size 5n = 540, large size 10n = 1080,
and very large size of 3000 solutions. Medium, and large size are typical sizes used
in the literature [6, 12]. Random solutions are sampled from the original random
sample of 4, 000 solutions by random sub-sampling technique. To optimize each
surrogate models, we used the efficient iterated local search DRILS that uses
partition cross-over, and the variable interaction graph perturbation1 [10, 37] for
the full Walsh surrogate models; and dynamic programming (Section 2.1) for
the sparse Walsh surrogate models. Table 1 shows the average fitness obtained,
and the Mann-Whitney statistical test at the level of 5%. As a comparison, the
average fitness of the 4, 000 random solutions is 2, 746 with a standard deviation
of 13.1 and a minimum of 2, 712. The fitness of the existing bus stops in Calais
is 2, 698. The sparse model with dynamic programming outperformed the full
Walsh model with DRILS for medium, and large sizes with a larger difference for

1 recommended parameters values, and stopping criterion at 2 seconds of computation
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the medium size. For very large size, both methods have similar performances,
however notice that the variance of sparse models is always smaller which sug-
gests a more robust optimization process. The sparse model of degree 2 and lag
` = 2 is able to guide the search toward promising good solutions, and seems to
converge quicker w.r.t. to sample size than the full model of degree 2.

Table 1. Average, and standard deviation of original fitness obtained from the op-
timization of different surrogate models for different size of training sample size |X|.
Bold highlights statistical difference according to Mann-Whitney test with level of 5%.

|X| Full Walsh model Sparse Walsh model

540 2, 715 (7.5) 2,697 (4.8)
1, 080 2, 704 (4.5) 2,694 (3.6)
3, 000 2,692 (3.7) 2,691 (1.9)

5 Conclusions, and perspectives

In this paper, inspired by block-model, we propose a sparse Walsh surrogate
model which incorporates expert knowledge based on the hypothesis that the
representation, i.e. the encoding, of solution is not random: close variables in
the encoding could interact more than the other ones. Moreover, the sparse
model is dedicated for efficient optimization. We propose a Walsh/Fourier spec-
tral analysis of the fitness function of a real-world problem. This analysis shows
that it is possible to use surrogate models based on Walsh expansion to help
the expert to understand the real-world problem in addition to good optimal
solutions given by the optimization process. As such, this work is a step forward
to explainable optimization to bring decision supports around an optimization
problem.

This initial works including the spectral analysis could be extended to other
black-box combinatorial problems either to problems with binary representa-
tions, or to more complex representation such as permutations space [9]. In this
work, as a first step for the optimization process, we use an offline optimization
scenario. Anytime surrogate-assisted optimization which updates the sample of
solutions during the optimization process has to be tested. Obviously, we plan
to deal with other public transportation plans for the city of Calais with other
criteria of interest, but also for larger cities, where the number of decision vari-
ables is much larger than the state-of-the-art surrogate-assisted algorithms, and
requires parallel optimization algorithms.
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