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ABSTRACT
Our study focuses on the development of new Estimation of Distri-
butionAlgorithms (EDAs)with neuro-evolution for pseudo-Boolean
optimization problems. We define a strategy for updating the fre-
quency vector at each generation using a neural network, trained
by an evolutionary algorithm. To evaluate the effectiveness of our
approach, we conducted experiments using QUBO instances of
different sizes, density matrices, and variable importance. The algo-
rithm automatically discovered demonstrates its competitiveness
with existing EDAs in the literature.
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1 INTRODUCTION
The aim of Estimation-of-Distribution Algorithms (EDAs) [12, 13,
15] is to solve combinatorial optimization problems characterized
by a search space X and an objective function 𝑓 : X → R. EDAs
achieve this by building a probabilistic model on X through an
evolutionary process.

This paper, as in the related literature we consider on EDAs,
focuses on binary problems, where X = {0, 1}𝑛 for a given size 𝑛.
A simple but effective method in EDAs is to use a univariate model.
More precisely, each variable 𝑥𝑖 , where 1 ≤ 𝑖 ≤ 𝑛, in a solution 𝑥 ∈
X is associated with a Bernoulli distribution parameterized by 𝑝𝑖 .
At each iteration, the probability vector 𝑝 = (𝑝1, . . . , 𝑝𝑛) is updated
to converge toward the best possible generative distribution of
solutions.
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From the simple initial framework presented in [17], various
adaptations of EDAs have been explored, and general algorithms
have been proposed to offer a comprehensive understanding of their
fundamental principles and study their properties [2, 3]. Broadly
speaking, an EDA can be conceptualized as the iterative generation
of a set of sampled solutions based on an estimated distribution vec-
tor and the subsequent adjustment of this vector using a specified
heuristic. It is worth noting that EDAs have shown good perfor-
mance compared with other methods in many scenarios [14, 18].

Various univariate EDAs, with increasingly complex updating
mechanisms, have been proposed in the literature. Introduced by
[17], the univariate marginal distribution algorithm (UMDA) be-
gins by generating 𝜆 solutions denoted 𝑥 [1], . . ., 𝑥 [𝜆] using a sam-
pling process based on a 𝑝 frequency vector. These solutions are
then ranked in order of their fitness values to give 𝑥 [1], . . ., 𝑥 [𝜆].
Next, UMDA selects the 𝜇 best solutions and calculates the uni-
variate marginal frequencies considering the 𝑥 [1], . . . , 𝑥 [𝜇] indi-
viduals to update the frequency vector: 𝑝 (𝑡) = max( 1

𝑛 ,min(1 −
1
𝑛 ,

1
𝜇

∑𝜇

𝑖=1 𝑥 [𝑖])). PBIL [1] uses an additional intertia parameter 𝜌 ∈
[0, 1]. Then, the only difference with UMDA concerns the update
policy of the frequency vector, replaced by: 𝑝 (𝑡) = max( 1

𝑛 ,min(1−
1
𝑛 , (1−𝜌) ·𝑝 (𝑡−1)+ 𝜌

𝜇

∑𝜇

𝑖=1 𝑥 [𝑖])). In [2], the authors propose a gen-
eral EDA algorithm, which we call Linear-EDA. It generalizes algo-
rithmsUMDA, or PBILmentioned above. At the end of each gener-
ation 𝑡 , Linear-EDA adjusts the frequency vector 𝑝 (𝑡) by a linear
recombination involving the prior probability value 𝑝 (𝑡 − 1) and
and all the 𝜆 individuals sampled at that time step, 𝑥 [1], . . . , 𝑥 [𝜆]:
𝑝 (𝑡) = max(𝜃𝜖 ,min(1 − 𝜃𝜖 , 𝜃0 · 𝑝 (𝑡 − 1) + ∑𝜆

𝑖=1 𝜃𝑖𝑥 [𝑖])), with
𝜃𝜖 ∈ [0, 1

2 [ a calibrated frequency bound parameter. Linear-EDA
is parameterized by a vector of parameters 𝜃 = (𝜃𝜖 , 𝜃0, 𝜃1, . . . , 𝜃𝜆)
of size 𝜆 + 2.

Such frequency vector update relies on a linear recombination
of the individuals in the population which can pose limitations,
especially for complex pseudo-boolean problems. The main idea of
this paper is to replace the linear update process with a non-linear
update modeled by a neural network.

To train this neural network, we adopt a methodology aligned
with neuro-evolution, a proven successful approach in various learn-
ing scenarios [10], especially in reinforcement learning problems
featuring non-Markovian rewards [4], which exhibit similarities
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Algorithm 1 Neuro-EDA with parameter 𝜆 ∈ N and neural net-
work 𝑔𝜃 parameterized by a vector of parameters 𝜃 .
1: Input: an instance (X, 𝑓 ), a number of iteration 𝑇
2: 𝑝 (0) = ( 1

2 , . . . ,
1
2 ) ∈ [0, 1]𝑛

3: for 𝑡 = 1, 2, . . . ,𝑇 do
4: for 𝑖 = 1, 2, . . . , 𝜆 do
5: 𝑥 [𝑖] ∼ 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑝 (𝑡 − 1))
6: end for
7: Sort the individuals into 𝑥 [1], . . . , 𝑥 [𝜆] (in decreasing fitness order).
8: %% Update the probability vector
9: for 𝑗 = 1, 2, . . . , 𝑛 do
10: 𝑝 (𝑡) 𝑗 = Φ(𝑔𝜃 ( [𝑝 (𝑡 − 1) 𝑗 , 𝑥 [1] 𝑗 , 𝑥 [2] 𝑗 , . . . , 𝑥 [𝜆] 𝑗 ]))
11: end for
12: end for
13: Output: the best solution found 𝑥∗

to our context. Utilizing the CMA-ES algorithm [8], recognized for
its effectiveness in black-box continuous optimization problems,
we harness its capabilities for parameter tuning [11] within our
framework. To comprehensively evaluate the performance of our
algorithm empirically, we employ PUBO𝑖 [19], a versatile generator
of unconstrained quadratic binary optimization problem (QUBO)
instances.

2 DISCOVERING NEW
ESTIMATION-OF-DISTRIBUTION
ALGORITHMSWITH NEURO-EVOLUTION

In this section we first present a new EDA algorithm, calledNeuro-
EDA, using a neural network to update the frequency vector at
each generation. Then, we describe the learning process we have
chosen to train this neural network.

2.1 Neural network Estimation-of-Distribution
algorithms

The proposed EDA, described in Algorithm 1, is a univariate EDA,
which uses a feed-forward neural network, multi-layer perceptron
(MLP), 𝑔𝜃 : R𝜆+1 → R to update the frequency vector. This neural
network is parametrized by a vector 𝜃 (neural network weights).
Φ : R→]0, 1[ corresponds the distribution function of the centered
reduced normal distribution employed in probit models. Utilizing
the probit activation function, bounded between 0 and 1, offers the
advantage of never entirely attaining probability values of 0 or 1.
Conversely, it enables us to approach these boundaries as closely
as needed.

Note that in this algorithm, the same neural network𝑔𝜃 is applied
to compute 𝑝 (𝑡) 𝑗 for each variable 𝑗 , taking as input 𝑝 (𝑡 − 1) 𝑗 , as
well as the values 𝑥 [1] 𝑗 , 𝑥 [2] 𝑗 , . . . , 𝑥 [𝜆] 𝑗 . Therefore, this algorithm
is invariant to permutation of the 𝑛 variables of the instance to be
solved, like in the classical EDAs presented in Section 1.

2.2 EDA strategy Learning for a Set of
Instances

The Linear-EDA of [2] and Neuro-EDA parameterized by 𝜃 , can
be considered as stochastic functions 𝜋𝜃 . For each instance (X, 𝑓 )

drawn from 𝑃𝑈𝐵𝑂𝑖 (𝑛,𝑚,𝑑, 𝛼), 𝜋𝜃 will be launched during 𝑇 it-
erations. At the end of this search, it returns the solution 𝑥∗ =

𝜋𝜃 (X, 𝑓 ,𝑇 ) with the maximum fitness value 𝑥∗ ∈ X encountered
during the sampling process. An algorithm 𝜋𝜃 can be viewed as a
sampling policy in X.

To assess the performance of the stochastic policy 𝜋𝜃 on random
instances generated as (X, 𝑓 ) = 𝑃𝑈𝐵𝑂𝑖 (𝑛,𝑚,𝑑, 𝛼) and solved with
a budget of𝑇 iterations (corresponding to𝑇 ×𝜆 calls to the objective
function 𝑓 ), we propose to estimate the quantity:

𝐹 (𝜋𝜃 ,X, 𝑓 ,𝑇 ) := E(X,𝑓 )∼𝑃𝑈𝐵𝑂𝑖 (𝑛,𝑚,𝑑,𝛼) [𝑓 (𝜋𝜃 (X, 𝑓 ,𝑇 ))].
The judicious choice of the values of 𝜃 is paramount in defining

an efficient EDA algorithm. Given an EDA 𝜋𝜃 , the generator of
instances 𝑃𝑈𝐵𝑂𝑖 (𝑛,𝑚,𝑑, 𝛼) and a budget of 𝑇 generations, the op-
timization goal is to find the vector of parameters 𝜃 in real-valued
R |𝜃 | search space that maximize an estimated score 𝐹 (𝜋𝜃 ,X, 𝑓 ,𝑇 )
of 𝐹 (𝜋𝜃 ,X, 𝑓 ,𝑇 ), computed as an average score for a finite set of
instances drawn from the generator. Learning this set of parameters
with gradient descent techniques is impossible in this case due to
the nonderivable sampling of the binary variables in the solutions
𝑥∗ ∈ X produced by the EDA 𝜋𝜃 . Therefore, to solve this problem,
we propose to use black-box optimization evolutionary algorithm,
such as the covariance matrix adaptation evolution strategy (CMA-
ES) [7, 9], which was already successfully applied to learn neural
networks for episodic reinforcement learning [10].

3 EXPERIMENTS
In this section, we first seek to evaluate the efficiency of the pro-
posed Neuro-EDA strategy. This evaluation involves a compar-
ative analysis against the following existing EDAs: UMDA [17],
PBIL [1] and Linear-EDA [2]. The assessment is conducted across
QUBO instances generated by the PUBO𝑖 generator, each config-
ured with three distinct parameters. The second objective is to
study the emerging strategy discovered by Neuro-EDA at the end
of the evolutionary process.

3.1 Experimental settings
In this section, we first describe the generation of independent
QUBO instances. We depict the EDAs’ configurations and training
parameters.

3.1.1 QUBO datasets generation . In this study, the algorithms
are evaluated on instances of the unconstrained quadratic binary
optimization problem (QUBO), which is a single-objective pseudo-
Boolean optimization problem with quadratic interactions between
binary variables. QUBO problems are general, as many NP-hard and
NP-complete combinatorial optimization problems can be easily
translated into this model [5, 16].

The objective function 𝑓 : {0, 1}𝑛 → R to maximize is defined
by: 𝑓 (𝑥) = 𝑥𝑡𝑄𝑥 where 𝑄 is a real matrix of dimension 𝑛 × 𝑛 and
𝑥𝑡 is the transposed vector of 𝑥 . We assume that𝑄 is unknown and
that we are in a black-box optimization scenario.

In our study the QUBO instances are generated with the PUBO𝑖

generator [19] able to bringQUBOwith different properties.We con-
sider instances of size 𝑛 ∈ {32, 64, 128} for the training, validation,
and test phases. The number of sub-functions𝑚 tunes the density
of the matrix (16% and 43% for uniform instances, respectively, for
the two values of𝑚). Three types of interaction mechanisms are
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used between variables. The instances 𝐼𝑢𝑛𝑖 have no specific im-
portant variables, i.e. 𝐼𝑢𝑛𝑖 instances are similar to QUBO problems
with a random matrix. The instances 𝐼𝑖𝑚𝑝 have important variables:
the marginal probability of having important variables is equal to
𝑑 = 10 times the probability of non-important ones. Additionally,
for the 𝐼𝑖𝑐 instances, the value of the co-appearance parameter is
high, the selection of important variables is not independent, and
the selection of important variables is concentrated.

For each tuple of parameter values, we generate a training set
D𝑡𝑟𝑎𝑖𝑛 including 1,000 independent instances, a validation set
D𝑣𝑎𝑙𝑖𝑑 containing 100 instances, and an additional test set D𝑡𝑒𝑠𝑡

with 100 instances.

3.1.2 EDA configurations. All EDAs presented in this paper gen-
erate 𝜆 = 20 solutions at each iteration. A sensitivity analysis
regarding this critical parameter (which is not presented here due
to space limitations) has been conducted. It reveals that increasing
the value of 𝜆 beyond 20 does not significantly improve results for
all EDAs and does not change the ranking of the different strategies
among themselves for the instances of size up to 𝑛 = 128 considered
in this paper.

ConcerningNeuro-EDA, we consider neural networks with one
hidden layer of ℎ = 20 neurons and a sigmoid activation function.
We deliberately chose a fairly small neural network size to limit its
training time.

3.2 EDA training and validation phase
For each of the 18 configurations of the PUBO𝑖 generator described
in Section 3.1.1, we run two different training processes:

(1) For the baseline EDAs, namely UMDA and PBIL, we per-
formed a grid search to seek the best set of parameter values on
each type of training set, with parameters 𝜇 ∈ {1, . . . , 𝜆} and
𝜌 ∈ {0, 0.1, 0.2, . . . , 1}.

(2) For the Linear-EDA and Neuro-EDA variants, we run 10
independent training processes with CMA-ES, as described in Sec-
tion 2.2. During this training phase, at each generation of CMA-ES,
a batch of 100 training instances is randomly sampled without
replacement in D𝑡𝑟𝑎𝑖𝑛 and each configuration of the vector of
parameters 𝜃 (which are indeed the individuals of the CMA-ES
population) are evaluated on these same 100 instances. At each gen-
eration, the EDA configuration obtaining the best score on average
on these 100 training instances is evaluated on the 100 instances of
the validation set D𝑣𝑎𝑙𝑖𝑑 .

3.3 Test phase
In this phase, we perform evaluations to assess if the best strategies
selected for each configuration of the validation set D𝑣𝑎𝑙𝑖𝑑 gener-
ated by PUBO𝑖 , are still performing well on the corresponding test
set D𝑡𝑒𝑠𝑡 , which has been independently sampled with the same
PUBO𝑖 configuration.

Table 1 summarizes the average scores obtained by the differ-
ent EDAs’ strategies on the test sets D𝑡𝑒𝑠𝑡 with 100 independent
restarts for each instance of the same type (10,000 runs), whose
scores are of the same order of magnitude. We also report the result
obtained by a classic Tabu search algorithm (TS) with aspiration cri-
terion [6]. In TS, after each flip, a move is set tabu during Δ = 𝛽 +𝑅

iterations where 𝑅 is a random integer in [1, 10] and 𝛽 is a hy-
perparameter calibrated in the range {1, . . . , 𝑛} for each specific
distribution of instances. We give TS the same budget of𝑇 × 𝜆 calls
to the objective fitness function, as for all the EDAs.

Significantly better results obtained by an algorithm compared
to the others are underlined. The significance test is a Student
t-test with p-value 0.001 and Bonferroni correction for multiple
comparisons. The normality condition required for this test was
first confirmed using a Shapiro-Wilk statistical test on the empirical
distribution of the 10,000 scores obtained by each strategy.

In Table 1, we observe thatNeuro-EDA performs better than all
other versions for datasets of size 𝑛 = 64 and 𝑛 = 128, with 𝐼 = 𝐼𝑖𝑚𝑝

and 𝐼 = 𝐼𝑖𝑐 , corresponding to instances with more complex interac-
tions between variables, while Linear-EDA is more robust for the
set of instances with simpler fitness landscapes (i.e. corresponding
to 𝐼 = 𝐼𝑢𝑛𝑖 ).

We also observe that the best proposed EDA strategies are better
than TS for all types of instances, except for the set (128, 0.2, 𝐼𝑢𝑛𝑖 )
that exhibits less rough fitness landscapes. This highlights that
these EDA strategies can be competitive with classic local search
algorithms such as TS, solving QUBO as a black-box problem.

3.4 Neural network EDA emerging strategy
To interpret the strategy employed by Neuro-EDA (Algorithm 1),
we calculate the partial derivatives of the neural network 𝑔𝜃 with
respect to the probability vector 𝑝 (𝑡 − 1) and the 𝜆 values asso-
ciated with individuals sorted by decreasing fitness, all evaluated
at the point (0.5, 0.5, . . . , 0.5). This analysis is conducted across all
the top-performing neural networks utilized within Neuro-EDA
and trained on various instance types as previously outlined. The
distributions of the partial derivatives are depicted in Figure 1. The
initial blue boxplot illustrates sensitivity to 𝑝 (𝑡 − 1), which often
manifests as a negative value, suggesting a tendency to promote
diversity by slightly deviating from the previous generation’s vari-
able sampling. The subsequent red boxplot reflects sensitivity to
the variables of the population’s best individual, typically show-
ing a notably positive value, indicating a strong focus on the most
promising individual. Given that negative gradient values are asso-
ciated with the worst individuals, it can be inferred that a relevant
strategy involves avoiding the same variable assignments as the
worst individuals in the preceding iteration 𝑡 − 1 when sampling
new individuals in iteration 𝑡 .

Figure 1: Distribution of gradients of the learned neural net-
works 𝑔𝜃 used by Neuro-EDA with respect to its inputs.
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Instances Methods
𝑛 𝑚 𝐼 TS UMDA PBIL Linear-EDA Neuro-EDA
32 0.05 𝐼𝑢𝑛𝑖 65.47 64.57 64.58 66.50 66.49
32 0.05 𝐼𝑖𝑚𝑝 46.71 46.38 46.41 46.82 46.82
32 0.05 𝐼𝑖𝑐 42.02 41.91 41.84 42.06 42.07
32 0.20 𝐼𝑢𝑛𝑖 145.84 143.11 143.12 147.45 147.46
32 0.20 𝐼𝑖𝑚𝑝 107.51 106.13 106.39 108.15 108.23
32 0.20 𝐼𝑖𝑐 99.64 98.38 98.53 100.79 100.78
64 0.05 𝐼𝑢𝑛𝑖 208.61 202.37 202.37 209.63 209.63
64 0.05 𝐼𝑖𝑚𝑝 148.44 146.44 146.36 152.01 152.06
64 0.05 𝐼𝑖𝑐 140.18 140.31 140.26 144.87 145.17
64 0.20 𝐼𝑢𝑛𝑖 446.72 428.73 429.68 444.64 443.38
64 0.20 𝐼𝑖𝑚𝑝 333.97 324.48 326.52 339.72 340.77
64 0.20 𝐼𝑖𝑐 318.87 315.74 315.94 325.39 328.22
128 0.05 𝐼𝑢𝑛𝑖 624.86 605.48 605.42 624.90 621.59
128 0.05 𝐼𝑖𝑚𝑝 458.19 447.86 448.00 467.06 470.22
128 0.05 𝐼𝑖𝑐 433.05 427.48 428.40 440.50 445.72
128 0.20 𝐼𝑢𝑛𝑖 1282.02 1239.41 1239.30 1278.41 1271.81
128 0.20 𝐼𝑖𝑚𝑝 964.81 938.39 939.30 979.52 991.69
128 0.20 𝐼𝑖𝑐 950.41 937.26 936.68 962.64 978.00

Table 1: Average score (fitness values) obtained by different EDAs on test sets. The best scores are in bold. Underlined values
correspond to significant better results (t-test with p-value 0.001 and Bonferroni correction for multiple comparisons).

4 CONCLUSION
We proposed a new framework to discover univariate EDAs for
pseudo-boolean optimization problems. We highlighted that a neu-
ral network strategy can be competitive with existing EDAs of the
literature for different types of problem instances. In future work,
we would like to investigate the impact of more complex neural
network architectures for the design of new univariate strategies,
such as convolutional graph neural networks, which could poten-
tially take into account the interaction graph between variables
induced by the 𝑄 matrix in white-box scenarios.
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