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Abstract. Funnels are related to the big-valley hypothesis in combi-
natorial fitness landscapes. It suggests that local optima are not ran-
domly distributed but are instead clustered around the global optimum,
forming a coarse-grained global structure. Multi-funnel structures emerge
when more than one cluster of local optima is present, some surround-
ing sub-optimal solutions. These multi-funnel landscapes can be chal-
lenging to search, as the optimisation process may get trapped in a
sub-optimal funnel. We propose a characterisation of funnels in multi-
objective combinatorial landscapes based on the solution ranks using
non-dominated sorting, and a variation of the recent graph model of
multi-objective landscapes: the compressed Pareto local optimal solution
network (C-PLOS-net). Using a set of ρmnk-landscapes, we construct
and visualise monotonic C-PLOS-nets, and introduce a set of metrics to
characterise the landscapes’ funnel structure. The proposed metrics are
found to capture the landscape global structure, to correlate with bench-
mark parameters, and to explain the performance of well-established
multi-objective local search and evolutionary algorithms.

Keywords: Multi-objective combinatorial optimisation, landscape analysis, lo-
cal optima networks, LON, PLOS-net, multi-objective NK landscapes, funnel.

1 Introduction

The study of fitness landscapes has a long tradition in single-objective optimisa-
tion [1–3]. The aim is to understand the structure of search spaces in relation to
the fitness function and how this structure impacts the performance of optimisa-
tion algorithms. Some landscape analysis tools and metrics have been extended
to multi-objective optimisation [4–6], and recently included into algorithm selec-
tion and recommendation studies [7, 8]. However, to our knowledge, no studies
have defined and examined funnels in multi-objective optimisation. Our goal is
to bring the concept of funnels from single-objective to multi-objective combi-
natorial landscapes. More specifically, our contributions are as follows:

– We propose a definition of funnels for multi-objective combinatorial land-
scapes (Section 3);



– We introduce new features and visualisations that capture the funnel struc-
ture of multi-objective landscapes (Sections 3 and 4);

– We explore how the proposed funnel features correlate with algorithm per-
formance (Section 5).

2 Background

2.1 What is a Funnel?

An energy landscape [9] is a mapping of all possible conformations of a molecu-
lar entity (clusters, glasses, proteins) to their respective energy levels. The term
‘funnel’ was introduced in this context to refer to “a region of configuration space
that can be described in terms of a set of downhill pathways that converge on a
single low-energy structure or a set of closely related low-energy structures” [10].
The energy landscape of proteins is characterised by a single deep funnel, ac-
counting for their ability to fold to their native state. Conversely, certain shorter
polymer chains that misfold are expected to have additional secondary funnels
that can act as traps in the folding process.

Funnels have also been studied in evolutionary computation and fitness land-
scapes. In continuous optimisation, the dispersion and nearest-better-clustering
metrics [11, 12] were introduced to detect the landscape’s funnel structure. They
have subsequently been used in exploratory landscape analysis [13]. In combina-
torial optimisation, funnels are related to the “big valley” hypothesis [14], which
suggests that local optima in travelling salesperson problems are not distributed
randomly. Instead, they are clustered around one central global optimum. The
idea of a single valley was later challenged, revealing that complex landscapes are
characterised by multiple valleys or funnels [15, 16]. A characterisation of funnels
in combinatorial optimisation using local optima networks (LONs) [17] was pro-
posed in [18]. The idea is to consider monotonic sequences [19] of local optima,
that is, sequences of local minima where fitness is always decreasing. This led
to the development of the monotonic (compressed) LON model, where deteri-
orating edges are removed, and funnels are depicted as the collection of paths
to a single sink node (a node without outgoing edges). Although global optima
are sinks with the best fitness, landscapes can also have sinks with sub-optimal
fitness values.

2.2 PLOS-net and Compressed PLOS-net

A multi-objective landscape can be defined as a triplet (X,N , f) such that X is
the solution space, N : X 7→ 2X is a neighbourhood relation, and f : X → Z is
an objective function vector. A solution x ∈ X is a Pareto local optimal solution
(PLOS) if it is not dominated by any of its neighbours [20]; i.e. ∀x′ ∈ N (x),
x′ does not dominate x. For m = 1, we remark that this is equivalent to the
conventional definition of a single-objective local optimum.

Given a multi-objective landscape, the Pareto local optimal solutions net-
work (PLOS-net) model [21] is constructed as an unweighted, directed graph



G = (N,E). The set of nodes N represents the PLOS, and there is an edge
eij ∈ E from xi to xj if xj ∈ N (xi).

The compressed PLOS-net (C-PLOS-net) [22] adds a numerical attribute to
the PLOS-net nodes, which gives the rank of the corresponding solution in the
landscape. All solutions from the search space are sorted into different layers of
mutually non-dominated solutions, following the non-dominated sorting proce-
dure [23] used, e.g., in NSGA-II [24]. The rank of a solution corresponds to the
layer it belongs to, with a lower rank being better and a Pareto optimal solution
having a rank of 1. The C-PLOS-net is constructed by compressing the nodes (i)
that are connected and (ii) that have the same rank. Therefore, a C-PLOS-net
is a weighted, directed graph G′ = (N ′, E′) such that:

– The set of nodesN ′ are connected components of each PLOS-net’s sub-graph
induced by the nodes with the same rank r, with r ∈ {1, 2, . . .}.

– There is an edge e′ij ∈ E′ if a PLOS within the compressed node i has a
neighbour in the compressed node j.

3 Multi-objective Funnels: Definition and Metrics

In order to define funnels in the context of multi-objective optimisation, we de-
termine the quality of Pareto local optimal solutions by considering their ranks.

3.1 Rank-Distance Correlation

Taking inspiration from the well-known fitness-distance correlation (fdc) land-
scape metric from single-objective optimisation [25], we start by introducing the
rank-distance correlation coefficient (rdc) as the Spearman correlation between
the ranks and the Hamming distances of Pareto local optimal solutions to Pareto
optimal solutions. Specifically, for each PLO solution i in the search space we
have a pair (ri, di), where ri is the rank of PLO i and di is the Hamming dis-
tance from i to its closest Pareto optimal solution. We compute this metric
using the fully enumerated set of local and global Pareto-optimal solutions in
the landscapes.

We note that a multi-objective fitness-distance correlation measure was in-
troduced as the correlation between distances in the variable space and in the
objective space among the Pareto global optimal solutions [26, 27]. This mea-
sure reflects the relative difficulty of moving “along” the Pareto front. However,
it is crucial to understand that this is fundamentally different from rdc, which
considers all Pareto local optimal solutions and the difficulty of improving from
local to global optima.

3.2 Monotonic Compressed PLOS-net and Pareto Optimal Funnel

Similar to the case of single-objective optimisation [18], we define the monotonic
C-PLOS-net (MC-PLOS-net for short) as a directed graph that retains improv-
ing edges only, that is, edges leading from higher-ranked (i.e. worst) nodes to



Table 1: Description of funnel metrics.

metric description

rdc rank distance correlation coefficient

funnel prop proportion of nodes in the Pareto optimal funnel
funnel depth longest (weighted) path length from source to Pareto optimal nodes
funnel paths number of pathways from source to Pareto optimal nodes
sink num number of sub-optimal sinks

lower-ranked (i.e. better) ones. Notice that the MC-PLOS-net does not contain
neutral edges (i.e. edges between PLO solutions with the same rank) as those
are compressed into single nodes. From the MC-PLOS-net, we can easily detect
the sink and source nodes, as those nodes in the graph without outgoing and
incoming edges, respectively.

Once the MC-PLOS-net is constructed, we define the Pareto optimal funnel
as the aggregation of all pathways in the network that lead to Pareto optimal
nodes. MC-PLOS-nets are directed graphs where all edges are improving, mean-
ing they connect nodes with decreasing rank values. Every descending path in
the network necessarily ends in a sink, that is a node without outgoing edges.
When sink nodes have a rank of 1, they are Pareto optimal solutions. However,
sinks can have a higher rank. From the MC-PLOS-net, we compute the network
metrics described at the bottom of Table 1.

4 Fitness Landscape Analysis and Visualisation

4.1 Benchmark Problems

We consider ρmnk-landscapes [28] as multi-objective multi-modal problems with
objectives correlation. Candidate solutions are binary strings of length n. The
neighbourhood (N in section 2.2) is based on the well-established 1-bit-flip op-
erator: two solutions are neighbours if the Hamming distance between them is
equal to one. The objective function vector f = (f1, . . . , fi, . . . , fm) is defined
as f : {0, 1}n → [0, 1]m such that each objective fi is to be maximised. The ob-
jective value fi(x) of a solution x = (x1, . . . , xj , . . . , xn) is the average value of
individual contributions associated with each variable xj . The contribution of xj

depends on its own value and on the values of k < n variables other than xj ,
chosen uniformly at random. By increasing k, landscapes can be gradually tuned
from smooth to rugged. The contribution values follow a multivariate uniform
distribution such that ρ > −1

m−1 defines the correlation among the objectives.
The positive (resp. negative) correlation ρ decreases (resp. increases) the de-
gree of conflict between the objective values. ρmnk-landscapes show different
characteristics and degrees of difficulty for multi-objective algorithms [8].

We generate 240 ρmnk-landscapes following the parameters listed in Table 2.
This allows us to investigate landscapes ranging from smooth to rugged, with



Table 2: Benchmark parameters (10 instances are randomly generated for each
parameter combination).

description values

number of variables n = 16
number of interactions k ∈ {0, 1, 2, 4}
number of objectives m ∈ {2, 3}
objectives correlation ρ ∈ {−0.4, 0.0, 0.4} s.t. ρ > −1

m−1

two and three objectives, and conflicting, uncorrelated or correlated objectives.
These are small landscapes that can be exhaustively enumerated. We then pro-
ceed to generate the PLOS-net, C-PLOS-net and MC-PLOS-net models. The
metrics and visualisations reported in this article focus on the newly proposed
MC-PLOS-net model.

4.2 Rank-Distance Correlation

Fig. 1 shows the rank-distance correlation (rdc) plots, along with the Spearman
correlation coefficients (R) and significance levels (p-values). This is shown for
six exemplary landscapes with conflicting objectives (ρ = −0.4) and increasing
ruggedness k ∈ {0, 2, 4}. The top plots report measures for landscape withm = 2
objectives, whereas the bottom plots report results for m = 3 objectives. The
regression lines with 95% confidence regions are also displayed. The horizontal

Fig. 1: Rank-distance correlation for landscapes with conflicting objectives (ρ =
−0.4), increasing ruggedness k ∈ {0, 2, 4}, and two values of m ∈ {2, 3}. The x-
axis represents the Hamming distance to the closest Pareto optimal solution. The
Spearman correlation coefficient and its corresponding p-value are also displayed.
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Fig. 2: Funnel metrics and correlation with benchmark parameters.

axis is for the Hamming distance between all PLO solutions and their closest
Pareto optimal solution. The vertical axis is for the rank of each PLO solution.
From these plots, we observe a high positive correlation between distance and
rank values for smooth landscapes (k = 0, left plots) suggesting a rank gradient
towards Pareto optimal solutions. As the ruggedness increases (k ∈ {2, 4}, middle
and right plots), the correlation reduces but remains moderately positive. The
plots reveal that solutions at the same distance to Pareto optimal solutions have
a wide range of rank values (vertical set of points with the same x-coordinate).
This is particularly noticeable for the largest value of k = 4.

The distribution of the rdc metric for the entire set of benchmark parame-
ters can be seen in Fig. 2a. Overall, rdc values are moderate to high, suggesting
that the landscapes are not overly difficult to search. They seem to have a global
structure where Pareto local optima are clustered around global optima. The rdc
coefficient decreases with k in all cases, which is consistent with the increasing
search difficulty for rugged landscapes. The impact of the two other instance
parameters, ρ and m, is less significant. The rdc values remain fairly consistent
across different ρ values and generally tend to be higher for m = 3. The distribu-
tion of rdc values is also more compact for m = 3. In most cases, the coefficient
is above 0.2 for m = 2 and above 0.4 for m = 3.

Fig. 2b shows the correlations amongst all the proposed funnel metrics and
the benchmark instance parameters. The rdc metric highly correlates with the
ruggedness parameter k, indicating that it is a good predictor of search diffi-
culty. rdc also shows a strong correlation with the other network-based funnel
metrics, particularly with the number of sub-optimal sinks. This is noteworthy
as rdc is not a network metric, and still captures aspects of the global landscape
connectivity structure. A more comprehensive discussion of the network-based
metrics is presented in Section 4.4.



4.3 Network Visualisation

Visualising fitness landscapes brings an intuitive support in understanding search
difficulty. Node-edge diagrams are commonly used for network visualisation,
where shapes (circles, squares, etc.) represent nodes and lines or curves represent
edges. Attributes like colour, shape and width can highlight relevant features of
nodes and edges. Another key aspect of network visualisation is the graph layout,
which refers to the positioning of nodes and edges in the 2D plane.

To visualise the MC-PLOS-net models, we identify relevant features of nodes
and edges that relate to the landscape’s funnel structure. Specifically, we differ-
entiate between four types of nodes: (i) pos: Pareto optimal solutions, (ii) sinks:
sub-optimal nodes without outgoing edges, (iii) sources: nodes without incoming
edges, and (iv) standard: nodes that do not fit into categories (i) to (iii). Node
and edge colours indicate whether they belong to the Pareto optimal funnel(s),
that is, whether they belong to pathways converging to Pareto optimal solu-
tions. The size of nodes is proportional to their incoming weighted degree (also
known as incoming strength). Therefore, it indicates the extent to which nodes
act as attractors in the search process. Similarly, the intensity of an edge’s colour
reflects its enumeration frequency.

Regarding the graph layout, we explore three alternatives: (i) for problems
with two objectives (m= 2) a natural layout is to place nodes using their objective
values (f1, f2) as coordinates (x, y); (ii) a force-directed layout (stress majorisa-
tion [29]), and (iii) keeping the x-coordinates suggested by the stress majorisa-
tion layout and embedding the node ranks as the y-coordinate. Force-directed
layouts are based on a physical analogy where nodes are charged particles joined
by strings. These algorithms strive to distribute vertices evenly in space, main-
tain approximately uniform edge lengths, and minimise edge crossings. Nodes
which share more edges are closer to each other, providing an intuitive view of the
graph connectivity. These algorithms typically involve a stochastic minimisation
process. Stress majorisation [29] adapts an optimisation function from multidi-
mensional scaling. It is a reliable choice for our purposes as it is deterministic
and suitable for networks with multiple components.

Fig. 3 illustrates these three layouts (Objectives, Force-directed and Rank)
for four example landscapes with m = 2, ρ = −0.4, and k ∈ {0, 1, 2, 4}. The
plots reveal that the smooth landscape (k = 0, top row) contains a single Pareto
optimal funnel, with all pathways leading to the single compressed node with
rank = 1. In contrast, the rugged landscapes (k > 0, rows 2 to 4) show an in-
creasing number of separated connected components and nodes (visualised in
blue) which are not in pathways leading to Pareto local optimal nodes. Instead,
these blue nodes are in pathways leading to sub-optimal sink nodes, depicted
as triangles with a darker outline. The number of these sink nodes (triangles)
drastically increases with the ruggedness parameter k. These plots confirm that
the notion of funnel, using the monotonic sequences definition, does not corre-
spond to connected components in the graph. Rather, pathways that do not lead
to Pareto optimal solutions may belong to the connected component containing
the Pareto optimal node(s).



Fig. 3: Node-edge diagrams with three alternative graph layouts for four exem-
plary MC-PLOS-nets with ρ = −0.4, m = 2, and k ∈ {0, 1, 2, 4}. The smooth
landscape (k = 0, top row) presents a single funnel that converges to Pareto op-
timal nodes (rank = 1). By contrast, the rugged landscapes k ∈ {1, 2, 4} reveal
secondary funnels and an increasing number of connected components and sink
nodes.



We argue that the three considered layouts, in conjunction with the network
decorations (Fig. 3), offer alternative views of the same complex networks. The
objectives layout looks familiar as it is consistent with traditional Pareto front
visualisations of bi-objective problems. However, it provides additional insights
into the connectedness of PLO solutions as well as their grouping by funnel
membership. An information that standard visualisations might overlook. The
force-directed layout makes the most of the space to reveal network connectivity
patterns and separate connected components. Lastly, the rank layout makes
the optimisation process more tangible by showing the decreasing pathways of
connected nodes converging towards optimal or sub-optimal sinks.

Fig. 3 shows MC-PLOS-nets with conflicting objectives only (ρ = −0.4).
To examine the effect of varying the correlation of objectives on the land-
scape global structure, Fig. 4 reports the node-edge diagrams for networks with
ρ ∈ {−0.4, 0.0, 0.4}, m = 2, and k = 1. We chose the objectives layout to con-
vey the networks. The plots show a drastic reduction in both the number of
nodes and the proportion of nodes in the Pareto optimal funnel when the objec-
tives correlation increases, even though the landscapes have the same rugged-
ness level (k = 1). The connectivity between nodes (number of edges) is also
markedly reduced with an increase in objectives correlation, leading to the emer-
gence of many small-sized connected components. Figs 3 and 4 illustrate that
MC-PLOS-nets capture the funnel structure of the landscape and reveal the un-
derlying benchmark parameters. The following section explores the distribution
of the network metrics and their correlation with benchmark parameters.

Fig. 4: Node-edge diagrams with the objectives graph layouts for three exemplary
MC-PLOS-nets with increasing objectives correlation ρ ∈ {−0.4, 0.0, 0.4}, m =
2, and k = 1. The number of nodes and the proportion of nodes in the Pareto
optimal funnel clearly decrease with the objectives correlation.

4.4 Network Metrics

The distributions of all the network-based funnel metrics in relation to bench-
mark parameters ρ, m and k are reported in Fig. 5. All metrics appear to capture
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Fig. 5: Distribution of network metrics with respect to benchmark parameters.

the benchmark parameters, particularly the ruggedness k. For k = 0, all nodes
consistently belong to the Pareto optimal funnel (i.e. funnel prop equals one).
funnel prop then decreases as k increases, nearing zero for k = 4 and correlated
objectives ρ = 0.4. funnel prop decreases with the amount of correlation among
the objectives and is substantially higher for 3 objectives (m = 3), especially
for conflicting and uncorrelated objectives. The correlation matrix from Fig. 2b
reveals that funnel prop moderately correlates with the benchmark parameters,
positively with m and negatively with ρ and k.

The depth of the Pareto optimal funnel (funnel depth) measures the max-
imum weighted path distance between source nodes (nodes without incoming
edges) and Pareto optimal nodes. As k increases, the depth of funnels also in-
creases, as shown in the correlation matrix (Fig. 2b). For m = 2, funnel depth
values decrease with increasing objectives correlation. However, for m = 3, this
trend seems to reverse. A striking observation is the shallow funnels for m = 3
and conflicting objectives ρ = −0.4.

The total number of alternative pathways from source nodes to Pareto opti-
mal nodes is captured by the funnel paths metric. This metric strongly correlates
with the ruggedness parameter k, as evidenced by the log scale on the y-axis and
the correlation coefficient from Fig. 2b. The number of paths decreases with in-
creasing objectives correlation, and is higher for m = 3 than for m = 2.

Finally, the number of sub-optimal sinks (sink num) strongly correlates with k,
as revealed by both the logarithmic y-scale in Fig. 5 and the correlation coeffi-
cient (0.96, see Fig. 2b). The number of sinks is always zero for k = 0 and then
rapidly increases for larger k values. Conversely, sink num does not show any
correlation with the other two benchmark parameters ρ and m.



5 Funnel Features vs. Search Performance

This section examines the impact of funnel features on both algorithm perfor-
mance and algorithm selection.

5.1 Algorithms and Parameter Settings

We consider the following multi-objective algorithms, commonly applied to ρmnk-
landscapes [7, 8].

PLS: Pareto local search (PLS) [20] is a multi-objective local search method
that maintains an unbounded archive A of mutually non-dominated solu-
tions. This archive is initialised with a randomly chosen solution. In every
iteration, a solution is randomly picked from the archive x ∈ A, and its
neighbours are evaluated. For ρmnk-landscapes, the neighbours N (x) are
solutions that are a Hamming distance 1 away from x. Solutions that are
dominated are filtered out, while non-dominated solutions from A ∪ N (x)
are saved in the archive. The current solution x is then tagged as visited
to avoid re-evaluating its neighbours in future iterations. The entire process
naturally stops once all solutions in the archive are marked as visited.

G-SEMO: The global simple evolutionary multi-objective optimiser (G-SEMO)
is an elitist, steady-state, multi-objective evolutionary algorithm [30]. Like
PLS, G-SEMO maintains an unbounded archive A and selects one solution
x ∈ A randomly in each iteration. It then generates a single offspring x′,
where each binary variable of x is independently flipped at a rate of 1/n. The
archive is then updated with non-dominated solutions from A ∪ {x′}. This
process repeats until a stopping condition is met. Unlike PLS, which explores
the entire 1-bit-flip neighbourhood, G-SEMO uses a standard stochastic bit-
flip mutation so that there is a non-zero probability of reaching any solution
from the search space.

NSGA-II: The non-dominated sorting genetic algorithm II (NSGA-II) is a
dominance-based multi-objective evolutionary algorithm [24]. At a given it-
eration t, the current population Pt combines with its offspring Qt, and
is divided into non-dominated fronts {F1, F2, . . . } according to the non-
dominated sorting procedure [23]. Offspring generation follows a standard
setting with uniform crossover and stochastic bit-flip mutation. The front
that a solution belongs to determines its rank within the population — this
corresponds to the ranking used as a node attribute in C-PLOS-nets. Selec-
tion is based on rank-values, with crowding distance serving as a tie breaker.
Survival selection involves populating Pt+1 with the best-ranked solutions.
We record all non-dominated solutions found by NSGA-II and return them
at the end of the search process.

Each algorithm is run independently 30 times per instance. PLS terminates when
it naturally reaches a Pareto local optimum set [20]. We set the stopping condi-
tion of G-SEMO and NSGA-II at 10 000 evaluations. NSGA-II uses a population
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of size 100. For every algorithm, we evaluate the quality of all non-dominated so-
lutions found in each trial. Algorithm performance is measured as the proportion
of identified Pareto optimal solutions, referred to as the Pareto resolution (reso).
We also report the hypervolume [31], and more specifically, the relative hyper-
volume (hv) covered by the final archive with respect to the exact Pareto front.
A higher hv value is better, and hv = 1 means that the exact Pareto front was
identified. The hypervolume reference point is set to the origin.

5.2 Experimental Results and Discussion

We begin by measuring how the benchmark parameters and funnel features cor-
relate with algorithm performance in Fig. 6. Specifically, we look at the number
of evaluations (eval) for PLS, as well as the Pareto resolution (reso) and rela-
tive hypervolume (hv) achieved by PLS, G-SEMO, and NSGA-II. Performance
measures are to be maximised, so a positive correlation indicates a positive ef-
fect on approximation quality. The only exception is for eval, where a positive
correlation would actually indicate a negative impact on runtime.

The runtime of PLS increases with the proportion of funnels (funnel prop) —
as it does with the number of objectives and their degree of conflict. This result
on a positive impact on both reso and hv, similar to the effect of correlated ranks
and distances (rdc). By contrast, the depth of funnels (funnel depth) and the
number of sinks (sink num) negatively affect approximation quality. The impact
of rdc and sink num is consistent across algorithms, while the influence of the
number of pathways from the source to Pareto optimal nodes (funnel paths) is
more noticeable for NSGA-II and G-SEMO.

Let us now study the collective impact of funnel features on algorithm per-
formance. Using the benchmark parameters and funnel features as predictors,
we construct a regression model for predicting the approximation quality of the
different algorithms and the runtime of PLS. Our model is based on the well-
established random forests [32, 33] with default parameters, using all considered
240 ρmnk-landscape instances for training. We conduct 30 independent runs
of random forests for each performance measure, and we report average values
below. The variance explained by the model (R2) and the relative importance
of predictors according to random forests are provided in Fig. 7. The measure
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Fig. 7: Relative importance of features in predicting algorithm performance.

of importance is the standard mean decrease in prediction accuracy [32, 33]: A
higher value indicates a more important predictor.

The variance explained by the model is consistently higher than 0.65. This
suggests that the prediction model accounts for over 65% of the variance in
predicted values across all problems. This is comparable to previous work [22],
despite we here consider significantly fewer features. Interestingly, each funnel
feature is among the most important ones for at least one performance measure:
rdc for the hypervolume of PLS, funnel prop for all PLS performance measures,
funnel depth for PLS and the resolution of NSGA-II, funnel paths for NSGA-II
and G-SEMO, and sink num for all measures except the runtime of PLS and the
resolution of NSGA-II.

Our study concludes with a simple CART decision tree [34, 35] for algorithm
selection, depicted in Fig. 8. The tree recommends the best algorithm for a
given problem, using benchmark parameters and funnel features as predictors.
The algorithm with the best average hypervolume among PLS, G-SEMO, and
NSGA-II is considered the correct class for a given instance. Therefore, this
decision tree addresses a classification task with the three considered algorithms
as classes. Out of the 240 ρmnk-landscape instances, 53 were omitted because no
algorithm was superior, leaving 187 instances for training. The numbers beneath
each tree node indicate the instances where G-SEMO, NSGA-II, and PLS are the
best, respectively, followed by the proportion of instances covered by the node.
The cross-validated classification accuracy is 88%, slightly higher than [22]. This
is significantly better than always selecting NSGA-II, which is superior in 44%
of instances from this dataset.

Interestingly, the predictors that appear in the tree, deemed as the most im-
portant for algorithm selection, are all funnel features. This implies that funnel
features provide valuable information to make an informed decision on which al-
gorithm to choose from the portfolio. We observe that the classifier recommends
PLS over NSGA-II when more than 98% of nodes are in the Pareto optimal fun-
nel. This makes sense, given that there is no need to escape from local optima
when the vast majority of those lead to the Pareto set. Among instances with
less than 98% of nodes in the Pareto optimal funnel, NSGA-II clearly outper-
forms G-SEMO when the number of sub-optimal sinks is relatively large (20 or
more), highlighting the benefit of crossover in such cases.
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Fig. 8: CART decision tree for algorithm selection (classification accuracy: 0.88).
The numbers beneath each tree node indicate the instances where G-SEMO,
NSGA-II, and PLS are the best, respectively, followed by the proportion of
instances covered by the node.

6 Conclusions

We proposed a characterisation of funnels in combinatorial multi-objective land-
scapes based on the notion of solution ranks (layers of non-dominated solu-
tions). We adapted the PLOS-net landscape model with two main changes: node-
compression and monotonic (rank-decreasing) edges. We named this new model
monotonic compressed PLOS-net (MC-PLOS-net). We then proposed visuali-
sations and network metrics that characterise the landscape’s global structure.
Additionally, we proposed the rank-distance correlation metric, rdc, which uses
the set of Pareto local and global optimal solutions. All the proposed funnel met-
rics proved to accurately capture the landscape’s global structure, to correlate
with benchmark parameters, and to explain the performance of well-established
multi-objective local search and evolutionary algorithms.

Our empirical results were derived from small, fully enumerated combinato-
rial landscapes. In future work, we plan to consider continuous optimisation, as
well as scale the proposed model to larger problems. The rank-distance corre-
lation metric can be generalised to larger landscapes by sampling Pareto local
optimal solutions and the best known solutions. Similarly, the proposed funnel
network features could be extracted from approximated MC-PLOS-net models.

We also plan to integrate the newly-proposed features with the set of exist-
ing multi-objective landscape features in order to conduct a more comprehensive
study on performance prediction and algorithm selection for multi-objective op-
timisation.
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