N
N

N

HAL

open science

Contrasting the landscapes of feature selection under
different machine learning models

Arnaud Liefooghe, Ryoji Tanabe, Sébastien Verel

» To cite this version:

Arnaud Liefooghe, Ryoji Tanabe, Sébastien Verel. Contrasting the landscapes of feature selection
under different machine learning models. PPSN 2024 — Parallel Problem Solving from Nature, Sep

2024, Hagenberg, Austria. pp.360-376, 10.1007/978-3-031-70055-2_ 22 . hal-04692860

HAL Id: hal-04692860
https://ulco.hal.science/hal-04692860v1

Submitted on 10 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://ulco.hal.science/hal-04692860v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Contrasting the Landscapes of Feature Selection
under Different Machine Learning Models

Arnaud Liefooghel[0000—0003—3283—3122]7 Riji Tanabe2 [0000—0003—4049—0393]7

and Sébastien Vere]![0000-0003—1661-4093]

1 LISIC, Université du Littoral Céte d’Opale, France
{arnaud.liefooghe,sebastien.verel}@univ-littoral.fr
2 Yokohama National University, Yokohama, Japan
{tanabe-ryoji-sn}@ynu.ac. jp

Abstract. Feature selection plays a crucial role in improving the perfor-
mance of machine learning (ML) models for various prediction tasks and
in explaining their recommendations. Feature selection can be defined as
an optimization problem whose evaluation function calls on an ML algo-
rithm — a method known as the wrapper approach. While a thorough
understanding of the landscape of the feature selection problem might
help guide the development of efficient evolutionary algorithms and al-
gorithm selection technologies, only a couple of previous studies have
explored this problem’s landscape. In addition, only k-nearest neighbors
classification is typically used as an ML model. This paper investigates
how the choice of an ML model influences the search difficulty of the
feature selection problem. Specifically, we examine the feature selection
problem with 14 classification datasets and 6 ML models by means of
landscape analysis and local optima networks, and we relate them to
the performance of three feature selection algorithms. Our findings have
important implications for feature selection problems and algorithms.

Keywords: Feature selection - Machine learning - Landscape analysis

1 Introduction

Feature selection consists in choosing the most effective features from a given set
to maximize the prediction accuracy of a machine learning (ML) model [3, 6].
Discarding irrelevant or redundant features can help prevent the ML model from
overfitting. Existing techniques for feature selection include filter, embedded, and
wrapper approaches [6]. Unlike the first two approaches, wrapper feature selec-
tion performs iterative optimization of a subset of features. The quality of a
feature subset is evaluated by actually training an ML model using those se-
lected features as predictors. Evolutionary wrapper feature selection has demon-
strated its promising performance in the literature [4, 24]. Given a dataset with n
features, the feature selection problem seeks a subset of p < n features that max-
imizes the accuracy of the considered ML model. As such, candidate solutions
can be represented by a binary string of length n. Each position in the binary
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string indicates whether the corresponding feature is selected or not. Then, the
fitness function corresponds to a prediction score, such as classification accuracy.

We note that evaluating the quality of a feature subset is computationally
intensive. Each call to the evaluation function requires training an ML model.
However, despite being time-consuming due to its iterative nature, the wrapper
approach typically yields a better feature subset than the filter and embedded
approaches [4, 24]. This explains why computationally cheap ML algorithms, like
k-nearest neighbors (kNN), are generally used in wrapper feature selection [4].
However, it remains unclear whether the challenges and solutions induced by
other ML models are the same.

Landscape analysis plays a crucial role in understanding the structure of op-
timization problems through the lens of search algorithms [18]. Insights gained
from landscape analysis are not only useful for understanding algorithm perfor-
mance, but also for designing new efficient optimizers and selecting the most
suitable approach [2,9,10]. In recent years, analyzing the landscape of hyper-
parameter optimization problems in ML has emerged as a popular topic in the
evolutionary computation community; see, e.g., [16,17, 19, 20].

Unfortunately, the landscape analysis of the feature selection problem has
attracted less attention. In fact, this issue has only been addressed in couple of
previous studies from Mostert et al. [11,12]. In [11], the authors conduct a land-
scape analysis of the feature selection problem in terms of fitness distribution,
fitness level, and neutrality. They find that the filter method generally outper-
forms the wrapper sequential feature selection method on instances with large
neutral regions. In [12], they further analyze the landscape of the feature selec-
tion problem by means of local optima networks (LONs) [14]. They find that
irrelevant features create plateaus in the landscape, which could be harmful to
search algorithms that stagnate due to these equivalent solutions. However, both
of their analyses focus on kNN only. As such, it is still unclear how the ML model
actually shapes the landscape of the feature selection problem.

Inspired by the above discussions, this paper aims at improving our under-
standing of feature selection by exploring how the choice of the ML model influ-
ences the problem landscape. Our contributions can be summarized as follows:

(1) We contrast the landscapes and LONSs resulting from 14 classification datasets
with varying numbers of features, classes, and observations.

(2) We contrast the landscapes and LONs resulting from 6 established ML mod-
els that use different induction approaches.

(3) We connect our findings from landscape analysis to the actual performance
of three established feature selection algorithms.

The paper is structured as follows. Section 2 provides preliminary information.
Section 3 outlines the experimental setup. Section 4 presents the results of our
analysis. Section 5 concludes the paper and discusses further research.

2 Background

We start by introducing feature selection and landscape analysis below.
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2.1 The Feature Selection Problem

Given a set V of n features and a score function f evaluating the performance
of an ML algorithm, the feature selection problem seeks a subset of features S
that achieves the maximum score value:
S® = arg max f(5).
ScV

In the context of evolutionary feature selection, a subset S is generally repre-
sented by an n-dimensional binary string x = (x1,...,2,)". For each feature
i€ {l,...,n}, z; = 1 when the corresponding feature is included in S, and
x; = 0 otherwise. The total number of feasible subsets is thus 2". The wrapper
feature selection problem can be seen as a black-box pseudo-Boolean optimiza-
tion problem. Multiple evolutionary algorithms have been proposed to solve this
problem in the literature. The reader is referred to [4,24] for a review.

2.2 Landscape Analysis
We define the fitness landscape of feature selection as a triplet (X, N, f):

— X is the search space, that is the set of bitstrings of length n, with |X| = 2".

— N:X — 2% is a neighborhood relation. Following previous studies on this
problem domain [22], we use the 1-bit-flip relation: two solutions are neigh-
bors if their Hamming distance is one.

— f: X — R is a fitness function, that is the ML prediction score or, more
specifically, the classification accuracy. We assume f is to be maximized.

A solution z° € X is a global optimum if there is no x € X such that f(z°) < f(z).
A solution x* € X is local optimum if there is no x € A (z*) such that f(z*) <
f(z). The distribution and connectivity of local optima in the landscape are
crucial as they act as attraction points for search, consequently hindering the
ability to reach a global optimum. In addition to traditional landscape analysis
measures, we consider local optima networks for studying them, as in [12].

The local optima network (LON) [14] adapts the idea of representing physical
energy landscapes as complex networks [5] in order to condense the information
from the landscape into a weighted graph of local optima. A LON is defined as
a directed, weighted graph G = (N, E). The nodes N of the graph represent
local optima. An edge e € E exists between two nodes if there is a non-zero
probability for the search process to transition from one node to another. To
be more specific, the basin of attraction of a local optimum x* € X refers to
the set of solutions that converge to x* when applying a simple hill-climbing
local search. The count of these solutions is the size of the basin and is used as
the width of a LON node. We follow the concept of escape edges in LONs [21]:
The weight of an edge represents the probability of transitioning from one local
optimum’s basin of attraction to another, upon applying a perturbation followed
by a local search. As in [12], we set the perturbation strength to 2 bit-flips.

In the monotonic LON;, only the edges that lead to an improved local opti-
mum are kept. In the compressed monotonic LON (CM-LON), nodes with the
same fitness value are collapsed, and any duplicate edges are aggregated [13].
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Table 1: 14 classification datasets considered in this work.

dataset ‘ nominal numerical classes data features | X
* diabetes X O 2 768 8 256
* breast-cancer O X 2 286 9 512
* breast-w X O 2 699 9 512
* page-blocks X O 5 5473 10 1024
* vowel @] O 11 990 12 4096
* heart-statlog X O 2 270 13 8192
schizo O O 2 340 14 16 384
credit-approval O O 2 690 15 32768
* Z00 O O 7 101 16 65536
vote @] X 2 435 16 65536
pendigits X O 10 10992 16 65536
letter X O 26 20000 16 65536
vehicle X O 4 846 18 262144
lymph O O 4 148 18 262144

3 Experimental Setup

This section outlines the experimental setup of our analysis. Although various
performance measures exist for ML, we simply focus on classification accuracy
in this work. We consider the following 6 ML algorithms for classification: kNN,
support vector classification (SVC), logistic regression (LR), decision tree (DT),
random forests (RF), and naive Bayes (NB). We employ the implementation
available in scikit-learn [15] with default parameters — see https://scikit-
learn.org/stable/. While kNN, SVC, LR, and NB are deterministic algorithms, DT
and RF are not. In order to minimize the effect of randomness, we conduct ten
independent executions of DT and RF on each dataset. On top of that, we con-
duct a 5-fold cross-validation for all methods. We use the same instantiation
of cross-validation folds across runs. The average score across folds and runs is
then considered. All (average) score (i.e. fitness) values are rounded to 1079 to
prevent numerical issues.

Table 1 describes the 14 classification datasets considered in this work. The
previous study on the landscape of feature selection [12] used seven of those —
marked with a star (x) in Table 1. They were extracted from the UCI reposi-
tory [1]. We supplement them with seven additional datasets to aim for more gen-
eralizable results. As pointed out in [4], the breast-cancer, vote, heart-statlog,
zoo, and lymph datasets have often been used for benchmarking evolutionary
feature selectors due to their small number of observations. The number of fea-
tures in all datasets is at most 18. Like Mostert et al. [12], we focus on datasets
with few features. This allows us to fully enumerate all 2" solutions. Indeed,
information about all 2™ solutions is required to compute the exact LON and
other landscape characteristics. Investigating datasets with more features would
present several challenges that we leave open for future work. We converted
nominal features into numerical features using one-hot encoding to ensure the
experimental condition is the same for all ML algorithms. We further remark
that the empty solution z¢ = (0, ... ,O)—r implies that the ML model cannot use
any feature. To prevent any bias, we decided to deem z( as unfeasible and to
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Fig. 1: Distribution of classification accuracy (i.e. fitness) values. The best value
for each dataset and ML model is represented with a diamond shape.

discard it from our analysis. Considering the 14 datasets and 6 ML models, this
leads to a total of 84 different subset selection problems (or landscapes).

Finally, we apply three wrapper methods to the considered problems: the for-
ward sequential feature selector (F-SFS), the backward SFS (B-SFS), and a ge-
netic algorithm (GA). Both F-SFS and B-SFS are well-established approaches [15].
The GA follows a simple steady-state approach with uniform crossover and stan-
dard bit-flip mutation with a rate of 1/n. The population size is set to n, and
the maximum number of calls to the evaluation function is set to n2.

4 Empirical Results and Discussion

This section presents the dissimilarity of landscapes across problems and the
results of feature selection algorithms relative to the landscape analysis.

4.1 Distribution of Fitness Values

We begin by simply reporting the distribution of fitness values, measured in
terms of classification accuracy, for each model and dataset in Fig. 1. We observe
significant differences in the range of values between ML models and datasets.
However, this does not necessarily imply that some ML models are superior, as
the quality of each subset of features is inherent to the considered ML model.
Additionally, the fitness values span larger ranges in some cases. This suggests
that some ML models may generate solutions that are more similar or equivalent
than others, a characteristic known as landscape neutrality. We will delve deeper
into this in subsequent discussions.

4.2 Correlation of Solution Rankings Produced by ML Models

We continue by measuring the correlation between the relative ranking of so-
lutions produced by the different ML models. For each dataset and each pair
of models, Fig. 2 gives the Spearman rank correlation coefficient between the
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Fig. 2: Correlation of solution fitness values between each pair of ML models.

accuracy of all solutions from the landscape. This gives an indication of the level
of agreement between the two models in evaluating the fitness of solutions. For
each pair of models, a point represents a specific dataset while the boxplot sum-
marizes the distribution of coefficients. We observe that some ML models agree
more than others, although none of them perfectly align on all datasets.

We can see both small and large correlations for some datasets. Overall,
there is a small correlation on the heart-statlog and schizo datasets in most
cases when comparing kNN with other ML models. Likewise, the solution rank-
ings between NB and others are mostly uncorrelated on the breast-cancer,
page-blocks, and credit-approval datasets. Interestingly, a significant cor-
relation exists between any pair of ML models on the vowel, pendigits, and
letter datasets, all of which have a high number of classes.

4.3 Global Optima

Fig. 3 reports the count of global optima for each dataset and ML model. We
follow [12] and report the number of global optima plateaus, such that neutral
networks are collapsed. This means that any set of global optima that are con-
nected by the neighborhood relation counts as one. For feature selection, this
implies that one or more features actually have no effect on classification accu-
racy, regardless of whether they are included or excluded in the optimal subset.

In most problems, there is a single global optima plateau. The only excep-
tion is for the zoo dataset, where kNN reveals four, while SVC and LR have two.
LR also has two global optima plateaus for breast-w and lymph, and three for
credit-approval and vote. The only case where NB has two global optima
plateaus is for 1ymph. These observations could imply that finding a global opti-
mum is easier for these problems. However, we will later see that this neutrality
also occurs at sub-optimal levels, which can potentially mislead the search. Delv-
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Fig. 3: Number of global optima.

ing deeper into the analysis of global optima, we find that the optimal proportion
of selected features remains fairly consistent across ML models — details are not
provided due to space restriction. While there are differences between datasets,
there is no significant difference between the ML models.

4.4 Fitness-Distance Correlation

We continue our analysis of the global structure of the landscape with the fitness-
distance correlation (FDC) [8]. As one of the earliest metrics from landscape anal-
ysis, FDC estimates how the fitness function properly guides the search towards
the global optimum. Fig. 4 reports the Pearson correlation, from all solutions in
the landscape, between classification accuracy (fitness) and the Hamming dis-
tance to the nearest global optimum. According to Jones and Forrest [8], for
maximization, the closer the FDC to —1, the more straightforward the problem:
fitness increases as we approach the global optimum. Conversely, an FDC close
to 1 is misleading for search, while an FDC around 0 makes the problem difficult
due to the lack of correlation between fitness and distance.

We note large variations in the FDC depending on the dataset. For instance,
using kNN, the page-blocks and vowel datasets respectively achieve insignificant
and relatively large negative FDC values. This suggests that the former has a
weak global structure, while the latter has a strong one. Interestingly, the four
datasets with n = 16 features (i.e. zoo, vote, pendigits, and letter) yield quite
different FDC values. The FDC for pendigits and letter is close to —1 whereas
that of zoo and vote is close to 0. This suggests that the landscapes induced
by the first two datasets are easier than those from the last two. The main
difference between them is the number of classes and observations. Both these
factors appear to significantly influence the global structure of the landscape.

The type of ML model appears to affect the global structure of the feature
selection problem as well. For instance, for the breast-w dataset, the FDC is
slightly positive for DT whereas it is moderately negative for the other models.
However, we do not observe any clear trend across datasets when examining a
specific ML model.
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4.5 Ruggedness

Let us now analyze the ruggedness [23] of the landscape depending on the consid-
ered dataset and ML model. We here measure the ruggedness as the Spearman
correlation among the fitness values of neighboring solutions. For each pair of
neighbors z,2’ € X such that 2/ € N (x), we measure the correlation between
f(z) and f(a'). A larger correlation indicates a smoother landscape. The results
are given in Fig. 5.

Overall, the correlation is high, suggesting that landscapes are all relatively
smooth. Exceptions where the correlation drops below 0.75 exist for the diabetes,
breast-cancer, breast-w, and page-blocks datasets. However, this could be
an artifact of fewer neighbor pairs in these cases, as all these datasets have
n < 10 features. The ruggedness also appears to be consistent across ML models
for a specific dataset. As such, we find that the landscape difficulty induced by
different ML algorithms is not due to the ruggedness but to other factors that
we examine further below.

4.6 Neutrality

Fig. 6 gives the level of neutrality of the 84 landscapes under consideration,
measured as the average proportion of equivalent solutions in the neighborhood
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of each solution. A landscape is neutral when many neighbors share the same
fitness value. It can be pictured as having multiple plateaus. We can see that the
neutrality of the feature selection problem is highly dependent on the dataset
and ML model. For instance, the zoo, heart-statlog, credit-approval, and
vote datasets exhibit a high neutrality. By contrast, the pendigits and letter
datasets have almost no neutral neighbors. Note that Mostert et al. [12] pro-
pose reducing neutrality by removing irrelevant features. However, they did not
consider the datasets that produce less neutrality in their analysis.

By relating our results with existing algorithms, it is worth noting that some
approaches for handling equivalent solutions have been proposed in the context
of multi-objective feature selection [7]. Despite most prior studies using kNN,
it is important to remark that our results underscore significant variations in
neutrality across ML models. Notably, the level of neutrality is actually larger
for SVC and NB, whereas it is quite low for DT and RF. The lower neutrality of
the latter two ML models may be attributed to their stochastic nature, although
we did perform multiple training for those. This suggests that existing wrapper
algorithms might be worth revisiting in light of the ML model being used.

4.7 Local Optima Networks

Escaping from local optima is one of the main challenge for search algorithms.
Therefore, understanding the number and distribution of local optima, along
with the size of their basins of attraction, is crucial for comprehending the diffi-
culty of the landscape. LONs have been widely used for this purpose. We built
LONs and CM-LONSs for all landscapes. A full analysis of these networks is out
of reach in this paper due to space limitations. However, we provide some ex-
amples in Fig. 7. The size of each node corresponds to the size of its basin. The
node color represents the classification accuracy, with darker shades representing
better solutions. The edge width corresponds to the transition probability. The
datasets considered in these examples all have n = 16 features.

The plots show that the structure of the landscape can be visually distin-
guished across datasets and ML models. For instance, the LON appears much
denser for LR (bottom left) than for kNN (top left) when using the letter dataset.
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Fig. 7: Examples of obtained LONs.

Similarly, the LON is denser for the vote dataset (top right) than for the letter
dataset (top left) under kNN. In fact, the LON of kNN for letter (top left) aligns
with the expectation of a relatively smooth landscape. The LON (top right) and
CM-LON (bottom right) of kNN for the vote dataset can also be compared.
We here observe a significant reduction of nodes and edges. By contrast, the
CM-LON of LR for letter (not reported) has only one node less than its LON.
We observed that the compression rate from LON to CM-LON, though varying
among datasets, was fairly consistent across ML models. Nonetheless, kNN often
attained a higher compression rate compared to other ML models. We delve
deeper into the analysis of local optima using statistics over the LONs below.

4.8 Local Optima

In Fig. 8 (top), we report the number of local optima for all datasets and ML
models. Similar to what we did with global optima, we treat plateaus of local
optima as a single count. However, considering the variability of plateaus across
different landscapes, Fig. 8 (bottom) quantifies the number of solutions within
each local optima plateau, accounting for neutrality at the local optima level.
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Here as well, we observe significant differences across datasets and ML mod-
els. kNN and LR tend to produce more local optima. In fact, they are the models
with the highest number of local optima in about one-third of the datasets. By
contrast, NB often produces the fewest local optima, in about half of the datasets.
This could explain the lower correlation we observed between NB and other ML
models on the corresponding datasets, as discussed in Section 4.2. However, as
anticipated in Section 4.6, NB also has the largest plateaus of local optima. This
implies that local optima are typically clustered, making the NB algorithm po-
tentially more resistant to noise caused by irrelevant features. Surprisingly, we
found a single local optimum (or plateau) for SVC on the diabetes dataset, for
NB on the zoo dataset, for kNN and LR on the pendigits dataset, and finally
for SVC, RF and NB on the letter dataset. This means that local optima are all
global optima, indicating that the corresponding landscapes are uni-modal.

Among the different datasets, schizo, credit-approval, zoo, vote, vehicle,
and lymph often produce more local optima. By contrast, pendigits and letter
typically yield significantly fewer local optima, and without any plateau. This
might be surprising, given that these last two datasets are not the ones with the
fewest features. Yet, we anticipated these landscapes were easier when examin-
ing the FDC in Section 4.4. It is noteworthy that pendigits and letter are the
datasets with the largest number of observations — more than 10000, signifi-



12 A. Liefooghe, R. Tanabe, and S. Verel

il

(\’5‘6\ Sc“w,o va"‘“ 0 o e(\d\g\\ \ete’ \,e\\‘c‘\e N \,«\9“

il ¢Wﬂ

=\ oV S
d\a“e‘ as\’ca b‘eas‘p ,“\o \,oWe\ \’5‘3 Scw_o a‘)p‘ 200 \loxe pe‘«m\\ \e\\e‘ \le\\\c\e \\1““’“

=
=)
S

o
3
a

o
o
=]

o
N
a

o
=)
=]

proportional size of global optima's basin

5 A yoe¥
d\a“e eas\"‘ wea‘p \

1.00

0.754

global optima's incoming strength
g

Fig.9: Proportional sizes of global optima’s basins of attraction (top), and in-
coming strength of escape edges towards global optima (bottom).

cantly more than other datasets. Training ML models with such large datasets
is time-consuming, particularly for kNN which computes the pairwise distance
between observations. We believe this might be the reason why large datasets
are seldom used for benchmarking evolutionary feature selectors. Nevertheless,
our findings underscore the importance of considering those. The question of
whether having more observations consistently leads to fewer local optima re-
quires further investigations that we leave open for future research. This could
have significant implications for the explainability of feature selection.

Similar to global optima, the proportion of features selected on local optima
stays fairly consistent across ML models, usually around 0.5 for all landscapes
— details are omitted due to space constraint. However, the pendigits and
letters datasets show a significant difference, as local optimal subsets often
include more, if not all, features.

4.9 Basins of Attraction

Fig. 9 presents statistics on local optima’s basins of attraction. The proportional
size of global optima’s basin (on top) gives the probability for a simple local
search to fall into a global optimum when starting from a random solution.
The incoming strength of escape edges towards global optima (at the bottom)
represents the probability of transitioning from a local to a global optimum. A
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Table 2: Success rate of SFS-F, SFS-B and GA on the considered problems. Best
values are highlighted in gray.

dataset SFS-F SFS-B GA
kNN SVC LR DT RF NB| kNN SVC LR DT RF NB|kNN SVC LR DT RF NB

diabetes .00 .00 .OOW .00 J1%07.00 .55 .32 42 .55 .55
breast-cancer |.00 .00 .45 .00 .00 .00 .00 .00 .00 .00{.23 .29 .39 .06
breast-w .00 .00 .00 . .00] . .35 .35 .00 .39 .55
page-blocks .03 .13 .32 .45 .45
vowel .00 .00 . . .00 . 48 .55
heart-statlog |.00 .00 . .00 . . .00 .00 .00 .00 .00|.45 .35 .35 . .
schizo .19 .16 .39. .
credit-approval|. .00 .01 .26 .
Z00 .32 .03 .26 . .32
vote .35 .00 .48 .16 .26
pendigits .81 .35 .87. .61
letter .48 I8 .81 .74 .58 .68
vehicle .00 .00 .00 .00 .06 .03 .19 .06 .06
lymph .00 .00 .00 .00 .00].29 .29 38].06 .19 .

higher value means that a local search is more likely to fall into a global optimum
after perturbation.

We first remark that for 9 of the landscapes, both measures equal 1. This
is expected as they correspond to those with a single optimum, as discussed in
Section 4.8. In other landscapes, the basins of global optima remain relatively
large, and complementary investigations reveal that the largest basin often ranks
high in fitness. In addition, datasets with more features (n = 18) tend to have
proportionally smaller global optima’s basins. However, it is worth noting that
these cases simply have more local optima, while the rank of the largest basin
remains low. The global optima’s incoming strength varies with the dataset
and ML model. For example, a high value can be observed for the diabetes,
pendigits, and letter datasets under any ML model. By contrast, the value is
low for the vehicle and lymph datasets. These findings shall be related to the
number of local optima in these datasets, as discussed in Section 4.8.

4.10 Algorithm Performance

We conclude our analysis by relating our observations on the landscape of feature
selection problems with the performance of established wrapper algorithms, as
described in Section 3. Table 2 gives the performance of the three considered
algorithms for each dataset and ML model. We measure performance as the
proportion of runs (among 31) in which the algorithm under consideration was
able to identify a global optimum. Our primary focus is to compare algorithm
performance across different ML models and datasets for each feature selector.

Firstly, we note that there is a substantial number of problems where SFS-F
and SFS-B agree with each other. With a few exceptions, SFS-F and SFS-B
typically have a success rate of either 0% or 100% due to their deterministic
nature. The only element of randomness lies in how ties are broken. This explains
why the success rate falls in between in some landscapes with neutrality; see
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Section 4.6. In fact, the optimal subset is always identified by SFS-F and SFS-B
across different datasets and ML models when the landscape has (1) a single
global optima’s basin of attraction, and (2) no plateaus. Overall, DT and RF
tend to be easier to solve than other ML models. By contrast, SFS-F and SFS-B
seldom identifies an optimal solution for kNN or LR, which were shown to produce
more local optima in Section 4.8. As highlighted above, both DT and RF have
landscapes with relatively strong FDC, almost no neutrality, and few plateaus. In
addition, the largest basin of attraction often leads to an optimal solution for RF.

Now shifting our attention to GA, we notice a higher variation in the success
rates. For a given dataset, the ML model resulting in the highest success rate is
almost always identical to either SFS-S or SFS-B. Similar to those, either DT or RF
is among the best for 9 out of the 14 datasets. Interestingly, a strong correlation
seems to exist between the best GA setting and its FDC value. Indeed, in half of
the datasets, the ML model with the lowest degree of difficulty in terms of FDC
has the highest success rate. The corresponding ML model consistently shows a
relatively lower neutrality rate as well. Furthermore, for almost all datasets, the
largest basin of attraction for the ML model with the highest success rate falls
into a global optimum. Finally, as anticipated above, for problems with n = 16
features, the landscapes induced by pendigits and letter appear to be easier
to solve than those of zoo and vote. This holds for all three algorithms.

5 Conclusions

In this paper, we conducted a landscape analysis to study various aspects of
difficulty in wrapper methods for feature selection. We examined 14 classification
datasets and 6 ML models, resulting in 84 different landscapes. Our findings
suggest that the difficulty and solutions are inherent to the landscape being
considered. Specifically, we observed significant differences across ML models.
This highlights the need to explore ML models beyond kNN, which is commonly
used in the existing literature. Given the observed variations among landscapes,
we do not recommend to use one ML model as a proxy for another ML model.

In addition to considering additional datasets, ML models, and feature se-
lection algorithms, we aim to assess the impact of other classification scores. We
also plan to address the challenges raised by problems with a larger number of
features, thus going beyond complete enumeration. Our experimental analysis
indicated that studying how the landscape difficulty varies with the number of
classes and observations, particularly in terms of neutrality and multimodality,
requires further consideration. In addition, the established sequential feature
selection approach essentially performs a local search starting from a specific
solution. We believe our methodology could help formalize its probability of
successfully identifying a global optimum. At last, we expect to enhance the ex-
plainability of feature selection by analyzing and interpreting the features that
wrapper methods most frequently choose.
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