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Abstract. Transport and dispersion processes in the ocean
are crucial, as they determine the lifetime and fate of bi-
ological and chemical quantities drifting with ocean cur-
rents. Due to the complexity of the coastal ocean environ-
ment, numerical circulation models have difficulties to ac-
curately simulate highly turbulent flows and dispersion pro-
cesses, especially in highly energetic tidal basins such as
the eastern English Channel. A method of improving the re-
sults of coastal circulation modeling and tracer dispersion
in the Dover Strait is proposed. Surface current velocities
derived from Lagrangian drifter measurements in Novem-
ber 2020 and May 2021 were optimally interpolated in time
and space to constrain a high-resolution coastal circulation
MARS model, with careful attention given to selecting en-
semble members composing the model covariance matrix.
The space–time velocity covariances derived from model
simulations were utilized by the optimal interpolation algo-
rithm to determine the most likely evolution of the velocity
field under constraints provided by Lagrangian observations
and their error statistics. The accuracy of the velocity field
reconstruction was evaluated at each time step. The results
of the fusion of model outputs with surface drifter velocity
measurements show a significant improvement (by ∼ 50 %)
of the model capability to simulate the drift of passive trac-
ers in the Dover Strait. Optimized velocity fields were used
to quantify the absolute dispersion in the study area. The im-
plications of these results are important, as they can be used
to improve existing decision-making support tool or design
new tools for monitoring the transport and dispersion in a
coastal ocean environment.

1 Introduction

Numerous studies have emphasized the significance of sub-
mesoscale O (1–10 km) variability of ocean circulation,
which appears highly energetic and ageostrophic. Such sub-
mesoscale motions have a notable impact on energy cas-
cade and energy dissipation in the ocean (Ferrari and Wun-
sch, 2009), as well as on horizontal transport of suspended
matter (Aleskerova et al., 2019) or budgets of physical
and biological quantities (Uchida et al., 2020). Keerthi et
al. (2022) demonstrated that the annual changes in phyto-
plankton biomass in the Gulf of Mexico are driven by small-
scale physical processes (eddies, atmospheric storms, etc.),
which control growth and spatial distribution of phytoplank-
ton, and are influenced by the exchange of energy and matter
between the atmosphere and the ocean. Both models and ob-
servations indicate that the dispersal rate in the presence of
sub-mesoscale turbulence can easily exceed the mesoscale
dispersal rate in the geostrophic current by an order of mag-
nitude (Haza et al., 2008; Poje et al., 2014).

Incomplete knowledge of forcings in combination with the
complexity of coastal environments, which includes a com-
plex shoreline, river mouths, beaches, submarine banks, etc.,
presents a real challenge for numerical modeling. As a result,
circulation models have difficulties in simulating a highly
turbulent coastal flow at sub-mesoscale. Hence, it is impor-
tant to develop techniques that can improve the model skill
to reconstruct the water circulation and dispersion processes
in coastal environments in a simple and efficient way.

The current study employs a method of optimal interpola-
tion (OI) of Lagrangian observations using a high-resolution
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regional circulation model as a background. Lagrangian ob-
servations of current velocities are used to correct the model
trajectories in an optimal way. Pioneered by Gandin (1963)
and applied in atmospheric modeling, the OI has been widely
used in different fields of geosciences for mapping the sea
surface temperature (Bretherton et al., 1976), modeled cur-
rent velocity optimization (Molcard et al., 2003; Sentchev
and Yaremchuk, 2015), and topography optimization (Wu
et al., 2021). Compared to other approaches to optimizing
ocean circulation such as variational methods (e.g., Kalnay,
2002; Sentchev and Yaremchuk, 1999; Wikle, 2005), the OI
has several advantages. Firstly, the method is straightfor-
ward to implement and ensures a reasonable balance between
the computational complexity and statistical consistency of
the model–data misfits. Secondly, the accuracy of the recon-
structed velocity field can be inexpensively evaluated at ev-
ery time step of the model.

The use of OI of observations leads to a significant im-
provement of the current velocity fields and velocity gradi-
ents, which are often inadequately represented in the models
due to their low resolution or intrinsic limitations. Therefore,
the turbulent dispersion also appears to be affected by these
limitations. Many studies have focused on the investigation
of processes that influence the dispersion in the ocean, such
as tidal motions (Meyerjürgens et al., 2020), waves (Weich-
man and Glazman, 2000), and the variability of ocean cir-
culation (Haza et al., 2008; LaCasce and Ohlmann, 2003;
Lumpkin and Elipot, 2010). The present study aims to quan-
tify the effect of current velocity optimization on the disper-
sion rate of passive tracers in a tide-dominated region: the
Dover Strait, in the eastern English Channel (EEC).

The paper is organized as follows: Sect. 2 provides a gen-
eral presentation of the study area and the data used. Sec-
tion 3 provides a detailed description of the methods utilized
in this study. The results of OI of Lagrangian measurements
and characterization of dispersion processes are presented in
Sect. 4. Furthermore, a technique for correcting the wind-
driven velocity component of surface currents is proposed in
Sect. 4. Discussion and conclusions are presented in Sects. 5
and 6, respectively.

2 Study site and the data

2.1 Study site and hydrodynamic conditions

The study was carried out in the Dover Strait, a shallow-water
region of the northwestern European continental shelf con-
necting the English Channel to the North Sea (Fig. 1a). The
region is characterized by highly irregular bathymetry, with
depth not exceeding 65 m and the presence of many sand-
banks, roughly oriented in the dominant current direction,
with depth only of a few meters at low tide.

Tidal motions of semi-diurnal periods dominate the local
circulation. The tidal range in Boulogne, located on the east-

ern coast of France (Fig. 1a), is close to 9 m, and the current
speed can reach 2 m s−1 during spring tide. The tidal stream
loses around 20 % of its intensity during ebb tide, and the
sea surface height and velocity are characterized by a pro-
nounced asymmetry. A large-scale circulation in the North
Atlantic Ocean generates sea level difference, driving a weak
residual flow from the Atlantic Ocean towards the North Sea.
This is another remarkable feature of the local hydrodynam-
ics. The order of magnitude of the tidal residual currents in
the Dover Strait ranges between 5 and 10 cm s−1 (Lazure and
Desmare, 2012). The spatial variability of residual currents is
caused by topographic features of the English Channel that
constrain tidal wave propagation (e.g., Sentchev and Yarem-
chuk, 2007).

The wind significantly affects the local circulation. South-
western winds can increase the average eastward flow, while
northwestern and northeastern winds can reduce the tidal
flow opposing the wind and even reverse it (e.g., Lazure and
Desmare, 2012). The freshwater input from rivers located
on the French coast (the Seine, the Somme, and the Authie
rivers) has only a little influence on the water circulation in
the study area.

2.2 Current velocity measurements

A total of six Lagrangian surface drifters were deployed in
the Dover Strait during two periods of time, under relatively
calm to moderate winds (mean wind speed less than 8 m s−1)
and waves not exceeding 1 m height. During the first survey,
referred to hereafter as S1, two surface drifters were released
north of the Cap Gris-Nez (CGN) (Fig. 1b, red trajectories)
for a 26 h period, from 26 November 2020 at 08:30 UTC to
27 November 2020 at 11:00 UTC. At the release, the two
drifters were separated by 250 m. The survey was performed
under mean tide conditions and northeastern wind of 4 m s−1,
on average. The two drifters of S1 will be referred to here-
after as S1-1 and S1-2. During the second survey, referred to
hereafter as S2, four surface drifters were deployed west of
the CGN (Fig. 1b, blue trajectories) for a 46 h period, from
10 May 2021 at 09:15 UTC to 12 May 2021 at 07:30 UTC.
The drifters formed a rectangle of size of 1.3 km by 2 km.
The survey was performed under spring tide conditions and
stronger southwestern winds of 6 m s−1, on average, with
gusts up to 12 m s−1. The four drifters of S2 will be referred
to hereafter as S2-1, S2-2, S2-3, and S2-4.

Two types of buoys were used: coastal Nomad surface
buoys manufactured by SouthTek (https://www.southteksl.
com/, last access: 15 January 2024) and drifters manufac-
tured at the lab. The coastal Nomad buoy is a cylinder 0.72 m
long and 0.22 m wide with a cone positioned at the surface
to increase buoyancy. The laboratory-made drifter comprises
a cylindrical PVC hull 0.6 m long and 0.1 m in diameter
weighted in its lower part. A thin square plate of 0.3× 0.3 m
in size was installed in the upper part of the hull to assure bet-
ter stability in the vertical and reduce the pitch. The drifters
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Figure 1. (a) Modeling domain. Bathymetry shown by grey shading. Red square delimits the region where the Lagrangian measurements
were performed. (b) Trajectories of Lagrangian drifters released during two field surveys on 26 November 2020 (red) and on 10 May 2021
(blue). Geographic names used in the text are also shown.

were equipped with a SmartOne GPS/satellite transceiver of
Globalstar satellite network. All drifters were equipped with
a 0.5 m long floating anchor positioned in the water layer at
1 m depth, allowing them to drift with surface currents. For
this study, we assumed that SouthTek drifters and laboratory-
made drifters behaved similarly at sea and that the discrep-
ancies implied by their differences were negligible.

Observed surface current velocities were estimated from
the drifter trajectories with a time step of 15 min, which was
a nominal period of drifter positioning via GPS. Spatial coor-
dinates (longitude, latitude) were obtained and then derived
and divided by the time step to estimate the velocity at each
time step.

During S1, the mean drifter velocity was 0.8 m s−1. The
maximum speed of 1.6 m s−1 was reached during peak flood
flow and observed north of the CGN. The minimum speed
of 0.1 m s−1 was reached 2 h after peak ebb flow and ob-
served south of the CGN. During S2, the mean and maxi-
mum drifter velocities were found to be 1 and 2.1 m s−1 re-
spectively (Fig. 1a).

2.3 Current velocity from numerical model

The water dynamics in the EEC are largely dominated by
tides. The baroclinic effects on the vertical are negligible
due to the enhanced mixing affecting the entire water col-
umn (e.g., Breton and Salomon, 1995). Moreover, the study
area is located fairly far away from the major source of buoy-
ancy – the Seine River, whose discharge was low during the

measurement period. The use of a 2D model was therefore
justified. The variation of salinity in the horizontal plan is
taken into account in the 2D model.

Lagrangian particle advection simulations performed in
this study were forced by a 2D water current (barotropic) and
water level forecasts modeled in the framework of the oper-
ational coastal oceanography project Modeling and Analy-
sis for Coastal Research (Pineau-Guillou, 2013; Dumas et
al., 2014). The forecasting multi-scale real-time and histor-
ical data for the French metropolitan coastlines including
the eastern English Channel are freely available on their
project website (https://marc.ifremer.fr, last access: 12 Oc-
tober 2023). Current, salinity, temperature, and sea level ele-
vation fields were forecasted using the Model for Application
at Regional Scale (MARS) (Lazure and Dumas, 2008).

The MARS model was developed to simulate flows across
various coastal areas, ranging from regional scales to the in-
shore scale of small bays or estuaries, where circulation is
typically influenced by a combination of processes (Lazure
and Dumas, 2008). The modeled processes involve simpli-
fications of the incompressible Reynolds-averaged Navier–
Stokes (RANS) equations based on classic Boussinesq and
hydrostatic assumptions. Comprehensive information re-
garding model equations, the coupling of barotropic and
baroclinic modes, model discretization, solving methods,
computational stability according to the Courant–Friedrichs–
Lewy criterion (Table 1; Lazure and Dumas, 2008), and
costs is meticulously outlined in Lazure and Dumas (2008).
The model accounts for kinematic free-surface and bottom
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boundary conditions, contingent upon friction terms (Lazure
and Dumas, 2008). The turbulence closure employed in the
model follows the approach described in Gaspar et al. (1990).

To accurately simulate storm surge dynamics, the model
extends sufficiently to the north and west to capture the de-
velopment of depressions, which generate surges propagat-
ing in the English Channel at a greater distance in the At-
lantic Ocean or in the North Sea (Idier et al., 2012). The
numerical model utilizes nested configurations with progres-
sive resolutions: (i) 2 km covering the northeastern Atlantic
(level 0); (ii) 700 m at the regional scale, encompassing the
English Channel (level 1); and (iii) 250 m for the eastern
English Channel (level 2). This nesting technique enables
the accurate capture of interactions between large-scale and
small-scale processes. This technique enables the transfer of
all resolved fields from lower-resolution levels to the open
boundaries of higher-resolution levels. The temporal resolu-
tion of the outputs is 1 h for levels 0 and 1 and 15 min for
level 2.

All relevant details concerning the choice of bathymetry,
meteorological and tidal forcings, improvements in model
parameterization (such as surface friction and drag co-
efficient), and the methodology employed for storm-
surge computation are meticulously documented in Pineau-
Guillou (2013). The bathymetry data for the level-2 con-
figuration were sourced from the French Hydrographic and
Oceanographic Service (SHOM). Tidal boundary conditions
were derived from the global tidal model FES2004 (Lyard et
al., 2006). Intertidal areas were simulated using a wetting and
drying scheme. The drag coefficient utilized for wind effect
parameterization is based on the variable Charnock coeffi-
cient from the WaveWatch III model (Ardhuin et al., 2011).
To maintain CFL stability, the modeling time step was set to
30 s for the level-2 model.

Moreover, the numerical model outputs underwent an
evaluation process (Pineau-Guillou, 2013; Dumas et al.,
2014) involving available observations, confidence indica-
tors, and descriptors of system states. Regarding the water
levels, the model was validated in February 2010 at 19 tide
gauges of the permanent network RONIM (French Sea Level
Observation Network). For the tide, the root mean square
errors are halved between level 0 and level 2: they average
22 cm for level 0, 21 cm for level 1, and 11 cm for level 2.
Similar results are observed for the water levels (tide and
surge) with root mean square errors averaging 26 cm for level
0, 24 cm for level 1, and 16 cm for level 2. These improve-
ments are attributed to the enhancement of spatial resolution
from level 0 to level 2 (from 2 km to 250 m), as well as the
incorporation of the SHOM CST-France tidal model (with
115 harmonic components) at the boundaries of the model
(Pineau-Guillou, 2013).

Hence, we posit that the comparison of model outputs for
the level-2 configuration (with 250 m horizontal spatial reso-
lution and 15 min output temporal resolution), encompassing
the EEC area with available in situ data, is sufficiently ac-

curate to be utilized in our study for further drifting particle
advection modeling. Originally represented on an Arakawa
C-grid, surface currents were interpolated on the Arakawa
A-grid (Arakawa and Lamb, 1977) for further analysis and
optimization of model velocities. The model used in the anal-
ysis will be referred to hereafter as M2D.

2.4 Wind data

Meteorological data (wind, temperature, humidity, and atmo-
spheric pressure) are used as the forcing of M2D. The data
were provided by the Arpege (Action de Recherche Petite
Echelle Grande Echelle) operational atmospheric model of
Météo-France with 5 km spatial and 1 h time resolution.

The meteorological data from the model were compared
to in situ measurements collected at meteorological station
in Boulogne and Calais during the year of model simula-
tions. The time- and space-averaged difference between the
observed and modeled wind speed was found to be 1.7 and
0.9 m s−1 for the surveying periods, giving confidence in the
model wind data.

Figure 2 shows the wind rose for each survey from the
Arpege model. Two dominant wind regimes were observed
during the surveyed days. During S1, the wind direction was
towards the southwest, and the speed did not exceed 5 m s−1

with the mean value of 4 m s−1. During S2, the wind had an
opposite direction, and the speed varied within the range of
4–9 m s−1, with the mean speed 6 m s−1 and the maximum
speed 11 m s−1.

3 Methodology

3.1 Optimal interpolation of velocity measurements

One of the methods used to constrain the numerical model
outputs by observations is the optimal interpolation of ob-
servations. It provides an estimate of the state of the ocean
dynamics by performing a weighted least squares fit of a
background model field to observations. In general, obser-
vations are available at irregularly distributed points and are
assumed to be imperfect, i.e., each observation being affected
by an uncertainty (observation error). It is assumed that the
observation error is not correlated with the model error.

In the OI method, a correction of a background velocity
field um (x, t), provided by a numerical model on a regu-
lar grid, is done using a linear combination of the weighted
differences between the background model velocity um and
the observed velocities u∗i at point i (Bretherton et al.,
1976; Sentchev and Yaremchuk, 2015; Thiébaux and Pedder,
1987). Weights chosen for minimization of the mean square
difference between the observed and background velocities
are a combination of model and observation covariances.
With the space–time covariance matrices of the model B=〈
um (x, t)um

(
x′, t ′

)〉
and observations Rij =

〈
u∗i u
∗

j

〉
, the op-
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Figure 2. Wind roses for two survey periods: S1 (a) and S2 (b) from the Arpege atmospheric model (hourly data) spatially averaged over the
study region.

timized velocities uOI are computed as follows:

uOI = um+
∑
ij

BHT
j

(
HiBHT

j +Rij
)−1 (

Hium−u∗i
)
. (1)

Here, Hi corresponds to a linear operator projecting gridded
velocity values from the apexes of the model grid cell onto
the ith observation point. The covariance of um is calculated
between space–time coordinates (x, t) and

(
x′, t ′

)
, where x

and t correspond to the velocity and time of observations,
and x′ and t ′ are the corresponding velocity and time in the
different ensemble members composing the covariance ma-
trix.

The quality of the interpolation scheme is quantified by
estimating the mean relative difference between the observa-
tions u∗ and optimized model velocities uOI as follows:

εOI =

√√√√√√
∑
i

(
HiuOI−u∗i

)2
∑
i

(
u∗i
)2 . (2)

The relative error of the initial model, εm, is quantified in the
same way.

An important assumption underlying the OI method is that
the background field, also called the “first guess”, is a good
approximation of the truth. Thus, the computation of B and
um is crucial. The background velocity fields were provided
by the model at the observation time step.

For estimation of model covariances, a variable number of
model trajectories (26 h long for S1 and 46 h long for S2),
referred to as ensemble members, were used. The sensitivity
test of OI to the number of ensemble members used was per-
formed, and the results are presented in Sect. 4.1. Three ap-
proaches were used in selecting the ensemble members. The
first and easiest way is extracting them from the model on
the days surrounding the survey and by respecting the condi-
tions (wind and tidal conditions) observed during the survey-
ing days. A total of seven ensemble members were selected
using this approach.

However, for an evolving ocean state, a large number of
ensemble members might be required to represent the flow
field evolution with statistical significance. Therefore, in the
second step, ensemble members were extracted from the
1-year-long model simulation (January to December 2020)
containing S1, by searching for wind and tidal conditions
similar to those observed during the surveying period. By ac-
cepting a variation of the average wind speed and direction
within the range±2 m s−1 and±45° respectively, for a given
tidal stage, a total of 31 ensemble members were selected.
In a third step, a more restrictive criterion of the range of
variation of the wind, for instance, ±1 m s−1 and ±45°, al-
lowed us to obtain 11 ensemble members. Figure 3 shows a
chronology of ensemble members selected for OI of velocity
observations during S1. Each ensemble member represents a
26 h long model run.

3.2 Lagrangian trajectory reconstruction

In addition to the relative error ε, the quality of the interpo-
lation scheme can be assessed by estimating the separation
distance d between the real trajectories of drifting buoys and
the trajectories provided by the model. The latter were re-
constructed using the OceanParcels Lagrangian framework
(https://oceanparcels.org/, last access: 29 October 2023). Vir-
tual particles were seeded at the time and location of the real
drifters at the release. Then, they advected during a given pe-
riod of time using the horizontal forward Euler method with-
out diffusion, giving their time-dependent position x (t) and
y (t). The separation distance d , estimated at a 15 min time
step and averaged over drifters, is a commonly used metric
that shows how good the drifter trajectories are reconstructed
by the initial model (the separation distance dm) or the opti-
mized model (the separation distance dOI).

3.3 Correction of the wind-induced current velocities

The ocean–atmosphere coupling is difficult to reproduce cor-
rectly, especially in coastal regions. In fact, the wind gener-
ates surface Ekman currents directed 45° to the right of the
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Figure 3. A total of 31 ensemble members (in blue) extracted from the model simulation of circulation in the Dover Strait using the realistic
forcing in 2020. S1 period is shown in red. Sea surface height (SSH) from the model run is given in dark grey. Solid lines mark the beginning
of the ensemble member, whereas dashed lines mark the end.

wind at the sea surface. It is assumed that this wind-driven
velocity can attain 1 %–3 % of the wind speed at 10 m height
(Jenkins, 1987; Weber, 1983).

Imperfect representation of the wind-driven velocity in the
model can be improved by using velocity measurements by
surface drifters. Let us assume that the flow velocity can be
decomposed in two parts: the optimally interpolated veloc-
ity uOI and an additional correction, cU10, where U10 is the
wind velocity vector at 10 m height, averaged over the study
area and the survey period, and c = diag

(
cx,cy

)
is a diago-

nal 2× 2 matrix whose diagonal elements are estimated by
minimizing the cost function:

J (c)=

[
X∗−

(
X0+

∑
k

(uOI)k1t + cU101t

)]2

→
min
c

. (3)

Here X∗ is a sequence of drifter coordinates at 1t = 15 min
time stepping, X0 is the coordinate at the release, and sum-
mation is performed over a drifter trajectory. The expression
in parentheses represents a virtual drifter trajectory after cor-
rection for the wind effect. The coefficients

(
cx,cy

)
were es-

timated for each drifter trajectory and then averaged. This
implies an assumption of a stationary wind (mainly wind di-
rection) that was supported by observations at meteorologi-
cal stations during the surveying periods S1 and S2. Correct-
ing the wind-induced velocity enables better reconstruction
of the optimized velocity fields denoted hereinafter by ucor.
The relative error of the model after performing the wind-
induced velocity correction is computed using Eq. (2), after
replacing uOI by ucor. The separation distance between the
observed trajectories and trajectories reconstructed from the
model after performing wind-induced velocity correction is
referred to as dcor.

3.4 Absolute dispersion

The absolute dispersion A2 is defined as the variance of par-
ticle spreading with respect to the mean coordinate of parti-
cles in a cluster (the barycenter). In two-dimensions, the dis-
persion is generally estimated along the x and y axes (Berti
et al., 2011; Enrile et al., 2019). But in this study, to bet-
ter account for the dominant flow direction, the variance is
computed in the direction of the maximum spreading of par-
ticles and in the perpendicular direction, providing the two
quantities A2

1 and A2
2. They represent the major and minor

axes of the deformation tensor and are estimated by applying
the principal component analysis (PCA) to particle distribu-
tion at each time step (Emery and Thomson, 2004). As the
tidal flow direction in shallow-water basins is generally con-
strained by local topography and coastline orientation, the
ellipse orientation (major axis) gives the dominant flow di-
rection. The ellipse orientation θ and the variances A2

1 and
A2

2 were computed as follows (Emery and Thomson, 2004):

θ =
1
2

tan−1

[
2x′y′

x′2− y′2

]
(4)

A2
1

A2
2

]
=

1
2

{(
x′2+ y′2

)
±

[(
x′2− y′2

)2
+ 4

(
x′y′

)2
] 1

2 }
. (5)

Here, x′2 and y′2 stand for variances of particle coordinates
along the eastward x and northward y axes, respectively.

4 Results

4.1 Model velocities after optimal interpolation of the
Lagrangian observations

Figure 4 shows the results of Lagrangian drifter velocity in-
terpolation for S2. The largest number of ensemble mem-
bers, 36, was used in interpolation. The discrepancy between
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Table 1. Relative error ε (columns 2–4) and mean (time–space-
averaged) separation distance (columns 5–7) between the observed
and reconstructed drifter trajectories, using the initial model, opti-
mized model, and the model after performing wind-induced veloc-
ity correction. Errors obtained with 31 ensemble members for S1
and 36 for S2 are shown in normal font, and those obtained with 7
ensemble members are given in italics.

Relative error Mean separation
distance (in km)

εm εOI εcor dm dOI dcor

S1 0.27 0.16 (0.17) 0.16 1.5 1.4 1.3
S2 0.22 0.10 (0.11) 0.10 5.7 3.0 2.1

the initial and optimally interpolated velocities during peak
flood and ebb flow (Fig. 4, color shading) varies in space
with lower values found south of the CGN, for both flood
and ebb flow, and the largest value (∼ 0.5 m s−1) found in
the northern part of the strait, close to the UK coast. In the
French sector of the strait, the discrepancy attains 0.2 m s−1

over the sandbanks. However, the surface current direction is
reproduced fairly well by M2D. The mean (time- and space-
averaged) error of flood and ebb tide velocity is 0.17 and
0.25 m s−1, respectively, while for the current direction, the
corresponding errors are 2 and 2.5°. In general, larger dis-
crepancies are found over sandbanks, indicating difficulties
in modeling the tidal stream over complex and rapidly chang-
ing bathymetry.

The relative error of velocity, ε, appears significantly dif-
ferent in the initial model and after OI (Table 1). In the initial
model, the error (εm) is found to be fairly large: 0.27 for S1
and 0.22 for S2. Blending the model with Lagrangian obser-
vations allowed a decrease in the relative error by 40 % for
S1 and by more than 50 % for S2 (Table 1, columns 2 and 3).
The larger error obtained for S1 could be due to the location
of drifter trajectories too close to the shore, during 10 h af-
ter the release. The model performance in reconstructing the
drifter trajectories is probably limited in this very shallow-
water region, in the vicinity of the CGN.

It is interesting to quantify the sensibility of OI to the num-
ber of ensemble members used. While the number is limited
to seven (the smallest number identified for both surveys), the
results of velocity interpolation do not change much, by less
than 10 % (Table 1, column 3, values in italics). These out-
comes prove that in a basin dominated by the combination
of tide and wind, and in the EEC in particular, the accuracy
of OI is not much sensitive to the number of ensemble mem-
bers used in calculating the velocity covariances. Note that
wind forcing is taken into account when selecting ensemble
members. With tidal range varying between 3 and 9 m in the
EEC, the correlations of current velocities are high. This may
explain why increasing the number of ensemble members re-
sults in only a slight decrease in the interpolation error.

Figure 5 shows the evolution of differences between the
velocity provided by the initial and optimized model in
drifter locations during S1 (Fig. 5a, b) and S2 (Fig. 5c, d).
During S1, larger discrepancies between both the observed–
modeled velocities and the observed–optimized velocities
(∼ 0.3 m s−1) occur at peak flood, 13 h after the deployment.
However, the optimization enables the reduction of the mean
discrepancy from 0.070 to 0.066 m s−1 for ux and from 0.10
to 0.066 m s−1 for uy . During S2, larger discrepancies are at-
tained during both peak flood (time 26, 40 h) and peak ebb
flow (time 8, 22, 33, 46 h). The optimization process enables
the reduction of the mean discrepancy from 0.09 m s−1 down
to 0.07 m s−1 for ux and from 0.07 down to 0.06 m s−1 for
uy . These results highlight the difficulty models have to re-
produce accurately the exact timing between peak flood and
ebb flow.

Figure 6 shows the observed drifter trajectory and that
provided by the initial and optimized model during S1 and
S2. The corresponding separation distance, time- and space-
averaged, is given in Table 1 (columns 5–7). During S1, the
model seems to underestimate the northward flow compo-
nent, especially in the southern part of the domain (Fig. 6a,
b). The mean initial separation distance dm is 1.5 km. It de-
creases by 0.1 km after OI (dOI = 1.4 km). During S2, the
model, both initial and optimized, underestimates the north-
ward flow component (Fig. 6c, d, e, and f). The time evo-
lution of the trajectories is well reproduced by the model,
especially for drifter of drifter S2-1, but appears shifted by
4 km compared to the observed trajectory. This gives a large
mean separation distance dm = 5.7 km. Blending the model
with observations enables the reduction of the mean sepa-
ration distance by 7 % for S1 and by 48 % for S2 (Table 1,
columns 4–5). However, the difference between the real and
virtual drifter trajectories remains significant, especially for
S2 (Fig. 6c, d, e, and f).

Another way to evaluate the performance of OI is to per-
form a “leave-one-out validation” experiment. In this experi-
ment, one drifter trajectory is removed from the data set, and
the optimization is done using the remaining drifters. This
validation method provides a much less biased measure of
relative error compared to that used in cross-validation, be-
cause the model is repeatedly fit to a data set that contains
n− 1 drifter trajectories. At the end of the experience, the
relative error was reduced by 22 % for S1 and by 36 % for
S2. This proves the that proposed OI technique is capable of
efficiently correcting the few drifter trajectories of the model
velocity field. These values of error reduction appear similar
to those given in Table 1 and demonstrate the efficiency of
the OI. This means that with only one or few drifters, it is
possible to improve the model velocities in an optimal way.
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Figure 4. Current velocities during peak flood flow (a) and peak ebb flow (b) of survey S2. Red and blue vectors show the initial and
optimized model velocities, respectively. The absolute difference between the initial and optimized model velocity (|uOI− um|) is shown by
color shading.

Figure 5. Boxplots of absolute zonal (a, c) and meridional (b, d) velocity difference between observations and initial model (black) and
observations and optimized model (red) at S1 (a, b) and S2 (c, d) drifter locations. For S1 (a, b), where only two drifters are considered,
the top and bottom edges of each box are the maximum and minimum values, and the line within the box indicates the median, equal to the
mean. For S2 (c, d), the top and bottom edges of each box are the upper (0.75) and lower (0.25) quartiles, respectively. The line within the
box indicates the median. The whiskers above and below each box are the nonoutlier maximum and minimum.
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Figure 6. Observed trajectory of drifter S1 (a, b) and S2 (c, d, e, f) (green lines). Corresponding trajectories provided by the initial model
M2D are shown in black and those resulting from OI in red. Mean wind speed and direction are denoted by a black arrow.

4.2 Wind-induced velocity correction

The fact that larger separation distance between the observed
and reconstructed trajectories was obtained during S2 (under
strong wind conditions) indicates that the effect of wind on
surface currents is poorly reproduced in the model. To fur-
ther reduce the discrepancy between the observed and mod-
eled trajectory, the least squares method is used to estimate a
correction to wind-induced velocity. Figure 7 shows the evo-
lution of the separation distance between the observed and
reconstructed drifter trajectories using the initial, optimized,
and velocity field after correcting the wind-induced current.
The correction term cU10 (Eq. 3) was calculated for both
zonal and meridional wind components and given as percent-
age of the wind speed, corresponding to −0.4 % U10 and
2.8 % V 10 during S1 and −0.4 % U10 and 1.7 % V 10 during
S2.

Figure 7a demonstrates that, under certain conditions, the
wind-induced velocity correction is not effective. For exam-
ple, at hour 7 and 14 (Fig. 7a), the separation distance attains
its largest value (dcor ∼ 3 km). This could be due to the loca-
tion of the buoy too close to the shore and to the CGN cliffs
(50 m high) where the sea surface and the buoys are less ex-

posed to the effect of northwestern winds. However, the cor-
rection of the wind-induced velocity enables much better tra-
jectory reconstruction with an averaged separation distance
of dcor = 1.3 km (Fig. 8a, b; Table 1, column 7). During S2,
the separation distance dcor is slightly larger (∼ 2 km) than
dOI during the first 11 h of drift (Fig. 7b), when the wind
speed decreased from 10.5 to 2 m s−1. On the contrary, dur-
ing the second part of the survey, when the wind increased
again to ∼ 8 m s−1, the correction provides much better re-
sults, with dcor, averaged over all the drifters of S2, always
inferior to dm and dOI (Fig. 7b).

On the whole, it is remarkable that the wind-induced ve-
locity correction enables much better trajectory reconstruc-
tion during both S1 and S2. It allows a total reduction of d
by 13 % during S1 and by 63 % during S2 (Table 1, columns
5–7). During S1, the optimization and correction processes
produce realistic trajectories for both dinghies. During S1,
the optimization and wind processes produce realistic tra-
jectories, particularly for dinghies S2-1 and S2-3 (Fig. 8c,
e). On the other hand, the corrected trajectories of S2-2 and
S2-4 still lack precision compared to observed trajectories
(Fig. 8d, f). At the time of deployment, S2-1 and S2-3 were
to the south of the other pair, S2-2 and S2-4. It seems that
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Figure 7. Boxplots of separation distance between the observed and reconstructed trajectories for drifters of S1 (a) and drifters S2 (b) using
the initial and optimized model and the model after performing the wind-induced velocity correction. For S1 (a), where only two drifters are
considered, the top and bottom edges of each box are the maximum and minimum values, and the line within the box indicates the median,
equal to the mean. For S2 (b), the top and bottom edges of each box are the upper (0.75) and lower (0.25) quartiles, respectively. The line
within the box indicates the median. The whiskers above and below each box are the nonoutlier maximum and minimum. During S2 (b),
three of the four modeled trajectories escaped the domain around 42 h, resulting in a simple curve without boxplot.

the impact of the wind is different between these two pairs of
buoys, even though they are only 1 km apart. This means that
wind correction is less effective for drifters S2-2 and S2-4.

Compared to the separation distance d , the relative error
ε (Table 1, columns 2–4) appears equal for both the opti-
mized model and model after performing wind-induced ve-
locity correction. Because the relative error accumulates over
time, a small error does not imply the best trajectory recon-
struction, either in space or time. This underlines the useful-
ness of separation distance for evaluating the model velocity
field in terms of Lagrangian tracking.

4.3 Absolute dispersion

After applying OI of velocity observations and correcting the
wind-induced velocity, the resulting surface current fields are
used with more confidence to assess dispersion processes, in
particular by estimating the absolute dispersion. A total of
225 particles separated by 250 m were seeded within a rect-
angular shape area north of CGN. The center of mass of this
cluster of particles, referred to hereafter as cluster-N, was
located 1.7 km offshore. The second cluster, referred to as
cluster-W, was located west of CGN with its center of mass
separated from the shore by 2.1 km (Fig. 9a). Each cluster
formed a rectangle of size 3.3 km by 3.5 km. The particles
were advected during the 26 and 46 h time periods using the
OceanParcels software. Three velocity fields were utilized:
those provided by the initial model, the optimized model, and
the model after applying the wind-induced velocity correc-
tion.

Absolute dispersion is used to quantify the rate of spread-
ing. PCA allows the characterization of the dominant direc-
tion of spreading and the shape of a cluster of passively drift-

ing particles at different time intervals. Figure 9a shows the
time evolution of spreading along the ellipse axes (A1 and
A2) during S2 at a 6 h time step roughly corresponding to the
time of high and low water in Boulogne. The spreading ap-
pears significantly larger in the alongshore direction. Similar
results are obtained for particles in cluster-W (not shown).
The effect of tidal currents on particles spreading consists in
elongation of the cloud of particles in the dominant current
direction.

The time evolution of spreading during both surveys is
shown in Fig. 10. Similar results are obtained during S1 and
S2 with spreading that is estimated to be 4 times larger for
cluster-N than for cluster-W (A1 = 5.8 km for cluster-N and
A1 = 1.4 km for cluster-W during S1). Particles in cluster-
N experienced very large spreading shortly after the release
under stronger wind conditions observed during S2: A1 =

10 km at time t = 8 h (Fig. 10b). The spreading is found to
be 30 % weaker (A1 = 7 km) under northeastern wind condi-
tions (S1) with lower wind speed (Fig. 10a). The enhanced
spreading of particles in cluster-N is due to large velocity
shear induced by an anticyclonic tidal eddy generated dur-
ing flooding tide (Fig. 9b). Particles in this cluster are ef-
fectively driven by the eddy, whose higher nearshore veloc-
ities induce stirring of particles westward along the shore.
When the tidal eddy weakens and disappears, A1 slightly
decreases, causing particle alignment in the main direction
of the flow. At each peak flood tide, the stronger and het-
erogenous tidal flow coming from the Dover Strait towards
the North Sea (mean velocity of 0.9 m s−1 and spatial range
of variation of 1.6 m s−1) causes shear dispersion and in-
creases the spreading rate. However, at each peak ebb flow,
the spreading along the major axis decreases. Particles seem
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Figure 8. Observed drifter trajectory (green lines) and the trajectory reconstructed after applying the wind-induced velocity correction (blue)
for S1 (a, b) and S2 (c, d, e, f).

Figure 9. (a) Evolution of the spreading in cluster-N (6 h spacing) during S2. The red trajectory represents the trajectory of the center of
mass of cluster-N particles. Semi-axes of the ellipse are represented by black lines. The length of semi-axis of the ellipse approximating
the particle dispersion accounts for the particle spreading (A1, A2). Results were obtained with optimized surface currents after performing
wind-induced velocity correction. The area of particle release is shown by a black rectangle for cluster-N and a grey rectangle for cluster-W.
(b) Residual velocity around the CGN obtained by averaging the model velocities over four tidal cycles.
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to become more concentrated when impacted by the weaker
and homogenous tidal flow (mean velocity of 0.4 m s−1 and
spatial range of variation of 1.2 m s−1). In contrast, particles
in cluster-W are impacted only by the tip of the tidally in-
duced eddy, pushing them toward the northeast, away from
the area of high nearshore velocity. Thus, particles in cluster-
W experience a relatively weak spreading during both survey
periods (A1 < 2.4 km).

In comparison to the model after interpolating the veloc-
ity measurements and performing the wind-induced veloc-
ity correction, the initial model tends to underestimate the
spreading along the major axis A1 by 20 %, whereas it tends
to overestimate the spreading along the minor axis A2 by
13 % for both clusters and both surveys. It should be men-
tioned that the optimized model and the model with wind-
induced velocity correction provide nearly identical results
(a 1 % difference is found).

5 Discussion

The present study demonstrates how the Lagrangian obser-
vations can be used to improve the performance of the high-
resolution model MARS. It is shown that the optimal interpo-
lation of drifter data affects not only the model velocity fields
but also the dispersion properties. Optimizing the model out-
puts and correcting for wind-induced velocity reduces the
model–data misfit for velocity by 50 % and results in a sig-
nificant (10 %–20 %) change of the dispersion rate caused by
the correction of velocities.

Objective mapping methods, including OI, have been
widely used in oceanographic studies. Sentchev and Yarem-
chuk (2015) and Thiébaut et al. (2019) applied the OI to
constrain a high-resolution simulation of coastal currents by
the MARS-2D model using towed acoustic Doppler current
profiler (ADCP) measurements in the English Channel. They
obtained a significant decrease of the model error (50 %), as
the result of the velocity correction.

Kim et al. (2008) optimally interpolated the surface cur-
rent velocities derived from high-frequency radar measure-
ments along the west coast of the United States by using a
predefined (exponential shape) isotropic spatial covariance
function instead of a covariance matrix derived from ensem-
ble model simulations. The method allowed one to obtain a
continuous set of current vector maps by taking into account
the measurement accuracy. A similar approach has been used
for surface current mapping from satellite altimeter data at
the global scale (e.g., Ma and Han, 2019; Wilkin et al., 2002).

The efficiency of optimal interpolation of drifter observa-
tions has been assessed in detail by Molcard et al. (2003).
Using a quasi-geostrophic model within an idealized domain,
an interpolation scheme based on general Bayesian theory,
and twin data experiments with virtual drifters, the authors
quantified the performance of data assimilation. For an opti-
mal choice of parameters (number of drifters, sampling pe-

riod, and uncertainties of observations and model outputs),
the relative error between the observed and modeled quanti-
ties decreased from 58 % to 11 %. The final model–data dis-
crepancy obtained in our study appears to be similar (Table 1,
column 3). This increases confidence in the results of the pro-
posed optimization technique.

In this study, we utilized fused data sources to assess fu-
sion outcomes. Such an evaluation process may not objec-
tively reflect the effectiveness of the fusion method and the
characteristics of the real ocean current field. However, the
“leave-one-out validation”, which uses one drifter trajectory
as a control data set (repeatedly replaced) and other trajec-
tories for optimization, provides a much less biased measure
of error and enables trusting the fusion outcomes. An alter-
native to this technique, which requires more drifter trajecto-
ries, is the “cross-validation” method where high-resolution
observational data could be partitioned into training and val-
idation sets (Le Rest et al., 2013, 2014).

To further explore the performance of OI in application
to drifter data in the tide-dominated basin, sensitivity of the
model correction to the number of ensemble members was
assessed. The results showed that in the EEC, the perfor-
mance of OI was not significantly affected by the number
of ensemble members. Increasing this number from 7 to
31 provided only a 10 % reduction in relative error. How-
ever, in regions with low tidal forcing (e.g., Mediterranean
Sea) or with significant swell and freshwater inputs, select-
ing ensemble members could be more challenging. In such
cases, alternative clustering methods like K-means cluster-
ing or SOMs (self-organizing maps) could be considered
(Hernández-Carrasco et al., 2018; Nguyen-Duy et al., 2021;
Solabarrieta et al., 2015).

A method of correction for the wind effect, often poorly
represented in numerical models, especially during the peri-
ods of strong winds, appears simple, physically robust, and
efficient. A comparison of the modeled and observed drifter
trajectories revealed that wind-induced velocities are largely
overestimated in M2D. As a result, a significant shoreward
displacement of the modeled trajectory under strong south-
western winds was obtained (Fig. 6b). The mean separation
distance between the observed and modeled trajectories at-
tained 5 km (Table 1 column 5) and the maximum separa-
tion 13 km for drifter S2-3. In order to achieve better agree-
ment, the wind-induced current velocity correction was done
(Eq. 3) under the assumption of a stationary wind over the
observation period. The wind time series from ARPEGE at-
mospheric model and observations at meteorological stations
supported this choice. In principle, the method of correc-
tion can be easily adopted for situations with evolving wind.
However, in other situations, for example, when the drifters
were observed close to the shore (Fig. 6a), the correction
method may be less efficient. In our case, the proposed cor-
rection method allowed the reduction of the separation dis-
tance between the observed and modeled trajectories by 63 %
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Figure 10. Time evolution of spreading A1 (solid line) and A2 (dashed line) under environmental conditions observed during S1 (a) and
S2 (b). Spreading of cluster-N is shown in blue and of cluster-W in dark red. Results are obtained from the model after performing a
wind-induced velocity correction.

for S2, under strong winds, and by 13 % for S1, under weak
winds (Table 1, column 7).

This highlights the importance of an accurate represen-
tation of the wind effect in high-resolution coastal circula-
tion models. For example, the effect of the Stokes drift on
passive tracers, drifting in the surface layer, should be ac-
counted for. In fact, MARS is an Eulerian hydrodynamic
model, not coupled with a wave model in the considered
configuration. For this reason, wave–current interactions are
neglected in the model. Moreover, the wave-induced current
velocity (Stokes drift velocity), estimated as 1 % of the wind
speed (Ardhuin et al., 2012, 2018), can considerably mod-
ify the transport pathways of passively advected particles.
Dobler et al. (2019), van den Bremer and Breivik (2018), and
Curcic et al. (2016) also highlighted the impact of the Stokes
drift on the behavior of passive tracers, micro-plastics, and
oil spills, especially under strong winds.

One of the practical applications of oceanographic stud-
ies is the assessment of turbulent dispersion of materials in
the marine coastal environment. It attracts a growing interest
because our seas and oceans are being degraded by human
activities that harm marine life, undermine coastal commu-
nities, and inject harmful substances into the ocean (Landri-
gan et al., 2020). Marine turbulence is considered the main
factor controlling the spreading of materials in seawater (van
Sebille et al., 2020). The present study aims to evaluate the
turbulent dispersion and demonstrate how the dispersion esti-
mates can be improved in one of the busiest maritime straits.
Optimal interpolation of drifter data was used to optimize the
sea current velocities. It was found that the resulting change
in the velocity field may lead to adjustment of the velocity
gradients, which, in turn, increase the rate of dispersion. Con-
sequently, the absolute dispersion in the model was found to
be significantly larger after interpolation of the drifter data,
which is not surprising given the results reported in other
studies. Modeled velocities are generally lower and less vari-
able than observed velocities (Kjellsson and Döös, 2012), es-
pecially under strong wind conditions (Curcic et al., 2016).

In addition, other studies highlighted that in tide-
dominated regions, with large spatial variation of velocity,
the coastal flow is characterized by strong shear dispersion
(Van Dam et al., 1999; Zimmerman, 1986). In particular, an
enhancement of the dispersion rate was found in the vicin-
ity of headlands or under a significant bathymetric change
(Geyer and Signell, 1992). Numerical studies in the English
Channel have shown that passive particles released offshore
experience lower dispersion compared to the particles re-
leased close to the shore where the bathymetry variation is
large. Sentchev and Korotenko (2005) documented that un-
der the joint effect of freshwater input and tides, a cluster of
particles released in the nearshore coastal flow experienced
large stretching along the shore. These results are in good
agreement with the behavior of particles in cluster-N, af-
fected by the near-shore coastal flow and tide-generated tran-
sient eddy.

6 Conclusions

In this study, we tested a computationally efficient method of
combining numerical modeling with surface drifter observa-
tions to obtain a more reliable estimate of turbulent disper-
sion in the narrowest and most energetic part of the EEC: the
Dover Strait.

Using optimal interpolation to combine the high-
resolution MARS model outputs with two and four drifter
trajectories allowed reconstruction of the surface velocity
evolution with a 50 % reduction in the error between ob-
served and modeled velocities. Additional correction of the
wind-induced velocity component enabled the further reduc-
tion of the separation distance between observed and mod-
eled trajectories (63 % reduction of separation distance un-
der strong winds). Particle spreading, estimated from more
realistic velocities, obtained after the OI and wind-induced
current corrections, was found to be 20 % higher north of the
CGN and 13 % lower south of the CGN, compared to the
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initial model run. Spatial variability in dispersion was identi-
fied. It is assumed to be related to small-scale features of the
local circulation generated by tidal flow interaction with the
headland (CGN) and irregular topography.

The proposed methodology can be used to improve ex-
isting decision-making support tools or to design new tools
for monitoring the transport and dispersion of materials in
coastal ocean environments.
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