Experimental challenges in differential scanning calorimetry for Hydrogen storage applications

<u>Mireille Bader</u>, Fabrice Goutier, Benoit Duponchel, Stephane Longuemart, Carmen Ciotonea, Gabriela Blanita

04/06/2024

Outline

01	Introduction	02	Metal Organic Frameworks
03	Differential Scanning Calorimetry	04	Standard vs MDSC
05	Polystyrene	06	Measurement procedure

07 Effect of different factors on Cp 0

08 Conclusion

Introduction

Significant increase in greenhouse gas emissions

↓ Global warming

Solution?

Fossil fuels \rightarrow Renewable ressources

Metal Organic Frameworks

Investigating their thermal properties (thermal conductivity, effusivity, diffusivity, heat capacity)

Heat capacity

The amount of heat to be supplied to an object to produce a unit change in its temperature.

Formula:
$$C_p = \left(\frac{\partial H}{\partial T}\right)_p \times \frac{1}{n}$$

Unit: *J.kq*⁻¹. *K*⁻¹

Differential Scanning Calorimetry (DSC)

Schematic drawing of a DSC cell. [1]

Conventional heat flow signal vs MDSC (total heat flow, reversing heat flow, non-reversing heat flow) as a function of temperature. [2]

Determination of the heat capacity

5

LNCS cooling system

Ref: DSC Q1000 (Tzero[™] technology DSC, TA instruments Inc., USA)

- 1. S. Gschwander et al. (2015). Standardization of PCM characterization via DSC. In Proceedings of SHC 2015 International Conference on Solar Heating and Cooling for Buildings and Industry (pp. 2-4).
- 2. M. Knopp et al. (2016). Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. European Journal of Pharmaceutical Sciences, 87, 164-173.

Modulated DSC

A temperature modulation (TMDSC) is adapted.

Accuracy of \pm 5% against \pm 10% for the classic DSC method.

DSC CALIBRATION

Polystyrene (NIST705a)

Literature (Chang and Bestul, 1968) and experimental Cp of Polystyrene NIST®SRM®705a as a function of temperature

Standard DSC

3 curves method

(same reference pan for all tests with the same mass)

- Empty pan vs reference
- Sapphire vs reference
- Sample vs reference

Ramp from -176°C to 25°C Heating rate: **20°C/min**

Modulated DSC

Ramp > Sample vs reference

Ramp from -176°C to 25°C Heating rate: **4°C/min**

Measurement procedure

Purge gas used: Helium 5.0 / Flowrate = 25 ml.min⁻¹

Drying test for MIL101Cr

All samples were dried in an oven at 100°C
After 48h, the sample mass becomes stable

Heat capacity measurements: Standard vs Modulated DSC (ramp/QI)

Ramp

- Sample pan vs ref
- Ramp from -176°C to 25°C
- Duration: 1h

Quasi-isothermal (QI)

- Sample pan vs ref
- Equilibrate at each temperature
- Duration: 4h

Aluminum Hermetic sealed pans

Modulated DSC is more accurate than Standard DSC
 Quasi isothermal and ramp methods give the same results

Hermetic pans

14

Hermetic pans

Standard deviation< 4.5%

Compaction rate has no influence on Cp results

After calculating the average Cp of each mass \rightarrow Same results with minor deviation

Humidity test for MIL101Cr

MIL101Cr powders gain humidity in a matter of seconds

Lid with pinhole pans

Pans with pinhole have a better stability at the beginning of the experiment

Higher dispersion for lower mass

With a sufficient mass quantity inside the pan → Heat capacity results are more stable

17

Reduced Graphene Oxide

Heat capacity of reduced Graphene Oxide as a function of temperature

A sufficient quantity inside the pan is needed to stabilize Cp results

This quantity depends on the material

Pans used

Conclusion

- A DSC Q1000 with a Tzero technology was used to determine heat capacity of MIL101Cr at low temperatures.
- The new calibration procedure enhanced the accuracy of the results.
- Modulated DSC gives better results than standard DSC specifically at the beginning of the experiment.
- Heat capacity is affected by the pan positionning with both hermetic and pinhole pans, however for pinhole pans the dispersion decreases after a sufficient mass inside the pan.
- Pan positionning could be related to the thermal conductivity of the material and gas surrounding it.

THANK YOU FOR YOUR ATTENTION

Heating rate

Both heating rates give Cp results with good sensitivity

Standard deviation< 5.5%

MIL101Cr = 8.69 mc

Baseline

Heat flow deviation should be less than 100 μ W

In our case

Heat flow deviation = 35.86 µW

Temperature Modulation

- Experiment was perfomed at 25°C
- Fixed temperature modulation amplitude of ±1 °C
- Temperature modulation period was increased in ten minutes steps

From 30 to 60s \implies Rev Cp $\stackrel{1}{/}$ by 20% From 60 to 100s \implies Rev Cp $\stackrel{1}{/}$ by 5% From 100 to 120s \implies Rev Cp $\stackrel{1}{/}$ by $\stackrel{2}{\mid}$ AFCAT