Sparse Surrogate Model for Optimization: Example of the Bus Stops Spacing Problem - Université du Littoral Côte d'Opale
Communication Dans Un Congrès Année : 2024

Sparse Surrogate Model for Optimization: Example of the Bus Stops Spacing Problem

Résumé

Combinatorial optimization problems can involve computationaly expensive fitness function, making their resolution challenging. Surrogate models are one of the effective techniques used to solve such black-box problems by guiding the search towards potentially good solutions. In this paper, we focus on the use of surrogate based on multinomial approaches, particularly based on Walsh functions, to tackle pseudo-Boolean problems. Although this approach can be effective, a potential drawback is the growth of the polynomial expansion with problem dimension. We introduce a method for analyzing real-world combinatorial black-box problems defined through numerical simulation. This method combines Walsh spectral analysis and polynomial regression. Consequently, we propose a sparse surrogate model that incorporates selected, relevant terms and is simpler to optimize. To demonstrate our approach, we apply it to the bus stop spacing problem, an exemplary combinatorial pseudo-Boolean challenge.
Fichier principal
Vignette du fichier
bus-stops-problem_evo24.pdf (845.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04502943 , version 1 (13-03-2024)

Licence

Identifiants

  • HAL Id : hal-04502943 , version 1

Citer

Valentin Vendi, Sébastien Verel, Cyril Fonlupt. Sparse Surrogate Model for Optimization: Example of the Bus Stops Spacing Problem. Evolutionary Computation in Combinatorial Optimization Conference (evoCOP), Apr 2024, Aberystwyth, Wales, United Kingdom. ⟨hal-04502943⟩
56 Consultations
63 Téléchargements

Partager

More