Efficient parallel derivation of short distinguishing sequences for nondeterministic finite state machines using MapReduce - Université du Littoral Côte d'Opale
Article Dans Une Revue International Journal of Big Data Intelligence Année : 2021

Efficient parallel derivation of short distinguishing sequences for nondeterministic finite state machines using MapReduce

Résumé

Distinguishing sequences are widely used in finite state machine-based conformance testing to solve the state identification problem. In this paper, we address the scalability issue encountered while deriving distinguishing sequences from complete observable nondeterministic finite state machines by introducing a massively parallel MapReduce version of the well-known Exact Algorithm. To the best of our knowledge, this is the first study to tackle this task using the MapReduce approach. First, we give a concise overview of the well-known Exact Algorithm for deriving distinguishing sequences from nondeterministic finite state machines. Second, we propose a parallel algorithm for this problem using the MapReduce approach and analyze its communication cost using Afrati et al. model. Furthermore, we conduct a variety of intensive and comparative experiments on a wide range of finite state machine classes to demonstrate that our proposed solution is efficient and scalable.
Fichier principal
Vignette du fichier
s40537-021-00535-6.pdf (2.94 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-03507111 , version 1 (18-04-2023)

Licence

Identifiants

Citer

Bilal Elghadyry, Faissal Ouardi, Zineb Lotfi, Sébastien Verel. Efficient parallel derivation of short distinguishing sequences for nondeterministic finite state machines using MapReduce. International Journal of Big Data Intelligence, 2021, 8 (145), pp.1-27. ⟨10.1186/s40537-021-00535-6⟩. ⟨hal-03507111⟩
63 Consultations
48 Téléchargements

Altmetric

Partager

More